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Abstract: Background: Type 1 Diabetes Mellitus (T1D) is an autoimmune disease which can cause 1

serious complications, that can be avoided by preventing the glycemic levels from exceeding the 2

physiological range. Straightforwardly, many data-driven models were developed to forecast future 3

glycemic levels, and to allow patients avoiding adverse events. Most models are tuned on data 4

of adult patients, whereas the prediction of glycemic levels of pediatric patients has been rarely 5

investigated, as they represent the most challenging T1D population. Methods: A Convolutional 6

Neural Network (CNN) and a Long Short-Term Memory (LSTM) Recurrent Neural Network were 7

optimized on glucose, insulin, and meal data of 10 virtual pediatric patients. The trained models 8

were then implemented on two edge-computing boards to evaluate the feasibility of an edge system 9

for glucose forecasting, in terms of prediction accuracy and inference time. Results: The LSTM model 10

achieved the best numeric and clinical accuracy when tested in the .tflite format, whereas the CNN 11

achieved the best clinical accuracy in uint8. The inference time for each prediction was far under 12

the limit represented by the sampling period. Conclusion: Both models are effective in predicting 13

glucose in pediatric patients in terms of numerical and clinical accuracy. The edge implementation 14

did not show significant performance decrease, and the inference time was largely adequate for a 15

real-time application. 16

Keywords: Diabetes; Time-Series forecasting; Glucose Prediction; Pediatrics; Edge Computing; 17

Neural Network; Decision Support System; Precision Medicine; Artificial Intelligence 18

1. Introduction 19

Type 1 Diabetes Mellitus (T1D) is a chronic disease in which the pancreas produces 20

little or no insulin. If not treated properly, it can lead to both short- and long-term com- 21

plications, including micro- and macro-vascular diseases that can damage kidneys, eyes, 22

liver, and the circulatory system [1]. Although T1D has no cure, it can be managed through 23

daily insulin administrations, with the aim of keeping the glycemic level in the euglycemic 24

range, i.e. between 70 and 180 mg/dl. In recent years, the utilization of Continuous Glucose 25

Monitoring (CGM) devices increased consistently, because these devices allow patients to 26

keep track of their glycemic trend 24 hours a day. 27

The quality of life of people suffering from T1D improves considerably by preventing 28

the blood glucose levels from exceeding the euglycemic range [2]. Albeit CGM devices have 29

greatly enhanced the management of the disease [3], frequent hyperglycemic (CGM > 30

180 mg/dl) and hypoglycemic events (CGM < 70 mg/dl) are reported in clinical data. 31

For this reason, in the last decade many mathematical models have been developed with 32

the aim of predicting future glucose levels [4]. Indeed, an accurate forecast of the future 33
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glycemic level allows the patient to adjust their therapy in order to prevent undesirable 34

events. In particular, after having fixed a prediction horizon (PH), i.e. how forward in time 35

the prediction is made, such models exploit the recent trends of CGM and other features 36

such as the injected insulin in order to predict, through the medium of a regression task, 37

what the glycemic level will be after PH minutes. 38

Although many physiological-based mathematical models exist for the prediction 39

of future glycemic levels [5,6] the vast majority of recent research moved towards the 40

implementation of data-driven models. In the latter case, whether machine learning and 41

neural network/deep learning models have been implemented, and the networks generally 42

achieve better results [7]. Also, some models capable of updating their training in order 43

to catch more recent variations of the glycemic trend have been proposed [8]. The most 44

widely used performance evaluation metric for blood glucose levels forecasting is the Root 45

Mean Square Error (RMSE), that will be defined formally in section 2.2. Briefly, the smaller 46

the value, the better the performance. 47

In the frame of machine learning techniques, Bunescu et al. [9] use a three-compartmental 48

physiological model of blood glucose dynamics to generate features for a Support Vector 49

Regressor (SVR) that is trained on patient specific data. The model is validated on data of 5 50

T1D patients from a private dataset. The blood glucose levels forecasts with a 30- and 60- 51

minute PH attain RMSE values equal to 22.6 mg/dl and 35.8 mg/dl, respectively. Georga et 52

al. [10] present a Random Forest regression technique for the personalized prediction of the 53

glucose concentration in T1D patients. This multivariate model takes as input CGM data, 54

physiological features and lifestyle information. High-accuracy forecasts are derived for a 55

15-minute PH if all the available features are used (RMSE = 6.6 ± 1.3 mg/dl), whereas the 56

performance considerably deteriorates when exploiting CGM data alone as input feature 57

(RMSE = 11.3 ± 2.2 mg/dl). Sparacino et al. [11] propose a first order AR model with 58

time-varying parameters, which are estimated at each time stamp using recursive least 59

squares. They test several values of the forgetting factor with 30- and 45-minute prediction 60

horizons. The model is tuned on CGM data of 28 T1D patients from a private dataset. 61

Results are accurate enough to potentially avoid or mitigate critical adverse events (RMSE 62

= 18.3 ± 11.8 and 34.9 ± 21.3 mg/dl). 63

In the frame of neural networks and deep learning techniques, several well-established 64

models have been applied to the task of glycemic prediction, achieving the best performance 65

in the literature, and some brand new models have been proposed from scratch for this 66

specific task [12,13]. Mosquera-Lopez et al. [14] present a Long Short-Term Memory (LSTM) 67

recurrent neural network with a correction module to predict glycemic levels with a PH of 68

30 minutes, tuning the model on data of more than 4000 patients from a private dataset 69

and testing it on data of further 10 patients, achieving an average RMSE 7.6 ± 2.2 mg/dl. Li 70

et al. [15] propose a recurrent Convolutional Neural Network (CNN) to predict glycemic 71

levels on simulated patients from the UVA/Padova simulator [16] and on 10 patients 72

from private dataset with a PH of 30 and 60 minutes. They achieved better results for 73

the simulated dataset (average RMSE= 9.4 ± 0.7 mg/dl and 18.9 ± 2.5 mg/dl) whereas 74

performance degrades when testing on real data (RMSE= 21.1 ± 2.4 mg/dl for 30 minutes, 75

33.3 ± 4.8 mg/dl for 60 minutes). 76

Despite the large amount of works presented for the forecasting of future glycemic 77

levels and the noteworthy results they achieve, all the aforementioned papers focus on the 78

prediction of glycemic levels of adult subjects. Indeed, there are few works in the literature 79

that aim to predict blood glucose levels specifically in pediatric patients. Children represent 80

the most challenging diabetic population, because pediatric patients go through a period of 81

rapid growth, physiological and hormonal changes along with complex individualization 82

and socialization processes. This often results in a significant decline in the quality of 83

disease management, treatment adherence, and glycemic control [17,18]. Among the most 84

remarkable studies, Mougiakakou et al. [19] test 2 different neural network models on 85

real data of 4 T1D pediatric patients, after pre-processing features with a glucose-insulin 86

metabolism model. They achieve the best results (average RMSE = 22.2 ± 13.4 mg/dl) 87
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using a feedforward neural network. Dassau et al. [20] propose a hypoglycemia prediction 88

algorithm that combines 5 different predictors to assess the risk of incoming hypoglycemia 89

in the following 35 minutes on children with T1D, validating the system on 22 subjects. 90

The decisions of the 5 models are combined through a majority vote, and the ensemble 91

model identifies with sufficient advance 91% of the hypoglycemic events. Finally, De Bois 92

et al. [21] test 6 different data-driven models on data of 10 virtual T1D children generated 93

using the UVA/Padova simulator [16]. They generated for each patient 29 single days 94

with a 3-meal daily scenarios, exploiting the simulator’s built-in bolus calculator and 95

treating each day as a standalone set of data. For a PH of 30 minutes, they achieve the best 96

numerical performance using a Gaussian Process with dot-product kernel (average RMSE 97

= 5.2 ± 2.0 mg/dl). Conversely, the LSTM model results the one with the greatest clinical 98

accuracy, as 97.46% of its predictions fall into the zones A and B of the Clarke Error Grid 99

[22]) corresponding to accurate predictions. 100

Normally, machine learning techniques are validated on laboratory setup, and, when 101

they are applied in practice, they are performed directly on servers or centralized processing 102

units. The task of future glycemic levels prediction makes no exception, as most systems 103

that perform real-time prediction exchange data between an edge device, only used to 104

gather information, and the cloud, where the actual glucose level forecasting is performed 105

[23,24]. This is mainly due to the memory limits of edge-computing devices. Nonetheless, 106

the drawback of such systems is that they constantly require an internet connection to work; 107

this is not arguable with regards to medical devices, because an interruption in the signal 108

may result in missing decision support to the user. However, the increasing development 109

of new, more powerful and dedicated hardware, combined with the widespread use of IoT 110

(Internet of Things) tools, is enabling the emergence of a branch of artificial intelligence 111

known as inference at the edge [25,26]. This involves the machine learning models being 112

run directly from a proximity device using data collected from associated sensors. Taking 113

into account also the increasingly telemedicine-oriented approach [27,28], it becomes clear 114

that the possibilities given by inference at the edge can be exploited to create predictive 115

models that work in real-time with patient data to both improve the patients’ life and 116

increase the ability of the physicians to extract useful information from the sensor data. 117

Compared to systems that run on the cloud, edge computing can provide more reliable 118

real-time service, with low latency, and they are not limited by internet connectivity. For 119

this reason, a recent study by Zhu et al. [29] proposed an Embedded Edge Evidential Neural 120

Network to predict future glycemic levels of adult T1D patients in real time exploiting CGM 121

sensor readings and an edge-computing device. Due to limitations in the computational 122

capacity, they converted their TensorFlow model to C, and achieved an RMSE of 18.9 mg/dl 123

with a PH of 30 minutes on both a public and a private dataset. 124

In the light of what is present in the literature, the contribution of this work is twofold. 125

On the one hand, we implement two stat-of-the-art models for the prediction of glycemic 126

levels, and apply them to the specific task of the prediction in pediatric patients; such 127

models improve the performance of the models currently studied in this field. On the 128

other hand, we implement these models on an edge computing system, thus laying the 129

foundations for the future creation of embedded devices capable of forecasting blood 130

glucose levels in order to improve patients’ quality of life and aid medical diagnosis; we 131

evaluate the feasibility of such prediction-at-the-edge system on two different boards in 132

terms of prediction accuracy and execution time. To the best of our knowledge, this is 133

the first attempt to implement a pediatric-specific glucose prediction model on an edge- 134

computing system. 135

2. Materials and Methods 136

In this section, we present the generatd dataset utilized to tune the predictive models, 137

the description of the hardware that we used as edge system for tests, and the experimental 138

setup adopted with regards to the optimization of the neural network models as well as 139

their implementation on the edge system. 140



Version March 2, 2022 submitted to Bioengineering 4 of 14

2.1. Dataset 141

Data were produced for 10 pediatric patients by running several simulations in the 142

UVA/Padova simulator [16]. Such a tool allows to generate different scenarios for in silico 143

patients by only providing a meal schedule. The simulator is able to determine the optimal 144

insulin boluses to be injected for each specific patient, and can thus provide the glycemic 145

evolution for each subject for a pre-set number of days. However, the tool allows the user 146

to modify the insulin bolus value, and to include a sensor error in the CGM readings. Data 147

are generated with a 1-minute sampling. 148

Two different datasets were generated on a scenario consisting of 30 days of simulation
with 5 meals per day. The first scenario has no errors in sensor reading and insulin
administration, as automatically computed by the simulator, and thus corresponds to an
ideal T1D management. Differently, we created the second scenario by including CGM
sensor errors and by forcing the presence of hyperglycemic and hypoglycemic events. We
were able to achieve such a goal by first allowing the UVA/Padova simulator to run a
simulation with its own optimal bolus control; then, we extracted the vector of injected
boluses and added random noise taken from a uniform distribution. In particular, each
bolus consisting of I insulin units was modified according to the following:

Î = I + z (1)

where z is a random value taken in the interval [−3, 3]. In practice, each bolus was increased 149

or decreased by no more than 3 units of insulin from its optimal value. The modified bolus 150

vector was given as effective bolus vector to the UVA/Padova to run the simulations for 151

this scenario. This makes such a scenario more realistic, because in real life the increase or 152

decrease in blood sugar levels occurs mainly due to an inaccurate estimate of the amount 153

of carbohydrates ingested, or to deviations in correction dosing [30]: we added noise on 154

insulin boluses to simulate human error. 155

The datasets consist of information on blood glucose levels and data on insulin (bolus,
basal, and injection were added together and considered as a one) and finally carbohydrate
intake. Specifically, the final datasets consider Insulin-On-Board (IOB) as insulin feature,
which was manually generated by exploiting a mathematical model [31]. IOB is a quantity
referred to the amount of rapid-acting insulin still active in the patient’s body after a bolus
injection, and thus provides deeper information on the recent history of insulin injections
compared to the punctual insulin values themselves. The range of time for considering
insulin still active is roughly between 2 and 8 hours [32]. IOB is estimated differently
among the main insulin pump companies, but in all cases its calculation is based on insulin
action plots which forecast the percentage of residual insulin as a function of time. For the
Insulet pump, which is the one considered by the simulator, the active insulin time is equal
to 3 hours and the shape of insulin action plot is linear [31]. Thus, the value of IOB for each
timestamp t was computed as:

IOB(t) =
179

∑
i=0

α(i)u(t − i) (2)

where u(t− i) represents the insulin injection at timestamp t− i, and α(i) = 1− i/180 is the 156

coefficient corresponding to the insulin decay curve. It is worth noting that only past insulin 157

values (i.e., corresponding to timestamps ≤ t) are used to compute the IOB. Specifically, 158

100% of the latest insulin injection value contributes to IOB(t), whereas the contribution 159

linearly decreases to 0 for older values in the previous 3 hours. Straightforwardly, the first 160

3 hours of data of each patient were not used to train the predictive models, as they were 161

used to initialize the IOB values. 162
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Figure 1. Schematic representation of the proposed Convolutional Neural Network.

Figure 2. Schematic representation of the proposed LSTM Recurrent Neural Network.

2.2. Optimization of network models 163

A Precision Medicine approach was used to tune the predictive models, which involves 164

choosing the hyperparameters optimally and individually for each different subject. In 165

this work, we implemented and optimized a CNN and an LSTM recurrent neural network, 166

because such models achieve the most promising performance in the literature [33]. Both 167

networks were trained using a subset of the available data and then tested on subsequent 168

data of the same in silico patient without being updated again. The networks have a 169

sequence-to-label architecture, as the expected output is a single value corresponding to 170

the expected blood glucose value in 30 minutes. After splitting the data into Training (70%), 171

Validation (20%), and Test set (10%), the models were built. 172

The proposed CNN is a 1D-CNN, with one-dimensional kernel, consisting of two 173

convolutional layers with ReLU activation function, each followed by a MaxPooling that 174

cuts the parameters in half by taking, in pairs, only the largest value. To complete the model, 175

the convolutional layers are followed by a dense layer with ReLU activation function, and 176

an output neuron that provides the final regression. A schematic representation of the 177

proposed CNN model is reported in Figure 1. The choice of hyperparameters was made by 178

performing a grid search on the validation set, based on a range of parameters including 179

values identified through preliminary tests and parameters reported in the literature [33]. 180

The optimization was done with respect to the kernel size and the number of feature maps. 181

The proposed LSTM model consists of a first LSTM layer, a dense layer with ReLU 182

activation function, and an output layer that returns the predicted CGM value. Also in 183

this case, the model was optimized in terms of the number of neurons in the first LSTM 184

layer and in the dense layer by investigating both parameters identified in preliminary tests 185

and parameters reported in the literature [33]. A schematic representation of the proposed 186

LSTM model is reported in Figure 2. 187

Both models take as input a (3 × 30) matrix of values, corresponding to the last 30 188

minutes of the 3 feature values. Such parameter was identified in preliminary tests, as it 189

provides the models with enough information to capture the recent trend of the features. 190

We found empirically that using longer monitoring periods did not improve performance. 191

With regards to the strategy chosen to train both networks, the Stochastic Gradient Descent 192

(SGD) optimizer is adopted, which requires a learning rate (0.0001), a momentum (0.9) 193

and a clip Value (0.5), which is a necessary parameter to prevent the gradient explosion 194

phenomenon in deep neural networks, improving the prediction quality. The training of 195

both model was performed by splitting the data into mini-batches of 1400 samples (i.e., 196

approximately one day of data) and setting the maximum number of epochs to 200. Finally, 197

to prevent overfitting, the early stopping strategy was adopted, which stops training if the 198

performance on the validation set does not improve within a fixed number of consecutive 199

epochs. 200

Two different evaluation metrics are used to thoroughly evaluate the performance of
the models. Root Mean Square Error (RMSE) is utilized to assess numerical accuracy, as it
provides a numerical estimate of how close the predicted values are to the real ones. Let



Version March 2, 2022 submitted to Bioengineering 6 of 14

us consider a prediction performed at timestamp t. Defined P(t + PH) as the prediction
performed at time t regarding the future glucose value CGM(t + PH), and considering a
time series with a total of T timestamps to be predicted, the RMSE is defined as:

RMSE =

√√√√T−PH

∑
t=1

(CGM(t + PH)− P(t + PH))2

T − PH
(3)

where PH is the considered prediction horizon. The smaller the RMSE value, the better the 201

performance. In addition, we considered the Clarke Error Grid (CEG) analysis as a measure 202

of the clinical accuracy of the predictions produced. The CEG consists in a grid which is 203

divided into 5 zones, from A to E, which plots the actual and the predicted CGM values on 204

the horizontal and the vertical plot axis, respectively. Values in zones A and B represent 205

good or acceptable glucose predictions; values in zone C represent mistaken predictions 206

that may lead to unnecessary treatment; values in zone D represent a dangerous failure to 207

predict; finally, values in zone E represent a completely wrong prediction that would lead 208

to erroneous treatment [22]. 209

2.3. Edge system description 210

In order to test the feasibility of the predictive models of being implemented and 211

utilized on an edge system, we needed to identify the target hardware. Our choice fell 212

on two different devices: a Raspberry Pi4, chosen for its low cost and high computational 213

capability, and a Coral DevBoard, a developer kit containing a Tensor Processing Unit (TPU) 214

processor which is useful for accelerating the execution of machine learning models. The 215

Raspberry Pi4 has a Broadcom BCM2711 quad-core Arm Cortex A72 of 1.5GHz processor, 216

with 4 GB of memory. Furthermore, in order to be able to carry out the tests, we chose 217

to use Raspbian OS (a Debian-derived ISO) as operating system. Python and Mendel 218

Development Tool (MDT) were also installed. The former is necessary to perform tests 219

directly on the Raspberry; the latter is used to give commands to the Coral DevBoard, 220

and therefore allows its set-up and use. The Coral Devboard has a quad Cortex-A53, 221

Cortex-M4F CPU, with 1 GB LPDDR4 RAM, and it has a 4 TOPS (8bit) TPU accelerator for 222

machine learning processes. The operating system running on the DevBoard is Mendel 223

Linux. We installed and utilized all the dependencies necessary to run the model on the 224

board using the Py CoralAPI. 225

2.4. Edge system implementation 226

Both datasets were provided as input, as sequences of the last 30 minutes of values, 227

for two models compared: CNN and LSTM. The models were implemented and trained 228

on Google Colab through the use of the open source libraries of Keras and TensorFlow. 229

Through this API, the networks were trained and the hyperparameters optimized. 230

Although the single models were trained on two different datasets, topologically the 231

trained networks do not differ, in terms of hyperparameters. Therefore, the number of 232

algebraic operations performed by a single network is invariant with respect to the dataset. 233

Having made this consideration we decided to implement on the edge device only the 234

models trained on the dataset including more hypo/hyperglycemic events, as it is more 235

similar to a real use case. 236

For the implementation of the models on edge computing architectures, it is necessary 237

to perform a quantization step that differs depending on the architecture on which inference 238

is going to be performed. In order to perform regression tasks on the Rasperry, we chose to 239

use the quantization in .tflite format, that transforms the model keeping output variables in 240

float32 format. This optimization, namely dynamic range quantization, provides latency 241

close to fully fixed-point inference. However, the outputs are still stored using floating 242

point so that the speedup with dynamic-range operations is less than a full fixed-point 243

computation, as reported on the official TensorFlow web page [34]. From now on we will 244

refer to the model obtained with this quantization as .tflite. 245
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For the implementation on the Dev Board, it was necessary to transform the models in 246

their 8-bit representation, in order to execute them exploiting the full potential provided 247

by the Coral’s TPU. In this case, the quantization method to be used is known as full 248

integer quantization. Applying this approach requires to provide a representative dataset, 249

in order to calibrate variable tensors such as model input, activation functions, outputs of 250

intermediate layers, and model output. As a representative dataset it would theoretically be 251

sufficient to provide a set of 100-500 sample data, taken between the training and validation 252

set. In our case, a dependence of the goodness of the quantization on the subset of data 253

passed to the model as a representative dataset was noted. In fact, it was not sufficient 254

to use data taken randomly from the training or validation set but it was necessary to 255

use ordered data, given the time series forecasting nature of the task. At the end of this 256

quantization procedure, all input and output values are taken to uint8. From now on we 257

will refer to the model obtained with this quantization as uint8. 258

Due to the 8-bit nature of the quantization required to exploit the capabilities of the 259

Coral Devboard TPU processor, a problem arose for our regression task. The range of 260

values of the dataset varies between 10 and 600 mg/dl, whereas the values that can be 261

represented with 8 bits are 256. Consequently, we pursued two approaches. The first 262

consists in avoiding any pre-processing of the input data, and then reconstructs the possible 263

overflow cases obtained in the output through a post-processing of the data, maintaining 264

the granularity of the prediction at 1 mg/dl. The reconstruction was done following the 265

procedure set out in the algorithm 1. It assumes that a decrease of glucose concentration 266

of more than 50 mg/dl in a single minute is very unlikely or impossible. In this case, we 267

post-process the prediction and sum 255 to the predicted value. 268

Algorithm 1 Output reconstruction algorithm

1: reconstructed_pred = [] ▷ initialization of variables
2: overflow = False
3: deltaY = 50
4: For i,x in enumerate (tflite_uint8_model_prediction): ▷ Start of the for loop
5: if x >= 240 then
6: if overflow and (x - tflite_uint8_model_prediction[i-1]) >= deltaY: then
7: overflow = False
8: else if not overflow and (x - tflite_uint8_model_prediction[i+1]) >= deltaY: then
9: overflow = True

10: delta = 255 if overflow else 0
11: reconstructed_pred.append(x + delta) ▷ End of the for loop

The second approach consists in the application of a normalization step in the pre- 269

processing phase, remapping the data values between 0 and 255. Such an approach avoids 270

problems related to overflow, but it takes the granularity of the prediction to approximately 271

2.33 mg/dl. Then, we de-normalized the predicted values to compute the evaluation 272

metrics. This could introduce inaccuracy in the predictions. 273

The Raspberry and DevBoard were used for the calculation of inference times, to be 274

compared with the performance limits that our application requires (less than the sampling 275

period of the sensor, i.e. 1 minute). At each timestamp, the edge system takes as input the 276

30 most recent values of the features (i.e., the data of the in silico patient produced by the 277

simulator), computes the latest value of the IOB, and performs a prediction of the future 278

blood glucose level. A representative schematic of the experimental system can be seen in 279

Figure 3. 280

3. Results and Discussion 281

As a result of the grid search performed on the Discovery set, the optimal configuration 282

of the CNN comprises a number of filters equal to 26 for the first convolutional layer, 20 283

filters for the second convolutional layer, and a Kernel size equal to 1x5 on both. Note that, 284

due to the shape chosen for the filters and to the structure of the input matrix, in the first 285
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Figure 3. Schematic representation of the experimental setup during the test phase with edge systems.

Table 1. Results of the tests performed with the proposed models CNN and LSTM with out carring
the normalization step in the pre-processing phase. The results refer to the RMSE [mg/dl] achieved
on both the ideal (no-error) and the realistic (hypo-hyper) dataset. Such results are reported in terms
of average RMSE ± standard deviation. The CEG results are referred only to the realistic dataset, and
its results are reported as percentage on the total dataset. For each neural network, we reported the
results for the model implemented on Google Colab, for the model implemented on Raspberry (.tflite
float32 format), and for the model implemented on the Dev Board (.tflite uint8).

Model RMSE (no-error) RMSE (hypo-hyper) CEG (A;B;C;D;E)

CNN 22.2 ± 2.5 23.2 ± 2.3 87.0; 12.0; 0.0; 1.0; 0.0
LSTM 13.5 ± 3.4 16.3 ± 4.7 93.8; 5.2; 0.0; 1.0; 0.0

CNN .tflite / 23.6 ± 2.0 85.7; 13.6; 0.0; 0.7; 0.0
LSTM .tflite / 16.3 ± 4.7 93.7; 5.2; 0.0; 1.1; 0.0
CNN uint8 / 40.1 ± 11.1 75.4; 20.8; 0.0; 1.2; 2.5
LSTM uint8 / 35.0 ± 13.3 82.4; 12.5; 0.0; 1.5; 3.6

CNN layer the convolutions are performed on different timestamps of the same feature. 286

With regards to the LSTM model, the optimal configuration resulted in 64 neurons for both 287

the LSTM and the fully-connected layer. Once the models were optimized, predictions 288

were performed on the Test set, and the RMSE and the CEG were computed. With regards 289

to the CEG values, only those from the second dataset were evaluated, as they present 290

more hypo- and hyperglycemic values and are thus more similar to a real-life scenario. 291

Table 1 reports the average values and their standard deviation of the tests performed 292

using the different versions of the models. As expected, the results achieved by the baseline 293

model on the standard dataset are better than those achieved on the dataset with outliers. 294

The LSTM model outperforms the CNN on both datasets, both in terms of average RMSE 295

and CEG results. In particular, with regards to the realistic dataset, the LSTM achieves an 296

RMSE of 16.3 ± 4.7 mg/dl, which is noteworthy if compared to other studies presented 297

in the literature concerning the prediction on pediatric T1D patients. Also, 99.0% of 298

its predictions fall in zones A and B of the CEG and thus represent clinically accurate 299

or acceptable predictions, whereas 1.0% of predictions fall in zone D. The latter mainly 300

correspond to failures of predicting hypoglycemia. No predictions fall in zones C and E. 301

The following sections analyze the performance of the models after the implementation on 302

the edge devices. 303
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Figure 4. Graphical examples of the best and worst predictions performed by the CNN (left) and
LSTM (right) using different edge devices. The glycemic index value shown in the figure is normalised
between 0 and 255, so to obtain the real glycemic value we need to multiply by 2,33.

3.1. Edge system results and discussions 304

The results reported in Table 1 refer to the models trained without having carried out 305

the normalization phase of the input values. The expected increase in the RMSE values 306

of the models implemented on the edge devices can be observed; however, this variation 307

differs between the two quantized representations of the networks. With regards to models 308

quantized using dynamic range quantization for implementation on the Raspberry, the 309

RMSE values increase by a maximum of 0.4 mg/dl for the CNN, whereas there is no differ- 310

ence for the LSTM. Again, the LSTM model outperforms the CNN in terms of numerical 311

accuracy, achieving an RMSE of 16 ± 4.7 mg/dl, and 98.9% of its predictions fall in zones A 312

and B of the CEG. This result is of particular interest because it is similar to the performance 313

achieved on datasets composed of data of adult T1D patients, and it is achieved on the edge 314

device, without resorting to cloud computing. A graphical example of the predictions is 315

reported in Figure 4, where we report as an example data of two patients for whom the best 316

and the worst performance is achieved in terms of RMSE. The LSTM prediction is closer to 317

the true CGM value compared to the CNN, which produces more oscillatory predictions; 318

however, the LSTM tends to overestimate both hyperglycemic and hypoglycemic peaks. 319

Nonetheless, it is worth noting that only 0.7% of predictions of the CNN model fall 320

outside the A and B zones of the CEG, compared to 1.1% of the LSTM; conversely, the LSTM 321

produces more predictions that fall in zone A (93.7% against 85.7% of the CNN). This may 322

be explained considering that the LSTM is more capable of performing accurate predictions 323

in the euglycemic range, which translates into better RMSE and a larger percentage of 324

predictions in zone A, whereas it may miss some hypoglycemic events; on the contrary, 325

the CNN has a larger RMSE and a larger amount of predictions in zone B of the CEG, 326

corresponding to errors in the euglycemic range, whereas it is more capable to predict 327

hypoglycemia. Examples of the CEG are shown in Figure 5, where we report as an example 328

data of two patients for whom the best and the worst performance is achieved in terms of 329

CEG percentage in zone A. In conclusion, the CNN may be more appropriate to predict 330
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Figure 5. Clarke Error Grids resulted by the best and worst predictions of the CNN (left) and LSTM
(right) using different edge devices. Predictions falling in the safe zones A and B are plotted in green;
predictions in zone C are plotted in yellow; predictions falling in the dangerous zones D and E are
plotted in red.

critical hypoglycemic events when implemented in .tflite, although its average numeric 331

accuracy is worse than that of LSTM. However, it should be taken into account that results 332

achieved on virtual patients are, in general, slightly better than those obtained on real 333

patients, thus performance may deteriorate when testing on a real dataset. 334

A different analysis applies to the models on which the full integer quantization was 335

performed for implementation on the Coral DevBoard. Indeed, this quantization technique, 336

that casts the values from float32 to uint8, has more significant effects on the goodness of 337

prediction. In particular, the overflow that is observed when glycemic values are above 255 338

mg/dl considerably increases the RMSE scores, and generates some predictions that fall in 339

the dangerous E zone of the CEG. For this reason, as explained in section 2.4, two different 340

approaches were chosen. The second one, which involved an initial pre-processing of the 341

data, gave considerably better results than the first one, and they are reported in Table 2. In 342

particular, the results obtained for the models in Google Colab do not differ substantially 343

from those achieved without the normalization; conversely, the uint8 implementation of 344

such models achieves considerably better performance than those obtained with the first 345

approach. It must be considered that the granularity of the prediction increases from 1 346

mg/dl to 2.3 mg/dl. In spite of this drawback, we can still consider this approach better than 347

the first one, because the increase in granularity obtained is not critical from a clinical point 348

of view. It is worth noting that, although the LSTM model outperforms the CNN in terms 349

of RMSE (21.2 ± 8.6 and 24.7 ± 5.5 mg/dl, respectively), 5% of the predictions produced by 350

the LSTM fall in the D zone of the CEG, corresponding to a failure of predicting dangerous 351

events. This situation shows the LSTM model to be weaker to the uint8 representation, 352

which brings it a greater drop in accuracy. This is probably due to the narrowness of 353
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Table 2. Results of the tests performed with the proposed models CNN and LSTM, on which was
carried the normalization step in the pre-processing phase. The results refer to the RMSE [mg/dl]
achieved on the realistic (hypo-hyper) dataset. Such results are reported in terms of average RMSE
± standard deviation. The CEG results are referred only to the realistic dataset, and its results are
reported as percentage on the total dataset. For each neural network, we reported the results for the
model implemented on Google Colab, and for the model implemented on the Dev Board (.tflite uint8
format).

Model RMSE (hypo-hyper) CEG (A;B;C;D;E)

CNN 21.8 ± 2.3 87.8; 10.9; 0.0; 1.1; 0.0
LSTM 16.0 ± 3.4 93.7; 5.5; 0.0; 0.8; 0.0

CNN uint8-normalized 24.7 ± 5.5 87.6; 9.8; 0.0; 0.9; 0.0
LSTM uint8-normalized 21.2 ± 8.6 87.4; 7.5; 0.0; 5.1; 0.0

Table 3. Maximum inference time obtained in the test phase in milliseconds. The inference times are
reported for each model, CNN and LSTM. They were calculated: for the models saved in TensorFlow
saved model format over the Colab online TPU, for the .tflite model format over the Raspberry and
for the .tflite format quantizated in uint8 over the Coral DevBoard.

Model Colab TPU (TF Saved Model) Raspberry (.tflite) Coral DevBoard (.tflite uint8)

CNN 0.085 101.56 18
LSTM 0.086 70.3 12

the model, which has only one LSTM plane. Given the limited number of mathematical 354

operations required to achieve an output, the conversion step of the model to uint8 fails 355

to optimize the weights with the new integer values. On the contrary, only 0.9% of the 356

predictions produced by the CNN fall in the D zone, proving that this latter model is more 357

clinically accurate and reliable when implementing the models in uint8, despite the better 358

numerical accuracy achieved by the LSTM model. 359

A further comparison between the different implementation concerns the actual in- 360

ference times obtained, which returned largely satisfying results. We reported in Table 3 361

the worst-case results for each model and hardware to show compliance with the time 362

constraints posed by the application. The inference times for both models in all three repre- 363

sentations are far below the limit imposed by the application, i.e. 1 minute. However, the 364

total times in the case of a real application should also take into account the times necessary 365

for: signal collection by the sensors, pre-processing of the raw data, and displaying the 366

results on an appropriate Graphic User Interface (GUI). Nonetheless, the time for a single 367

inference operation to be summed are, in the worst case, the ones of the CNN performed 368

in .tflite format by the Raspberry, corresponding to 101.56 ms. We can therefore assert that 369

inference times, covering at most 0.17% of the total time limit imposed by the application, 370

are not one of the parameters to be optimized in the case of a real implementation of the 371

system. Furthermore, looking at Table 3 and comparing the data obtained in the tests of 372

the two Edge systems, a consistent acceleration can be observed with the use of the Coral 373

DevBoard when compared to the Raspberry’s performance, although it does not reach the 374

performance of Google Colab TPU. This result is in line with Google’s own claims [35]. 375

4. Conclusions 376

In this manuscript, we implemented a CNN and an LSTM neural network for the 377

prediction of blood glucose concentration in pediatric T1D patients. The UVA/Padova sim- 378

ulator was exploited to generate data of 10 virtual children, and 2 datasets were generated 379

which differ for the amount of hypoglycemic and hyperglycemic events. We determined the 380

optimal parameters of the models through the medium of a grid search on the Discovery set, 381

and evaluated performance by the predictions on the Test set using Google Colab, a Rasp- 382
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berry, and a Coral DevBoard. To the best of our knowledge, this is the first attempt to im- 383

plement an edge-computing system for the prediction of glucose concentration in children. 384

With regards to the prediction of glucose levels, the models achieved numerical 385

accuracy comparable to those reported in the literature for adult patients. However, we 386

acknowledge that, since the results are achieved on virtual patients, they may not be fully 387

representative of the actual predictive capabilities of the models. On the one hand, the 388

LSTM model achieved the best numerical accuracy and the largest percentage of predictions 389

in zone A of the CEG for all the tests performed without model quantization. On the other 390

hand, the CNN model produced a smaller percentage of predictions in the dangerous zones 391

of the CEG with respect to all the implementations on edge devices, proving to be more 392

effective in predicting critical events. In conclusion, both proposed models are promising 393

for a possible real implementation on pediatric patients. 394

With regards to the edge computing, we arrived at a double result. On the one hand, 395

the loss of information and prediction quality was tested with respect to two different 396

quantizations of the networks. Both approaches achieved results comparable to those 397

achieved using Google Colab. The .tflite implementation achieved the best results, although 398

the uint8 showed smaller inference times. On the other hand, the tests on inference times 399

showed us that the IoT devices currently on the market have sufficient computational 400

capabilities to be used in applications that require time constraints such as the one imposed 401

by our specific case study, i.e. 1 minute. In conclusion, the .tflite implementation seems 402

more promising, because it achieves the best results and there is no particular concern 403

about the inference time. 404

Several future developments may follow this work. First, it would be interesting to 405

validate the proposed neural networks on data of real patients, in order to confirm the good 406

performance achieved on virtual patients. Second, a mobile application could be developed 407

to provide the patient with real-time information about their future glycemic value, and 408

generate an alarm in case of dangerous conditions by directly interacting with the edge 409

device. Such application may also collect a history of the patient’s data in order to allow 410

the physicians to adjust the therapy. Finally, it would be interesting to develop a complete 411

proof of concept including also the acquisition system in order to exploit its actual limits 412

and potential. 413
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