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•MF hematopoietic stem
cells aberrantly secrete
CXCL8 and exhibit
enhanced cell growth/
output in response to
CXCL8 in vitro.

•Genetic deletion or
inhibition of Cxcr2 in
the hMPLW515L-
adoptive transfer
model ameliorates
fibrosis and improves
hematologic
parameters.
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Proinflammatory signaling is a hallmark feature of human cancer, including in myeloprolif-
erative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory
signaling contributes to fibrotic progression in MF; however, the individual cytokine
mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and
disease evolution are yet to be fully elucidated. Previously, we identified a critical role for
combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF
development. Using single-cell transcriptional and cytokine-secretion studies of primary
cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we
extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF patho-
genesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from
patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced
proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic
deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends
overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hemato-
logic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights
provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Introduction
Primary myelofibrosis (MF) is a clonal myeloproliferative
neoplasm (MPN) characterized by constitutional symptoms,
progressive cytopenias, splenomegaly, and an increased risk of
evolution to acute leukemia.1 Overt MF can also evolve from
prefibrotic MPN, which includes polycythemia vera (PV) and
essential thrombocythemia (ET). Gain-of-function mutations of
the JAK/STAT pathway occur frequently in MPN, highlighting
the role of constitutive JAK/STAT activation in disease initiation
and maintenance.2-7 Although the recurrent mutations in MPNs
have been extensively studied,8 the phenotypic and prognostic
pleiotropy observed suggests that biologic factors, in addition
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to activated JAK/STAT, contribute to MF progression and
leukemic transformation.

Aberrant proinflammatory cytokine signaling is an important
mediator of fibrosis across multiple tissue types, including the
bone marrow (BM).9 Recent single-cell studies have provided
insight into how chronic inflammation within the BM compart-
ment promotes mesenchymal stromal cell (MSC) remodeling to
drive fibrosis in MF.10-12 BM-derived fibrocytes are also thought
to represent an alternative source for myofibroblasts during
wound healing and in lung and kidney fibrosis as well as in the
stromal reaction to MF.13,14 Importantly, the proinflammatory
pathways found to contribute to MSC differentiation in MF are



also frequently implicated in MPN hematopoietic stem/pro-
genitor cell (HSPC) expansion/differentiation, including trans-
forming growth factor β (TGFβ),15-17 JAK/STAT,18 and tumor
necrosis factor α (TNFα),19,20 highlighting a likely important
cross talk between mutant clonal hematopoietic stem cells
(HSCs) and the BM stroma.21,22

Previously, we and others have shown that the JAK/STAT and
TNFα/NF-κB inflammatory pathways cooperate to promote
marrow fibrosis in MPNs.23,24 Canonical NF-κB signaling elicits
a myriad of chemokines/cytokines that contribute to acute- and
chronic-phase inflammation, including interleukin-6 (IL-6),
CXCL8 (IL-8), and macrophage inflammatory protein-1α (MIP-
1α), among others.25 These cytokines, in addition to other
profibrogenic cytokines, are elevated in patients across the
spectrum of MPNs and in MF and have prognostic rele-
vance.26,27 Recent studies have highlighted the contribution of
specific cytokines in MF progression28,29; however, additional
cytokine pathways are likely involved, and the full spectrum of
inflammatory mediators playing causative roles in MF have yet
to be identified. Notably, increased serum CXCL8 levels were
previously found to correlate with adverse clinical outcomes in
patients with MF26; however, to our knowledge, a functional
assessment of CXCL8-CXCR2 signaling in disease progression
has not been done. We hypothesized that specific cytokines/
chemokines elicited by MPN HSCs, including CXCL8, promote
MF development and predict the likelihood of disease pro-
gression. Using both single-cell transcriptional and cytokine
platforms, we identify the enrichment in CXCL8/CXCR2
signaling in MF and assess the role of CXCL8/CXCR2 in MF
pathogenesis and therapeutic response.
Methods
Human/patient experiments
Patient samples were provided through the MPN Research
Consortium and Memorial Sloan Kettering Cancer Center.
Written informed consent was obtained per the institutional
review boards of Memorial Sloan Kettering Cancer Center,
Icahn School of Medicine, and individual MPN Research Con-
sortium member institutions. Fibrosis was quantified using the
current clinical World Health Organization criteria, previously
described by Thiele et al.30 The presence of fibrosis in each
patient sample was independently verified by a hema-
topathologist (W.X.) or pulled directly from clinical pathology
reports at the time of sample collection. Deidentified, healthy
CD34+ cells were purchased from AllCells. CD34+ selection was
carried out using Ficoll-Paque separation and MicroBead col-
umn filtration (Miltenyi) per protocol. For in vitro experiments,
CD34+ cells were cultured in StemSpan serum-free medium
with stem cell factor, thrombopoietin, FMS-like tyrosine kinase 3
ligand, and IL-3 at 20 ng/mL, to which varying doses of CXCL8
was added.

Mouse models and in vivo experiments
Mouse experiments were performed in accordance with
Memorial Sloan Kettering Cancer Center institutional animal care
and use committee–approved protocols. Cxcr2f/f mice have
been described previously.31 Human MPLW515L (hMPLW515L)
experiments were performed as described previously.32 Briefly,
prestimulated, lineage-negative BMs from Cxcr2f/f;VavCre+ or
CXCL8/CXCR2 MEDIATES MYELOFIBROTIC PROGRESSION
Cxcr2f/f;VavCre– mice were transduced via cosedimentation, with
viral supernatant containing either murine stem cell virus (MSCV)-
hMPLW515L

–internal ribosome entry site (IRES) green fluorescent
protein (GFP) or MSCV-MigR1-IRES-GFP empty vector (EV)
control plasmid and transplanted into lethally irradiated C57BL/
6J mice. For in vivo hMPLW515L drug trial experiments, BALB/c
mice were used. Approximately 2 or 3 weeks after the transplant
of MSCV-hMPLW515L-IRES-GFP retrovirally transduced lineage-
negative BMs, mice were subjected to bleeding and randomly
assigned to ruxolitinib (60 mg/kg orally, twice daily), reparixin (60
mg/kg subcutaneously, twice daily), their combination, or vehicle
arms based on mutant cell fraction (GFP percentage) and
leukocyte parameters to ensure consistency across arms. Histo-
pathology was photographed using a BX53 Olympus micro-
scope and DP74 camera.

Single-cell transcriptional/cytokine profiling
Single-cell messenger RNA sequencing (scRNA-seq) was con-
ducted as previously described.33 Reverse transcription, library
construction, and sequencing were carried out using reported
protocols.34,35 Hg19 using STARv (2.5.2b) was used for align-
ment based on the Dropseq method.34 Seurat (version 3.1.2)36

was used to identify differentially expressed genes (DEGs).
SingleR (version 1.0.1)37 was used to annotate cell types.38,39

Functional enrichment analysis was conducted using Data-
bases for Annotation, Visualization and Integrated Discovery.40

Gene correlations were assessed using Scran (version 1.12.1).
Single-cell cytokine profiling was carried out on CD34+ cells
isolated from patients using previously described methods.41

Methylcellulose assays
CD34+ cells were plated at 500 cells per replicate in 30 mm
dishes containing 1mL of StemSpan serum-free medium
with 1.1% methylcellulose containing stem cell factor, throm-
bopoietin, FMS-like tyrosine kinase 3 ligand, granulocyte-
macrophage colony-stimulating factor, IL-3, and erythropoietin,
with or without CXCL8. For reparixin/ladarixin studies, dimethyl
sulfoxide was added in control wells. The colonies were
enumerated on day 14.

Plasma cytokine analysis
Patient CXCL8 plasma levels were determined using the CXCL8
Quantikine enzyme-linked immunosorbent assay kit per the
manufacturer’s protocol. Assays for murine serum were carried
out using the Millipore Mouse Cytokine 32-plex kit and Flex-
MAP 3D platform (Luminex).

RNA/ATAC-Seq analysis
STAR(v2.6.0a)42 and featureCounts(version 1.6.3)43 were used to
align Fastq files to hg19 and determine the number of reads per
gene. Differential expression analysis was performed using
DESeq2,44 with a fold change cutoff of ±2 and a false discovery
rate (FDR) of 1%. Motif signatures were obtained using de novo
Homer approach (version 4.11).45 Gene set enrichment analysis
(GSEA) was performed using GSEA version 3.046 with mSigDB
(version 6.0) pathway database. For protein-protein interaction
network analysis, STRING was used to visualize differentially
upregulated genes with a fold change ≥4 and an FDR ≤1%.47 The
degree and betweenness centrality were calculated for each node
using NetworkAnalyzer (version 4.4.6).48 The STRING network was
filtered for nodes having a degree ≥5 and betweenness centrality
18 MAY 2023 | VOLUME 141, NUMBER 20 2509



score ≥0.005. For Assay for Transposase-Accessible Chromatin
with high-throughput Sequencing (ATAC-Seq), trimmed reads
were mapped to hg19 using Bowtie2 (version 2.3.4.1).49 Peak
calling was performed using MACS2 (version 2.1.2) against stan-
dard input (fold change >2; P < .001).50 Peaks from all samples
were merged within a 500 bp window to create a peak atlas. Raw
read counts were then tabulated using featureCounts (version
1.6.3).43 Peaks were annotated using genomic distance, with
genes assigned to a peak if they were within 50kb upstream/
downstream of the start/end site. Raw read counts were normal-
ized using the median of ratios normalization method (DESeq2).44

Promoters were defined as being within 2kb of the transcription
start site. Known motif enrichment was used for the ATAC-Seq
analysis. Differential accessibility of peaks was calculated using a
fold change cutoff of ±2 and an FDR of 1%.

Splenic stromal/fibroblast cells and endothelial
cells preparation
Stromal cells were isolated from healthy spleen donors from the
National Disease Research Interchange. To generate fibro-
blasts, digested splenic cells were cultured in minimal essential
medium α with 5% human platelet lysates (2-5 × 104 cells per
mL) in culture flasks for 24 hours. To generate endothelial cells,
digested splenic cells were cultured in endothelial cell growth
medium–2 (2 × 104 to 5 × 104 cells per mL) in fibronectin-
coated culture flasks for 24 hours. For coculture experiments,
5 × 104 megakaryocyte (MK)–enriched cells were directly
seeded onto 12-well plates over adherent mesenchymal stro-
mal cells at a 50% confluency.
Results
CXCL8/CXCR2 signaling is enriched in CD34+

HSPCs of fibrotic MPN
To investigate the extent of proinflammatory cytokine expres-
sion among individual MPN HSPC cell populations, we carried
out single-cell gene expression profiling (scRNA-seq) on CD34+

cells isolated from a small set of patients with MPN with varying
degrees of fibrosis (supplemental Table 1; supplemental
Figure 1A-C, available on the Blood website). Using quality
control filtering, a total of 25 288 genes in 5199 single cells
were included for final analysis. Visualization with uniform
manifold approximation and projection analysis of HSCs
revealed that patients demonstrating increased fibrosis, such as
MF1 and ET with MF, were clustered and exhibited higher
levels of expression of fibrosis-related genes, including TNFα/
NF-κB and inflammatory response pathway genes (Figure 1A-B;
supplemental Figure 1D; supplemental Table 4). Similar pat-
terns were evident across multiple different cell types, including
common myeloid progenitors and granulocyte-monocyte pro-
genitors, suggesting shared transcriptional programs
throughout myeloid lineage commitment (supplemental
Figure 1E). In addition to TNFα/NF-κB–regulated gene
expression programs, we also observed an increase in the
expression of CXCR2-mediated chemokines, including CXCL2
(MIP-2α), CXCL3 (MIP-2β), and CXCL8 (IL-8; Figure 1B;
supplemental Figure 1F).51 These data expand on those
described in previous studies52-54 and validate that many CD34-
expressing cells within patients with fibrotic MPN express
CXCL8 and have the capacity to signal through CXCR2.
Notably, CXCR2 signaling is well-known to promote mature
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myeloid cell activation,55 and elevated serum CXCL8 levels
were previously shown to be associated with increased risk of
leukemic transformation and reduced overall survival in MF26;
however, the role of CXCL8 signaling in MF progression and
whether CXCL8-secreting cells were enriched in MF compared
with other MPN subtypes had not been previously investigated.

To understand whether messenger RNA expression of CXCL8
manifested into functional CXCL8/IL8 secretion, we performed
single-cell cytokine-secretion profiling41 on circulating CD34+

cells isolated from a larger cohort of patients with MPN span-
ning all 3 clinical MPN subtypes (N = 11, MF; N = 13, PV; and
N = 14, ET; supplemental Table 2). Among 5 cytokines
assessed, we observed the expansion of a monomorphic,
CXCL8-only secreting cell population enriched in MF compared
with PV and ET (54% MF vs 31% PV vs 0% ET; Figure 1C). This
also correlated with detectable CXCL8 levels in MPN plasma
samples (supplemental Figure 2A). Intriguingly, RANTES was
significantly enriched in ET (supplemental Figure 2B), but given
the previous data highlighting the adverse clinical implications
of CXCL8 in MF, we focused our subsequent studies on CXCL8
specifically. Consistent with our cohort that underwent scRNA-
seq, the frequency of CXCL8-secreting CD34+ cells correlated
not only with the MF subtype (Figure 1D) but also with the
degree of reticulin fibrosis and leukocytosis (supplemental
Figure 2C-D), suggesting that the presence of circulating
CXCL8-secreting CD34+ cells in blood may serve as a
biomarker for the presence of significant BM fibrosis
(supplemental Figure 2E).

To functionally assess the impact of CXCL8/CXCR2 signaling on
human MPN HSCs, we cultured MF CD34+ cells with exoge-
nous CXCL8. This revealed enhanced proliferation and total cell
output of treated cells, including increases in CD33+ monocytic
and CD41+ MK cell numbers (Figure 1E; supplemental
Figure 2F). Via flow cytometry, we also observed an increase
in both the fraction of CXCR1/2-expressing MF CD34+ cells and
CXCR1/2 surface expression intensity compared with healthy
CD34+ control cells, consistent with the enhanced response of
MF hematopoietic cells to CXCL8 (Figure 1F; supplemental
Figure 2G). Furthermore, colony-forming assays also revealed
enhanced colony-forming unit–GM colony output relative to the
degree of CXCR2 surface receptor expression (supplemental
Figure 2H). Notably, both CXCR1/2 surface expression and
CXCL8 single-cell cytokine enumeration correlated with
JAK2V617F variant allele frequency (supplemental Figure 2I-J),
consistent with recent single-cell studies,56 suggesting that the
magnitude of JAK/STAT signaling corresponds with CXCL8/
CXCR2 output. Together, these data show that CXCL8 is
enriched and aberrantly secreted by multiple cell populations in
MF and promotes cell growth and proliferation of MF HSPCs.
Integrated ATAC/RNA-Seq reveals enriched
pathways in CXCL8 secretor vs nonsecretor MPNs
Our cytokine data demonstrated a correlation between CXCL8-
secreting CD34+ cells and BM reticulin fibrosis, suggesting that
the CXCL8-CXCR2 pathway signaling promotes fibrotic pro-
gression in a subset of patients with MF. Given our prior data
demonstrating alterations in enhancer landscapes of TNFα/NF-
κB–enriched murine MF models, we investigated whether the
transcriptional and chromatin proinflammatory states of MF
DUNBAR et al
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Figure 1. CD34+ cells secreting only CXCL8 are enriched in a subset of patients with MF, and this correlates with clinical features, including grade reticulin fibrosis.
(A) Uniform manifold approximation and projection visualization of individual HSCs colored based on the patient (see supplemental Table 1). (B, top) GSEA of differentially
expressed genes (DEGs) based on clustering of patient HSCs; (B, bottom) most DEGs and their pathway associations (percent expressed: percentage of cells expressing listed
gene; average expression scale: Z score of normalized read counts, with blue, positive values and gray, negative values). UPR, unfolded protein response. (C) Heatmap
demonstrating frequency of individual cytokine-secreting CD34+ cells detected across MPN subtypes MF, PV, and ET among individual patients as a percentage of total
cytokine-secreting cells (from 0% in gray to 100% in dark blue). Four cytokines presented: IL-6, MIP-1β, TNFα, and CXCL8. (D) Violin plot depicting the correlation between
MPN subtype and percent fraction of cells secreting only CXCL8, as detected via single-cell cytokine analysis. (E) Ratio of total cell output relative to untreated cultured healthy
donor (HD) (light blue) vs MF (dark blue) CD34+ cells in response to exogenous CXCL8 (50 or 100 ng). Representative of triplicate experiments from N = 3 HD and N = 6 MF
samples. Data shown represent mean ± standard deviation (SD. (F) Percent of total CD34+ cells expressing CXCR1 (left) or CXCR2 (right) via flow cytometry of HD (control
[CTRL]; N = 13) vs patients with MF (N = 15). Data shown represent mean ± SD. *P < .05; ***P < .001. NES, normalized enrichment score.
CD34+ cells varied in the context of CXCL8 cytokine secretion.
We performed bulk RNA-Seq and assay for transposase-
accessible chromatin with high-throughput sequencing
(ATAC-Seq) on CD34+ cells isolated from patients with MPN
with varying degrees of fibrosis and stratified the samples as
CXCL8 secretors vs nonsecretors based on single-cell cytokine-
secretion profiling data (supplemental Table 3). Gene expres-
sion analysis revealed general clustering of CXCL8-secretors vs
nonsecretors, irrespective of the MPN subtype (supplemental
Figure 3A). Review of the most DEGs (supplemental
Figure 3B) between CXCL8 secretors vs nonsecretors revealed
an enrichment in genes encoding neutrophil markers and those
involved in the activated innate immune response (eg, CTSG,
AZU1, MPO, PRTN3, ELANE, and RNASE2/3), suggesting a
CD34+ population that skewed toward enhanced mature
myeloid differentiation (Figure 2A; supplemental Table 5).
Consistent with our scRNA-Seq, GSEA showed enrichment in
TNFα/NF-κB and hallmark interferon alfa or gamma (IFN-α/γ)
response gene sets (Figure 2B), and network analysis revealed
other gene oncology processes indicative of mature myeloid/
neutrophil differentiation/activation and toll-like receptor (TLR)
CXCL8/CXCR2 MEDIATES MYELOFIBROTIC PROGRESSION
signaling (Figure 2C; supplemental Figure 3C; supplemental
Table 5), increasingly implicated in MF.10,20,52 Integrated
analysis of gene expression and chromatin accessibility data
in a subset of patients (N = 5; supplemental Table 3)
confirmed increased expression/accessibility of genes
involved in innate immune response, neutrophil activation/
differentiation, and TLR signaling (eg, S100A8/A9, CCL3,
KLF4, CEBPB, and TLR4); FOS/JUN activation (eg, FOS/
FOSB); extracellular matrix remodeling (eg, PLAUR); and type
I IFN-α response (eg, OAS1/L and IFI6; Figure 2D). These
findings were further supported by the results from the
analysis of an extended cohort of patients with MF from a
publicly available transcription microarray data set stratified
based on CXCL8 gene expression (supplemental Figure 3D-
F), including similar enrichment in TNFα/NF-κB and IFN-α/-γ
proinflammatory gene sets and those associated with mature
myeloid cell activation and TLR signaling (supplemental
Figure 3G-H). These observations, coupled with an
increased expression of known reciprocal negative regulators
of these proinflammatory pathways, including DUSP1/2 and
ZFP36, support an important role for neutrophil activation,
18 MAY 2023 | VOLUME 141, NUMBER 20 2511
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alarmin overexpression, and the acute phase inflammatory
response in CXCL8-secreting MF CD34+ cells.

Given the degree of enrichment in TNFα/NF-κB in CXCL8
secretors and previous associations of this gene set/pathway in
MF, we sought to determine whether the chromatin accessi-
bility states of CXCL8-secreting MF represented a distinct
proinflammatory MPN entity or all MPN CD34+ cells were
2512 18 MAY 2023 | VOLUME 141, NUMBER 20
poised for inflammatory signaling via NF-κB. Assessment of the
accessibility landscape surrounding the leading-edge genes
most responsible for driving the hallmark TNFα and IFN-α/-γ
pathways revealed a marked increase in the ATAC signal in
patients who were classified as CXCL8 secretor vs nonsecretor,
concordant with their transcriptional output, suggesting that,
rather than being inherently poised for NF-κB inflammatory
signaling, additional epigenetic changes are required to
DUNBAR et al



engage this proinflammatory program to promote MF
(Figure 2E). In addition to the alterations at critical TNFα/NF-κB
gene loci, we also observed a strong, global positive enrich-
ment in FOS/JUN (AP-1), C/EPBE, and interferon-regulatory
factor motif signatures. When segregating between promoter
and enhancer regions, accessibility alterations in the enhancer
regions drove most of the enrichment observed, including a
STAT5 motif signature (Figure 2F; supplemental Figure 3I),
consistent with our prior studies in murine MF models.23 Sur-
prisingly, the overall accessibility at the CXCL8 locus was
unchanged, despite known NF-κB, AP-1, STAT, and C/EBPE
motifs at the CXCL8 promoter (supplemental Figure 3J),57 a
finding that is also true for other canonical NF-κB– and CXCR2-
mediated cytokines, including TNFα itself, IL-6, IL-10, and
CXCL1 (supplemental Table 6). These data suggest that cyto-
kine promoter regions within MPN CD34+ cells, including at
CXCL8, might be inherently poised for inflammatory-mediated
regulation and that differential enhancer activity and/or the
lineage-specific chromatin states themselves are the primary
drivers of the increased proinflammatory signaling observed in
CXCL-8 high/fibrotic MPN.
Cxcr2 deletion improves hematologic parameters
and reduces fibrosis in the hMPLW515L adoptive
transfer model
Our genomic/epigenomic studies and in vitro data suggested
that MF HSCs are competent to signal via CXCR2 and that
CXCL8-CXCR2 signaling might be relevant in a subset of MF.
To explore the CXCR2 pathway signaling in fibrotic progres-
sion, we investigated the effects of genetic deletion of Cxcr2
within the murine hematopoietic compartment using the
hMPLW515L

fibrosis mouse model.32 Although mice lack the
analog equivalent of human CXCL8 (hCXCL8),58 murine
CXCR1/2 receptors share close homology to those of humans,
bind to hCXCL8, and activate similar downstream mediators.59

Consistent with this, culture of cKit+ murine BM cells in the
presence of hCXCL8 demonstrated enhanced signaling
through pERK and plasmid STAT3 that was abrogated in the
setting of Cxcr2 knockout (supplemental Figure 4A). Isolated
lineage-negative VavCre-Cxcr2–/– or Cre–wild-type (WT) Cxcr2f/f

BM cells were then transduced with either MSCV-hMPLW515L-
IRES-GFP or MSCV-MigR1-IRES-GFP EV control plasmid and
transplanted into lethally irradiated C57BL/6J recipient mice
and monitored for the development of MF (supplemental
Figure 4B). Cxcr2 knockout was validated by loss of surface
expression on myeloid cells in primary VavCre-Cxcr2–/– mice
(supplemental Figure 4C) and in transplant recipients. Mice that
received transplantation with Cxcr2–/– hMPLW515L-expressing
cells displayed reductions in white blood cell (WBC; mean 28.0
× 103/μL vs 104.1 × 103/μL; P < .01) and platelet parameters
(mean 773.6 × 103/μL vs 1933.75 × 103/μL; P < .01) compared
with WT Cxcr2f/f-expressing hMPLW515L mice (Figure 3A).
Further, absolute CD11b+Gr1+ neutrophil numbers were also
reduced in the peripheral blood of Cxcr2–/– hMPLW515L mice
(supplemental Figure 4D). In addition to improvements in blood
cell count parameters, we observed a significant reduction in
the mutant GFP+ cell fraction (mean 63.5% vs 93.3%; P = .031;
Figure 3B) and liver weights (mean 1234 vs 2783 mg; P < .01)
with Cxcr2–/– hMPLW515L mice; however, spleen weights were
not convincingly reduced (mean 269.2 vs 436.3 mg; P = .19;
Figure 3C; supplemental Figure 4E). These phenotypic changes
CXCL8/CXCR2 MEDIATES MYELOFIBROTIC PROGRESSION
did not appear to be related to an inherent homing/engraft-
ment defect of Cxcr2–/– vs Cxcr2f/f cells or to hematopoietic
dysfunction induced by Cxcr2 loss (supplemental Figure 4F-G).
Consistent with our MF patient culture data, flow cytometric
analysis also revealed reductions in CD41+ BM MK cell fractions
(mean 7.5% vs 1%; P < .01; supplemental Figure 4H), and his-
topathologic sections of Cxcr2–/– hMPLW515L BM confirmed
reductions in observable MKs (supplemental Figure 4I).
Notably, reticulin staining revealed significant improvements in
fibrosis in both the BM and spleen (Figure 3D; supplemental
Figure 4J-K), which, together with the reductions in observ-
able MKs, translated into significant improvements in the
overall survival (median 84 vs 42 days; P < .01; Figure 3E).

We also examined the effect of Cxcr2 loss on proinflammatory
cytokine enumeration and TLR signaling with Luminex bead-
based serum cytokine profiling. Notably, Cxcr2–/– hMPLW515L

mice displayed reductions in critical TLR-mediated cytokines,
specifically IL-6, IL-10, and TNFα in comparison with Cxcr2f/f WT
hMPLW515L mice (Figure 3F). In further support of this, and
consistent with our in vitro and patient expression data,
a western blot analysis of harvested splenocytes from Cxcr2–/–

hMPLW515L mice revealed reductions in detectable levels of
TLR agonists S100a8/a9 (Figure 3G), further suggesting a role
for Cxcr2 in modulating TLR-mediated proinflammatory
signaling.
CXCR1/2 inhibition improves hematologic
parameters and fibrosis in the hMPLW515L model
We then sought to validate our genetic deletion results by
evaluating pharmacologic inhibition of the CXCR1/2 pathway in
the hMPLW515L model. Balb/C mice that received trans-
plantation with hMPLW515L-transfected BM cells displaying evi-
dence of disease were assigned to 4 separate treatment arms
based on the WBC count: vehicle, ruxolitinib (60 mg/kg orally
twice daily), the CXCR1/2 inhibitor reparixin (60 mg/kg subcu-
taneously twice daily), or combination therapy (supplemental
Figure 5A). Consistent with our genetic deletion studies, mice
treated with reparixin, either alone or in combination with rux-
olitinib, demonstrated improved leukocytosis (mean 251 × 103/
μL vehicle vs 80.4 × 103/μL reparixin vs 30.7 × 103/μL combo;
P < .05) and platelet counts (mean 3437.8 × 103/μl vehicle vs
1244.2 × 103/μL reparixin vs 742 × 103/μL combo; P < .05) in
comparison with vehicle-treated mice (Figure 4A). Minimal
toxicity was observed with reparixin, including a separate
cohort of WT mice that had received transplants with EV-
transfected BM cells and treated with an identical duration
and dosing schedule of the drug (supplemental Figure 5B-F).
Consistent with our genetic deletion studies, reparixin mono-
therapy modestly reduced spleen weights (mean, 585.8 vs
490.5 mg; P = .35; supplemental Figure 5G), and, like rux-
olitinib, had only minimal effects on GFP+ and Mac1+Gr1+

peripheral blood neutrophil fractions (mean, 75.2% vs 67.9%;
P = .3; Figure 4B; supplemental Figure 5H). Notably, however,
reparixin monotherapy or combined reparixin/ruxolitinib resul-
ted in a significant reduction in BM MK number, consistent with
that reported in our genetic knockout studies (Figure 4C). Most
importantly, reparixin monotherapy resulted in a significant
reduction in reticulin fibrosis, both in the BM and spleen
(Figure 4D-E; supplemental Figure 5I), which was further
enhanced when combined with ruxolitinib. Importantly, the
18 MAY 2023 | VOLUME 141, NUMBER 20 2513



2500

2000

1500

1000

500

0

PLT

PL
T (

K/
uL

)

ns
** **

Cxc
r2

f/f ;C
re

– E
V

Cxc
r2

f/f ;C
re

– M
PL

Cxc
r2

f/f ;C
re

+ M
PL

Cxc
r2

f/f ;C
re

+ E
V

Hc
t (

%
)

80

60

40

20

0

HCT

*

Cxc
r2

f/f ;C
re

– E
V

Cxc
r2

f/f ;C
re

– M
PL

Cxc
r2

f/f ;C
re

+ M
PL

Cxc
r2

f/f ;C
re

+ E
V

150

WBC

ns
**** ***

W
BC

 (K
/u

L) 100

50

0

Cxc
r2

f/f ;C
re

– E
V

Cxc
r2

f/f ;C
re

– M
PL

Cxc
r2

f/f ;C
re

+ M
PL

Cxc
r2

f/f ;C
re

+ E
V

A

Cxc
r2

f/f ;C
re

– E
V

Cxc
r2

f/f ;C
re

– M
PL

Cxc
r2

f/f ;C
re

+ M
PL

Cxc
r2

f/f ;C
re

+ E
V

100

80

60

40

20

0

To
ta

l G
FP

%
 li

ve
 ce

lls

***
**** **

B

Cxc
r2

f/f ;C
re

– E
V

Cxc
r2

f/f ;C
re

– M
PL

Cxc
r2

f/f ;C
re

+ M
PL

Cxc
r2

f/f ;C
re

+ E
V

4000

3000

2000

1000

0

Liv
er

 w
ei

gh
t (

m
g)

ns
** **

C

100

50 **

0

0 50 100 150 200 250

Pr
ob

ab
ili

ty
 o

f s
ur

viv
al

Days post-transplantation

E

Cxcr2f/f;Cre–

Cxcr2f/f;Cre+

B
M

 H
&

E
B

M
 R

et
ic

ul
in

Cxcr2f/f;Cre– Cxcr2f/f;Cre+
D

1.5

1.0

0.5

0.0

IL-
6

IL-
10

TN
Fa

*

*
*

Cy
to

ki
ne

 se
cr

et
io

n
re

la
tiv

e 
to

 co
nt

ro
l

F

S100a8

S100a9

Beta-actin

G Cxcr2f/f;Cre– Cxcr2f/f;Cre+

Cxcr2f/f;Cre–

Cxcr2f/f;Cre+

Figure 3. Cxcr2 deletion in murine BM improves counts and reticulin fibrosis in the hMPLW515L adoptive transfer model of MF. (A) WBC counts (×103/μL), hematocrit
levels (%), and platelet counts (×103/μL) of Cxcr2f/f;Cre+ knockout (KO) hMPLW515L mice compared with Cxcr2f/f;Cre– WT hMPLW515L or MSCV-MigR1-IRES-GFP EV control mice at
timed euthanization 9 weeks after transplant. N = 4 or 5 per arm; *P < .05; **P < .01; ***P < .001; ****P < .0001. Data shown represent mean ± standard error of mean (SEM). Two-
way analysis of variance was used to compare groups. (B) Peripheral bloodmutant cell fraction vs GFP percentage in Cxcr2f/f;Cre+ hMPLW515L mice vs Cxcr2f/f;Cre– WT hMPLW515L or
EV control mice. N = 4 or 5 per arm; **P < .01; ***P < .001; ****P < .0001. Data shown represent mean ± SEM. (C) Liver weights (mg) of Cxcr2f/f;Cre+ KO vs Cxcr2f/f;Cre– WT
hMPLW515L mice compared with EV controls. **P < .01. Data shown represent mean ± SEM. (D) Representative H&E and reticulin images of BM from Cxcr2f/f;Cre+ KO vs Cxcr2f/
f;Cre– WT hMPLW515L mice at timed euthanization 9 weeks after transplant. Representative images of N = 6 mice per arm. (E) Kaplan-Meier survival analysis of Cxcr2f/f;Cre+ KO
hMPLW515L mice (N = 16) vs Cxcr2f/f;Cre– WT hMPLW515L mice (N = 13). **P < .01 (log-rank test). (F) Fold change in serum cytokine levels of IL-6, IL-10, and TNFα of Cxcr2f/f;Cre+ KO
compared with Cxcr2f/f;Cre– WT hMPLW515L mice. N = 8 per arm. *P < .05. Data shown represent mean ± SEM. (G) Western blot analysis of the alarmins S100a8/a9 from the
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reduction in BM and spleen fibrosis with reparixin therapy was
also observed in the Gata1low model of MF,60 validating
CXCR1/2 as a potential target for the treatment of fibrosis
irrespective of MPN driver mutation status.

CXCR1/2 inhibition demonstrates efficacy against
primary MPN cells in vitro
We also assessed the impact of CXCR1/2 inhibitor therapy on
the proliferation and colony-forming capacity of primary MF
CD34+ cells in vitro. Consistent with our aforementioned
liquid culture experiments, MF CD34+ cells demonstrated
enhanced colony-forming capacity in the presence of CXCL8.
This effect, however, was abolished with the addition of
ladarixin, a second-generation CXCR1/2 inhibitor (Figure 4F).
Similar effects were also observed with CD33+ and CD41+

cell output when exposed to CXCR1/2 inhibition
(supplemental Figure 6A), consistent with our in vivo studies.
Intriguingly, treatment with reparixin also reduced levels of
both CXCL8 and vascular endothelial growth factor
2514 18 MAY 2023 | VOLUME 141, NUMBER 20
elaborated by cultured MF MKs, including when cocultured
with BM stromal cells (Figure 4G-H; supplemental Figure 6B-
C) suggesting downregulation of an autocrine feedback loop.
Together, these data confirm an important role for CXCR2
pathway signaling in BM fibrosis development in both human
cells and murine systems and validate CXCR1/2 as a potential
target for the treatment of BM fibrosis irrespective of the
MPN driver mutation status.
Discussion
Aberrant proinflammatory signaling is a hallmark feature of
MPNs.18 Treatment with JAK1/2 inhibitors improves symptoms
and clinical outcomes in MF, underscoring the role of consti-
tutive JAK/STAT signaling in disease maintenance.61-63

Although many proinflammatory cytokines are reduced with
JAK inhibition, others, including CXCL8, are not,52,61 suggest-
ing that alternative sustained proinflammatory pathways play a
critical role in MF progression. Previously, we and others
DUNBAR et al
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identified an NF-κB–mediated proinflammatory signaling
network promoting fibrosis in MF.23,24,52 An improved under-
standing of how specific cytokines drive fibrosis progression
through NF-κB will provide important mechanistic insights and
identify potential biomarkers predictive of treatment response.
CXCL8/CXCR2 MEDIATES MYELOFIBROTIC PROGRESSION
Here, we used primary samples from patients with MF and
murine models of MF to uncover an important role for CXCL8-
CXCR2 signaling in fibrotic progression and add to existing
literature establishing CXCL8-CXCR2 as a critical node pro-
moting disease evolution across the spectrum of myeloid
18 MAY 2023 | VOLUME 141, NUMBER 20 2515



disorders. CXCL8 is one of several proinflammatory cytokines
upregulated by NF-κB and a potent inducer of neutrophil dif-
ferentiation and mobilization to sites of acute infection.55

Aberrant CXCL8-CXCR2 signaling is implicated in numerous
proinflammatory and autoimmune phenomena, including solid
organ fibrosis.64,65 In epithelial malignancies, CXCL8 enhances
neoangiogenesis and extracellular matrix remodeling to pro-
mote a microenvironment conducive for furthered tumor
growth and metastatic progression.55 In hematologic malig-
nancies, CXCL8 promotes leukemic stem cell fitness in chronic
myelogenous leukemia, myelodysplastic syndrome, and acute
myeloid leukemia.66,67 Notably, CXCR1/2 antagonists induce
apoptosis of leukemic stem cells in vitro and in vivo.66-68 Here,
we used integrated single-cell transcriptional and cytokine
assays and identified strong enrichment in a CXCL8-CXCR2
pathway signature in MF compared with prefibrotic MPN sub-
types, PV and ET. Furthermore, we demonstrate that MF CD34+

cells display enhanced cell growth in response to CXCL8, a
finding that also correlated with CXCR1/2 surface expression
levels. Notably, these findings both contrast and complement
the work by Emadi et al, who previously demonstrated an
inhibitory role for IL8-CXCR2 signaling in MF-mediated mega-
karyopoiesis in vitro.54 Importantly, these studies collectively
show that MF HSPCs are primed for ongoing aberrant signaling
through CXCR2. Whether the differential impact of CXCL8
signaling on MF-mediated megakaryocytes is dose/time-
dependent, our studies show that CXCL8 has broad effects
across the MF hematopoietic hierarchy and that genetic/phar-
macologic inhibition of this pathway in vivo reduced the MF
hematopoietic output, myeloid expansion, and BM fibrosis. This
suggests that CXCL8-secreting HSPCs might represent a
circulating biomarker for BM fibrosis, and prospective studies
can delineate if the emergence of a CXCL8-secreting clone over
time predicts fibrotic progression in MPN and/or if this can be
therapeutically targeted in the clinical context.

Performing chromatin accessibility analysis on a small cohort of
patients across MPN subtypes using ATAC-Seq, we also
expanded on our previous data in MF mouse models23 and
demonstrated the extent to which constitutive JAK/STAT
signaling influences chromatin state to promote profibrotic
inflammatory programs in MF progression. We identify a strong
correlation between CXCR2 cytokine expression and increased
TNFα/NF-κB gene accessibility and enrichment in AP-1 or
C/EBPE motif signatures in patient samples with high CXCL8
levels. AP-1 was previously found to be associated with fibrosis in
different histologic contexts,69 and our findings suggest a
more prominent (and perhaps underappreciated) role for FOS/
JUN-mediated inflammatory signaling in MF progression, data
concordant with emerging studies assessing proinflammatory
signaling accessibility changes within specific MPN genotypic
contexts.70 That we did not observe major accessibility changes
at multiple proinflammatory cytokine loci, including CXCL8,
would suggest promoter regions are epigenetically primed for
inflammatory signaling in MPN HSCs and that epigenetic
changes among enhancer regions, and perhaps cell lineage
specificity itself, drive profibrotic inflammatory signaling in MF.

The myeloid differentiation program enriched in CXCL8-high MF
is reminiscent of an acute hematopoietic stress response and
adds to the expanding literature on the role of TLR signaling in
2516 18 MAY 2023 | VOLUME 141, NUMBER 20
MF.52,71,72 We have previously shown that NF-κB is activated in
both mutant and nonmutant MPLW515L-diseased cells in vivo,53

and others have shown that healthy HSCs express TLR recep-
tors that potently upregulate proinflammatory cytokines in
response to various pathogen- and damage-associated molec-
ular patterns, including the TLR agonists S100A8/A9, to promote
myeloid cell maturation/mobilization in an autocrine and para-
crine manner.73,74 In MF, HSPCs are preferentially sensitive to
TLR agonists in vitro,52 and S100a8/a9 play key roles in MSC
proliferation and myofibroblast differentiation,10,75 suggesting
simultaneous roles for TLR signaling on MF HSPCs and their
surrounding microenvironment. Together, these data suggest
that CXCL8, elicited by mutant HSCs and other myeloid cells,
might promote a feed-forward loop of enhanced S100A8/A9
release and TLR activation that, over time, reinforces MSC tran-
scriptional changes that favor fibroblastic proliferation. Impor-
tantly, our inhibitor studies suggest that this cycle can be
disrupted by pharmacologic inhibition of CXCR1/2, with associ-
ated improvements in the MK/neutrophil number, extra-
medullary hematopoiesis, and fibrosis. Given this, we believe
that CXCL8/CXCR2 inhibition represents an attractive thera-
peutic opportunity to intercept MF progression in MPNs and
therefore warrants further study in the clinical context.

Acknowledgments
The authors thank the members of the Levine laboratory for their helpful
comments and discussion. The authors also thank the members of the
Hoffman laboratory and MPN-RC tissue bank as well as ISMMS tissue
bank for providing samples from patients with MF. The authors thank
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