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1 INTRODUCTION 

Breast cancer (BC) is the most common non-cutaneous malignancy in women: a woman living 

up to the age of 90 has a one in eight chance of developing breast cancer1. It is ironic and tragic 

thinking that a neoplasm of an organ as exposed as the breast, easily accessible for clinical and 

diagnostic examination, continues to require such a heavy toll in terms of human lives. 

In the past breast tumors were considered as a single group of diseases. Currently, we know 

that BC is a very heterogeneous pathology, with a great variety of presentation and clinical, 

anamnestic and histological scenarios that determine not only an important phenotypic 

variability, but they affect the prognosis, the probability of recurrence and metastasis, and the 

therapeutic choice. 

It is therefore essential to identify the type, the biological behavior, the histochemical 

characteristics of the tumor lesions through invasive investigations, such as histological or 

cytological examination, and non-invasive ones, such as imaging methods, in order to 

recognize the details of the tumor and make a real "identikit", in order to guide the therapeutic 

path and accurately establish the prognosis. 

Through invasive procedures we obtained tumor histological prognostic factors, which are 

divided in two groups: the morphological ones, including the histotype, the grading, the nuclear 

grade, the degree of invasion of the lymphatic vessels and tumor neooangiogenesis, and the 

biofunctional ones, including the prognostic factors that derive from cellular and molecular 

biology, such as receptors for steroid hormones, estradiol (ER) and progesterone (PgR), the 

proliferative activity expressed by antigens such as Ki67, ploidy, the presence of adhesion 

proteins, such as E- cadherin, of oncogenes / tumor suppressors, of epithelial receptors such as 

HER22–4. 

On the other hand, non-invasive procedures, as medical images, allow us to investigate tumor 

characteristics but also to determine the correct TNM (Tumor, Nodes, Metastases) staging5. 

Nowadays, basing the aforementioned assumptions, non-invasive methods are increasingly 

evaluated and studied in order to guarantee greater precise and refined tumor characterization 
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that allows an increasingly personalized therapy and staging that falls within the concept of 

precision medicine6. 

The breast cancer (BC) loco-regional staging is performed with pre- and post-contrast 

Magnetic Resonance Imaging (MRI) sequences. The former has the task of characterizing the 

mammary gland, identifying lesions and mainly defining their morphology. Then, the 

characterization of the lesions, which begins in the pre-contrast sequences, is specified and 

established with the post-contrast ones, evaluating the contrast agent kinetics within the lesion 

itself. 

In recent years, pilot studies have attempted to correlate the tumor characteristics extracted 

from MRI with the molecular subtypes of BC through artificial intelligence systems, with the 

aim of predicting their biological behavior7,8. 

Compared to radiologist inspection, AI-based automated image analysis avoids time 

consuming processes, extracting valuable and relevant information as quantitative data. There 

are two kinds of AI algorithms, based on the data interpretation and extraction modality 

employed: 

• the conventional Machine Learning (ML) processes, known as Radiomics algorithms, 

based on handcrafted features, which learn from experience without being explicitly 

programmed9. (paragraph 3.3.1). 

• the Deep Learning (DL)/Deep Neural Network (DNN) algorithms, which process 

images/raw data and extract information based on mathematical optimization of 

classification and automatically learn representations from data, minimizing or 

completely removing human intervention10. (paragraph 3.3.2). 

In conventional ML field, the extracted features may further be processed through features 

selection algorithms in order to find the most relevant ones. In a second stage these features 

are merged as a single value identifying one single tumor signature. 
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There are four types of conventional ML algorithms: supervised (output: classification, 

regression), unsupervised (output: clustering), semi-supervised and reinforced. They differ 

according to the type of training and the output generated by the algorithms themselves.  

Supervised algorithms are trained using labelled data, indeed the algorithm learns from prior 

knowledge. Unsupervised algorithms do not have labelled data and learn patterns from the data, 

associating them with new connection proposed by the algorithm itself through mathematical 

methods. Semi-supervised models are between the supervised and unsupervised learning 

algorithms and use both labeled and unlabeled data for training. Reinforced algorithms use the 

estimated errors as rewards or penalties. 

The most common handcrafted features extraction algorithms are: Gray Level Co-occurrence 

Matrix (GLCM), Local Binary Pattern (LBP), Graph Run Length Matrix (GRLM), and 

Histogram of Gradient (HOG). The main limitation of these algorithms is the focus on just one 

type of feature, such as texture or edge, and then they could not be proposed for other kind of 

images. 

Because of such limitations of extracting inadequate information, systems based on 

handcrafted features are non-used for unknown data. 

To address these limitations DL approaches are used. DL algorithms directly process raw data 

to produce an output without any other manual and explicit features extraction. DL approaches 

can process any kind of features from input data (image, text, audio, etc.) providing 

standardized and robust results11–14. 

DL algorithms originate from Artificial Neural Network (ANN). ANN is a network which 

mimics the human neurons functioning, where each artificial neuron is the basic building block 

of the network15. 

In this type of ANN the neurons (called also nodes) are organized in hierarchical layers and 

can send and receive signals based on the weights that are assigned to them. The response is 

coded as rejection or acceptance and, in case of acceptance, it is interpreted as a 
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nonlinear activation function. The weight associated with the input signal affects the 

transmission to the output layer. The output layer is made up of activation units, 

each corresponding to label/classes present in the dataset, carrying the weighted output of the 

hidden layer and predicts the corresponding class16. Even more, the functionality of back-

propagation and the weight dependence are used during the training phase to reduce the error17.  

Convolutional Neural Network (CNN) is the most used and powerful architecture for medical 

image analysis. As a DNN, it consists of hierarchical levels of trainable filters (convolution 

operation) and pooling operations, which manage incoming inputs to improve output 

performance. These convolutional filters are known as kernels. The number of levels and 

convolutional filters are defined as hierarchical since the level of extraction of features goes 

from low-level to high-level and gradually becomes more refined. 

There are dozens of studies which employ conventional ML methods in BC MRI field. But, 

only few studies are present about DL application in BC field and in particular only two works 

used MRI data18,19. 

The purpose of my PhD program was to follow the path of definition of BC aggressiveness 

through MRI investigation in relation to the TNM staging in an innovative and up to date way, 

not only through a detailed analysis of the current literature and its contextual review, but also 

through the proposal of new conventional ML and DL algorithms, mainly focusing on new or 

little investigated topics as input for research. 

As regards the pre-contrast sequences, we wanted to highlight their role in the characterization 

of tumor aggression. The first step was therefore to study the T2 weighted (T2w) and diffusion 

weighted (DW) sequences. For the T2w we focused on the role of tumor associated edema in 

the correlation with tumor histology using a Random Forest type classifier (chapter 3.1). For 

the DWI we wanted to validate the role of the Apparent Diffusion Coefficient (ADC) as a 

predictor of tumor cellularity (chapter 3.2). Both works have shown significant results. 
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Based on these results, indicating that the tumor and the edema associated with it contains 

information describing the degree of aggression, we wondered if the lesion itself could also 

contain information to predict the spread to the axillary lymph nodes. 

We first conducted a review of the literature on the prediction of lymph node metastases by AI 

applied to breast MRI, which highlighted a lack of research in this area (chapter 4.1). 

Then we developed a pipeline and applied a Random Forest classifier able to predict the state 

of the lymph nodes on 99 patients (27 with positive LNS and 72 with negative LNS), using 

only the post-contrast sequences, considered as the most performing ones, obtaining an AUC 

higher than 80% (chapter 4.2). 

We subsequently investigated whether even DL-type algorithms could give us such satisfactory 

results in terms of prediction of the lymph node status. We first evaluated the post-contrast 

images (chapter 4.3) and then assessed the added contribution of the pre-contrast ones 

proposing a multimodal approach (4.4). 

If in the radiomics approach we used a convex hull algorithm to reduce the variability of 

segmentation with the aim of reach a greater information content, in the DL approach we 

studied different Bounding box options (basing on the results of the first works about the pre-

contrast sequences that showed how the parenchyma around the lesions could influence tumor 

staging). 

With such encouraging results, we went beyond the lymph node prediction, to understand if 

tumor and peritumor information could also predict distant spread. After a review on the role 

of AI on the prediction of bone metastases (chapter 5.1), we applied the same DL approach 

previously used for lymph nodes study, on a sample of 157 patients (39 with metastases and 

118 without metastases) to predict the presence or absence of metastases at distance. However, 

in this case, the results were not significant (chapter 5.2). 

The following chapters report the details of each step of my research referring to the relative 

paper published in medical and non-medical journals. Each chapter is furthermore the work 
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resulting from the collaboration with radiologists, physicians and engineers coming from 

different research institutes. 

In summary, through of this thesis, concerning breast cancer patients: 

• we demonstrated that the BC edema radiomic features extracted from the T2 MRI 

sequences significantly correlate with the main histological prognostic factors (chapter 

3.1); 

• we demonstrated that ADC values predict main macroscopic cell growth and 

replication factors in a highly accurate manner, offering an additional quantitative tool 

for the evaluation of the entire tumor, assisting the information obtained from the 

biopsy, which represents only tumor portions (chapter 3.2); 

• we conduct of two systematic reviews about the role of artificial intelligence in 

prediction of lymph node status using breast cancer MRI and in prediction of breast 

cancer bone metastases using CT and MRI (chapters 4.1 and 5.1); 

• we demonstrated that a Radiomics based approach associated to histological and 

clinical information could predict with high accuracy the lymph node status offering 

to clinicians and to patients the possibility of avoiding invasive procedures such as 

lymphadenectomy or lymph node biopsy in unnecessary cases (chapter 4.2); 

• we propose three different CNNs and implement different tumor bounding options to 

systematically assess the contribution gathered by the healthy tissue in the prediction 

of the axillary lymph node status, evaluating the impact of the 3D and 2D features 

extracted from input volumes and the influence of healthy tissue in cases of multifocal 

and multicentric tumors (chapter 4.3); 

• we introduce an MDL-based methodology for ALNS evaluation, exploiting three MRI 

sequences (DCE, T2, and DWI), and clinical and histological characteristics of the 

primary tumor, implementing a Multi-Input Single-Output 3D CNN where the TF 

makes the different modality-specific DNNs influence each other in the extraction of 

features, thus improving the integration of different image modalities (chapter 4.4); 
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• we demonstrated a currently insufficient ability of the Deep Learning approach in 

predicting distant metastasis status using CNNs (chapter 5.2). 
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2 BACKGROUND 

2.1  Breast Cancer TNM staging 

AJCC 8th edition staging was defined on January 1, 2018.  All carcinomas of the breast are 

covered by this staging.  

T describes the size of the tumor and it is correctly evaluated by ultrasound, mammography 

and definitely by magnetic resonance imaging (MRI). Even more, results published so far 

regarding MRI-provided tumor details, such as tumor size, morphology, shape, and vascularity 

characteristics, have been shown to be significant in differentiating breast cancer subtypes.20–23 

Several studies have highlighted the value of MRI after contrast medium administration (DCE-

MRI) in reporting the anatomical and functional properties of tumors, guiding the therapeutic 

choice. However, recognition of the aforementioned tumor characteristics is generally limited 

to a few qualitative descriptors, and it is still dependent on the radiologist. 

N defines Axillary lymph node status (ALNS). It is one of the most important prognostic 

factors and it has an independent role in determining prognosis and guiding adjuvant therapy 

decisions24. Due to the numerous side effects associated with complete axillary dissection 

(AD), sentinel node biopsy (SNB) has been proposed in recent years as an alternative to routine 

staging for patients with early stage BC with clinically negative axillary lymph nodes5. 

However, SNB is also an invasive procedure with significant complications, including shoulder 

dysfunction, neurogenic damage, upper arm numbness and lymphedema.  

M describes distant spread of tumor. About 30% of early-stage breast cancer patients will 

experience distant metastases, and 90% of patient deaths derive from complications from 

metastases.25 Most common sites of metastases are bone (58%), lung and pleura (26%) and 

contralateral lymph nodes (16%). Actually, the metastasis spread depends on various factors, 

such as histological and intrinsic behavior of the tumor, timeliness of diagnosis, genetic and 

individual variability and so on. Metastasis status is determined through a first step total body 
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CT and more deeply investigated with dedicated MRI. Sometimes the metastatic lesion 

requires a biopsy confirmation. 
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2.2 The role of MRI in Breast Cancer  

Magnetic Resonance Imaging (MRI) is considered the most accurate imaging technique in the 

determination of breast cancer lesions, in particular the importance of its diagnostic role has 

been widely defined through the execution of dynamic sequences after administration of 

contrast agent based on Gadolinium.26 

The indications for the use of MRI in breast cancer imaging were defined in detail by the 

European Society of Breast Cancer Specialists (EUSOMA) in a workshop  in October 2008 

and are as follows: screening in high-risk women, breast implants, pre-surgical staging, 

response to neo-adjuvant therapy evaluation, post-surgical follow-up, CUP-syndrome (Cancer 

of Unknown Primary - occult neoplasm syndrome).27 

Breast MRI has evolved from a primarily contrast-enhanced technique to a multiparametric 

technique, in which T2-weighted and diffusion-weighted imaging (DWI) are routinely per-

formed. Still, the basis for any MRI protocol is a dynamic T1-weighted contrast-enhanced 

sequence.  

Pre-contrast sequence: T2 and DW images 

T2-weighted imaging is nowadays included in the standard MRI protocol. T2-weighted 

imaging are usually performed both with fat suppression, for cysts visualization, and without 

fat suppression, for lesion morphology characterization. Benign lesions are depicted with high 

T2-signal intensity, while most cancers do not show high signal intensity compared to the 

normal breast parenchyma for their high cellularity and low water content, with some 

exceptions (mucinous carcinoma, necrotic cancer, and metaplastic carcinoma). T2-weighted 

images are also used to describe the presence and the localization of associated tumor edema, 

improving the lesion classification. Several studies have demonstrated the role of T2-weighted 

sequences in increasing the specificity for differentiation of benign and malignant lesions28,29. 

DWI quantifies the random movement of water molecules in the analyzed tissue called 

Brownian motion. It depends on tissue microstructure and cellular density. Tumor lesions 
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present an increased cell density and an alteration of microstructure with subsequent decreasing 

of water diffusion and higher signal intensity at DWI sequences. DWI does not require a 

contrast agent administration and it is performed in a short acquisition time, optimizing the b 

values and the fat suppression and minimizing the artifacts improving the SNR30. The DWI is 

also performed before the contrast medium administration because it could vary the DWI 

intrinsic resolution31. While the DWI sequence gives the radiologist a qualitative information 

about tissue, the apparent diffusion coefficient (ADC), obtained by ADC maps derived from 

DWI images, is a quantitative measure of the cell diffusivity: benign lesions are characterized 

by high ADCs (range, 1.2–2.0  3 1023  mm2/sec), while malignant ones are associated to lower 

ADCs. Some studies  have  reported  that  diagnostic  performance  in  distinguishing  benign  

and  malignant  lesions  is  affected  neither  by  the  choice  of  the field  strength  (1.5-T  or  

3.0-T  MRI  unit)32  nor  by  the combination of multiple b values.33,34 The ADC measurements 

vary depending on b values34.  

Post-contrast sequences 

Among the MRI sequences, from the very beginning, DCE-MRI, or MRI after administration 

of contrast medium (contrast medium), stood out for its high sensitivity and its high positive 

predictive value. This examination is still considered the most appropriate in the field of breast 

cancer, for the solution of diagnostic-clinical problems not resolved by conventional study 

techniques (Mammography and Ultrasound). 

The contrast medium used is usually based on Gadolinium molecules. Gadolinium contrast 

temporarily alters the molecular properties within the magnetic field of the structures where it 

is located, changing the signal intensity of the tissue itself dependently on their location35. 

The acquisition of images includes: 

• Detection of a T1-weighted pre-contrast image (T10map); 

• Acquisition of T1-weighted images during and after administration of the contrast 

medium. 
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The images obtained describe the distribution pattern of the contrast medium in the tissue 

which is better evident and easier to interpret in the “subtracted” sequences. 

The signal documented by the passage of the contrast medium is used to generate the so-called 

intensity/time curves (I/TC) which reflect the absorption of the tissue upon arrival of the 

contrast medium, through the different signal enhancement values ("enhancement"). 

There are mainly three types of I/TC:  

• Type I: characterized by a slow and progressive wash-in and wash-out. It describes 

benign lesions that has poor vascularization and therefore poor and slow proliferation;  

• Type II: defined by a slow wash-in and a terminal plateau, which indicates a slow, 

gradual and lasting impregnation of the contrast medium. It characterizes borderline 

lesions and requires further investigation with further sequences and morphological 

evaluation of the lesion itself;  

• Type III: identified by a rapid wash-in, with surge, and an early and steep wash-out. 

This is typical for highly vascularized lesions and high replication speed, therefore 

characteristic of malignant tumor lesions. 

The intralesional distribution of the contrast medium allows the distinction between different 

vascularization patterns: homogeneous, characteristic of benign lesions; heterogeneous, typical 

of borderline or malignant lesions; or with rim-enhancement, which identifies malignant 

lesions with high mitotic activity, where an expansion corresponds to a rapid eccentric growth 

and consequent central necrosis due to lack of angiogenesis. 
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2.3 Application of Artificial Intelligence in Breast Cancer 

The primary goal of AI application in medical imaging is to achieve greater efficacy and 

efficiency in routine clinical practices getting support in the decision-making process. 

As previously described, Images contain a huge amount of data, that radiologists cannot 

analyze manually. The use of AI for medical imaging analysis reduces the inter-readers 

variability, decreases the uncertainty, and provides quantitative information which may support 

physician evaluation. 

In MRI breast cancer field, conventional AI (ML) algorithms are largely used to detect breast 

lesions, define their characteristics, discriminating benign vs malignant lesions and predict 

their histological behaviour and prognosis. 

On the other hand, DL approaches have only been investigated recently and few works are 

present in literature nowadays. 

 

2.3.1  Conventional ML algorithms: the Radiomics approaches  

The radiomics process involves many challenging steps, as listed by Gillies et al.8 

Images acquisition 

Although the breast lesion can already be characterized on MRI examination, the evident 

features are generally described subjectively and qualitatively through medical reports with 

terms such as: "modestly heterogeneous enhancement", "strongly spiculated margins", "large 

central necrotic core" and so on.  for this reason, these evaluations suffer from a great intra- 

and inter-observer variability. The Radiomics aim is to standardize image acquisition and 

analysis, through quantitative, more objective and precise image descriptors potentially usable 

as non-invasive prognostic biomarkers as well as to objectively quantify the imaging features 

that could reveal tumor biology.36 
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The first step towards an objective analysis is to perform imaging exams, following the same 

protocols and standardized methods during image acquisition and reconstruction, with the 

intent of reducing distortion and variability between images acquired in different periods or 

from different sources. 

Volume of interest and segmentation 

The lesions in question should be treated as volumes of interest. Normally the radiological 

reports do not report a detailed analysis of the so-called subvolumes within the lesions, which 

can have a prognostic value; instead Radiomics captures and analyzes these sub-volumes of 

interest using quantitative measures. 

Segmentation is the crucial part of the entire analysis process: during segmentation only the 

Region of Interest (ROI) must be isolated from the rest of the organ, in our case the breast, 

paying attention to the edges, which are often not well defined. This process can also be 

achieved with the help of algorithms capable of describing the edges, but, due to the high 

difficulty in detecting the true boundaries of the lesion and the heterogeneity of the volume of 

interest itself, the resulting ROI requires an additional check by a radiologist. 

Extraction and selection 

The core of radiomics is the extraction of data from the features of the ROI, which can quantify 

the intensity, shape, texture and morphology of the tumor. These features include form-based, 

first-, second- and higher-order statistical determinants, and model-based characteristics. 

Shape-based features are external representations of a region and characterize the shape, size, 

and surface information of ROIs. Typical metrics include sphericity and firmness.37 First-order 

characteristics (e.g. mean, median) describe the overall intensity and variation of ROIs, 

ignoring spatial relationships36,38. Contrasting second order (texture) characteristics can provide 

interrelationships between voxels. Material characteristics can be extracted from different 

matrices, for example, gray-level co-occurrence matrix (GLCM), gray-level run-length matrix 

(GLRLM), etc. 39 Semantic characteristics describe the qualitative characteristics of the image 

typically used in the radiological workflow. 
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Features can be extracted through many commercial software and algorithms and their quantity 

is crucial: if too many features are extracted, it is possible to run into overfitting caused by the 

small sample generally taken into consideration; if on the other hand the features are limited in 

number, they may not be able to acquire the real distribution of the data. It is possible to avoid 

the large size of the features vector by eliminating those features that can be redundant (highly 

correlated with each other) or irrelevant: this type of function manipulation is called feature 

selection. 

To get the best predictive model, the selection of the appropriate set of features and their use 

to train machine learning models is crucial. Having irrelevant features in the data can reduce 

the accuracy of models, in particular linear algorithms, because it can increase the training time 

and can lead to overfitting. 

Sometimes, the feature selection and model construction can be implemented together, 

(embedded method), such as the Least Absolute Shrinkage and Selection Operator (LASSO) 

algorithm. On the other hand, wrapper methods select the features based on the models' 

performance for different subsets of features and the model needs to be rebuilt such as the 

Recursive Feature Elimination Support Vector Machines (SVM-RFE) algorithm. 

 

2.3.2 DL algorithms: the DNN characteristics 

For breast cancer analysis, two types of ANN have been used i.e. Shallow Neural Network 

(SNN)40, and DNN41. In particular the last one has been used for breast cancer lesions due to 

its capability of automatically processing the input signals and computing features from 

irregular and abnormal ROI without any human intervention; those are named automatic 

features. Among the DNN, CNN is the most powerful and used for breast lesions analysis.  

All CNN-based models employed in oncology have been shown to improve the accuracy of 

diagnosis and reduce false negative detection42. There are several CNN architectures applied 

in the literature in the field of BC (LeNet43, AlexNet44, GoogLeNet45, Inception V446, ResNet47 
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and others): all have reported robust results when applied to different datasets. CNNs have 

been used for the study of the geometry of breast tissues, for the classification of tumor lesions 

and for their detection. The performances of the works reported in this recent review about the 

application of AI in breast cancer have shown excellent results and in particular a dependence 

on the complexity depth of the architecture48.  

In medical imaging, DCE, DWI, or T2 sequences are examples of image modalities. The use 

of multiple and different sources provides complementary information that improves the 

detection and analysis of diseases, resulting in the need for physicians of techniques that aim 

to combine and simultaneously analyze different image modalities. Multimodal Deep Learning 

(MDL) exploits DL approaches to implement methods allowing the fusion of complementary 

information coming from heterogeneous sources with the aim of providing a richer data 

representation than the unimodal approach. 

In recent years, several data fusion techniques have been investigated in the research 

community49,50 resulting in three main levels: early fusion or data-level, late fusion or decision-

level, intermediate or joint fusion. Early fusion consists of the integration of different and 

heterogeneous sources of data in a single structure that is then used as input for a DL model. 

In the case of medical image analysis using CNNs, the simplest strategy involves concatenating 

the acquisitions in a single volume51. However, the inherent characteristics of each imaging 

modality, such as different resolutions or sampling times, may make the creation of a single, 

very complex structure. As a consequence, it is possible to extract a high-level representation 

from each input modality before performing the fusion. In this case, handcrafted features and 

those extracted exploiting a DNN are merged in a single layer. Since the features are first 

extracted from each imaging modality and then merged in a single structure, the early fusion 

may not fully take into account the complementary nature of the images, creating vectors with 

redundancy. 

This characteristic requires the implementation of techniques for features reduction like the 

principal component, independent analysis, and correlation analysis. 

Late fusion integrates the decision coming from different models, each trained on a specific 
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image modality. In other words, this technique combines the decision of independent “experts”, 

exploiting the fact that errors from multiple models tend to be uncorrelated. There are different 

combining strategies such as majority voting, averaged fusion, Bayes’ rule, or those exploiting 

the use of a meta-model. Indeed, late fusion started to be popular with the growth of solutions 

involving ensemble learning. It is worth noting that, among all multimodal fusion techniques, 

late fusion represents the simplest technique to implement. 

Intermediate fusion (IF) exploits the characteristic of DNNs to be able to transform raw inputs 

into higher-level representations, with the aim of creating a shared representation. In the 

literature, the shared representation layer can be implemented according to the two main 

methodologies, proposed in 52 and 53 respectively. The first simple and effective approach 

implements a concatenation of the extracted vectors from a given layer of each unimodal 

model52. The resulting representation is processed by the following hidden layers. On the other 

hand, the approach described in53 is a multiplicative method that computes the Kronecker 

product between all the modality-specific features vectors, extracted from a given hidden layer, 

considering also the unimodal representation. In the intermediate approach, it is not easy to 

understand when the modality-specific representation should be merged into a shared 

representation. In the literature, while different solutions proposed a single fusion layer, several 

approaches implement a gradual fusion strategy54,55. The choice of which modality to fuse at 

which depth of representation can be very challenging, especially in cases where more than 

two sources are present. 

DL-based multimodal learning offers several advantages when compared to classical ML 

techniques, where data fusion usually consists of a handcrafted rigid architecture. ML 

approaches typically implement early or late fusion, explicitly performing features selection 

and dimensionality reduction. Since features are manually designed by domain experts 

requiring prior knowledge about the problem to be solved, the fusion techniques may be 

sensitive to data pre-processing. On t+he other hand, in MDL, the DNNs support the 

development of solutions based on early, late, and intermediate fusion and autonomously learn 

both the best features representation, making the features extraction step useless.  



 

 

 

29 

3 TUMOR 

3.1 T2w-sequences and breast tumor associated edema 

Breast cancer main prognostic factors include tumor size, lymph node involvement, tumor 

histology and nuclear grade, lymphatic and vascular invasion, and molecular status (which 

include estrogen-receptor (ER) and progesterone-receptor (PgR) status, epithelial growth factor 

receptor HER2 status and expression of proliferation-related genes, such as Ki-67) 56,57.  

Breast edema is not considered a major prognostic factor in current national and international 

guidelines (ACR and AIOM) 5,58. However, several studies have shown a correlation between 

breast edema and tumor aggressiveness59,60. Focal edema is mostly correlated with malignancy, 

representing an indirect sign of peritumoral vascular invasion and inflammation.  

As a highly sensitive and non-invasive method, magnetic resonance imaging (MRI) has a 

prominent role in BC diagnosis, pre-operative tumor staging and patient management, 

providing both morphologic and functional information26.  However, MRI tumor information 

is qualitative, and results depend on the radiologist experience. While the post-contrast 

sequences are used for the characterization of lesion behavior, the pre-contrast images give 

mainly morphologic information26,61. Focal edema appears as high signal intensity on T2-

weighted (T2- WI) MRI sequences and, based on its location, can be classified in three different 

types: peritumoral, prepectoral, and subcutaneous edema59.  

To our knowledge, there are no articles associating tumor edema Radiomics with primary 

tumor imaging information in order to predict breast cancer biological aggressiveness.  

Our aim is, therefore, to evaluate the contribution of edema associated with clinical and MRI 

features for breast cancer histological prognostic factors prediction, using T2- weighted MRI 

radiomics.  
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3.1.1 Population 

In this study all breast cancer MRI examinations performed at the Department of Radiological 

Sciences, Sapienza University in Rome, for local staging, from January 2015 to January 2019, 

were retrospectively reviewed. A total of 160 patients, with 164 histologically proven invasive 

BC lesions, were enrolled.  

The following were considered as inclusion criteria: staging 3T MRI examination; presence of 

Dynamic Contrast-Enhanced MRI (DCE) T2-WI and DWI sequences; presence of focal or 

diffuse edema in the T2-WI sequences, histopathologic diagnosis of invasive BC; complete 

histologic analysis, including molecular receptor evaluation (estrogen receptor ER, 

progesterone receptor PgR; epidermal growth factor receptor HER2) and Ki-67 index 

calculation.  

Exclusion criteria were: presence of breast implants, post-chemotherapy follow-up patients, 

neo-adjuvant chemotherapy, and images that were not of good diagnostic quality. Patients 

clinical data (age, menopausal state, family history, hormone therapy), tumor MRI-features 

(location, margins, dimensions, morphology, kinetic curves, edema type), and histological 

features (histological type, grading, ER, PR, HER2, and Ki-67 index) were collected.  

Lymph node tumoral involvement for each patient was also recorded, using definitive surgical 

characterization, as a dichotomous result: positive, if there was at least sentinel LN involved 

by BC metastasis, or negative, if there was no lymph node metastasis.  

Patients’ clinical data and tumor MRI-features were used as “semantic features” while the 

histological factors were used as labels to be predicted for the algorithm.  

 

3.1.1.1 MRI examination 

All MRI exams were performed on a 3T magnet (Discovery 750; GE Healthcare, Milwaukee, 

WI, USA). Patients were positioned prone, and a dedicated eight-channel breast coil (8US 
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TORSOPA) was used. Three orthogonal localizer sequences were employed, then images were 

acquired following this protocol:  

• T2-weighted axial single-shot fast spin echo sequence with a modified Dixon 

technique (IDEAL) for intravoxel fat-water separation (TR/TE 3500–5200/120–135 

ms, matrix 352 × 224, FoV 370 × 370, NEX 1, slice thickness 3.5 mm).  

• Diffusion weighted axial single-shot echo-planar with fat suppression sequence 

(TR/TE 2700/58 ms, matrix 100 × 120, FOV 360 × 360, NEX 6, slice thickness 5 mm) 

with diffusion-sensitizing gradient applied along the three orthogonal axes and with a 

b-value of 0, 500, and 1000 s/mm2.  

• T1-weighted axial 3D dynamic gradient echo sequence with fat suppression (VI- 

BRANT) (TR/TE 6.6/4.3 ms, flip angle 10◦, matrix 512 × 256, NEX 1, slice thickness 

2.4 mm), before and five times after intravenous contrast medium injection.  

• Current guidelines suggest at least three time points to measure during the post- 

contrast-phase: one before the administration of contrast medium, one approximately 

2 min later to capture the peak, one in the late phase. This allows us to evaluate whether 

a lesion continues to enhance or is characterized by contrast agent wash-out. At least 

two measurements after contrast medium administration are recommended, even if the 

optimal number of repetitions is unknown. In our center, we usually perform five 

acquisitions after contrast medium administration ensuring to obtain a specific signal 

intensity curve time without penalizing the duration of the examination.  

Gadobenate-dimeglumine (Multihance®; Bracco Imaging, Milan, Italy) was administered at a 

concentration of 0.2 mmol/kg and injected intravenously (20 G cannula) at a rate of 2 mL/s via 

an automatic injector; this was followed by infusion of 15 mL of saline at the same rate. In 

post-processing, subtracted images were automatically produced from the images after contrast 

medium administration for a more accurate tumor analysis.  

For each lesion the following MRI characteristics were collected using DCE-sequences:  

• Location on the breast quadrant;  
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• Margins: regular, irregular, lobulated, spiculated or non-mass;  

• Dimensions (mm);  

• Morphology: round, oval, or irregular;  

• Contrast enhancement, quantified using the signal intensity/time curve: type I, 

characterized by a slow wash-in and without wash-out, type II, defined by a plateau 

curve after a rapid/slow wash-in, and type III, with rapid wash-in and rapid wash-out;  

• Associated-tumor edema type  

 

3.1.1.2 Edema evaluation at MRI imaging 

The 164 lesions were divided according to the presence or absence of edema (0). When present, 

edema was classified as peritumoral (1), pre-pectoral (2), subcutaneous (3), or diffuse (4). Two 

example of edema types are reported in Figure 1. 
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Figure 1. Three example of breast tumor associated edema before (a,c,e) and after (b,d,f) the segmentation 
process (green). 
In the first case (a,b) was reported a case of upper-external quadrant CDI, LUMINAL B, G2 tumor, with 
pre-pectoral and peritumoral edema. In the second case (c,d) was shown a case of central CDI, LUMINAL 
B, G3 tumor, with peritumoral and sub-cutaneous edema. It is interesting to note as in the second case the 
comparison with the contralateral breast helps in the edema definition. The third case (e,f) shows a CDI, 
LUMINAL B, G3 tumor, with diffuse edema. During the segmentation the two hyperintense areas with 
regular margins were identified as cysts and accurately avoided during the ROI definition. 
 

Only lesions associated with edema were eligible for this study. Edema was identified as high 

signal intensity on T2-weighted sequences. However, edema may have relatively similar signal 

to tumor lesions and breast tissue in the conventional T1-weighted images and the T2-fat-

suppression sequences. Therefore, the DCE and DWI sequences were also used, allowing the 

best definition between tumor and edema. In addition, a comparison between the two breasts 
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was exploited in order to distinguish breast edema, in the breast side with tumor, from breast 

glandular tissue, in the breast side without tumor. 

 

3.1.1.3 Histological characteristics  

Breast tissue specimens obtained after biopsy or surgery were analyzed by a pathologist with 

more than 20 years of experience. Histological diagnosis was performed following the WHO 

classification: the histopathological grade was evaluated according to NGS (Nottingham 

Grading Score), through a scoring system which evaluate tubule formation, pleomorphism, and 

mitotic count. The total numerical score ranges from 3 to 9. A score of 3–5 corresponds to 

grade 1 (G1), a score of 6 or 7 was interpreted as grade 2 (G2), and a total score of 8 or 9 leads 

to diagnosis of grade 3 (G3). 

Immunohistochemical (IHC) analysis was performed to evaluate molecular receptors status 

(ER, PgR, and HER2) and to calculate Ki-67 index. Only nuclear reactivity was considered for 

ER. The monoclonal antibody Mib-1 (1:200 dilution; Dako, Glostrup, Denmark) was used to 

assess the Ki-67 index, which was reported as the percentage of immune-reactive cells out of 

2000 tumor cells in randomly selected high-power fields surrounding the tumor core. HER2 

status was re-evaluated using the Hercep test (Dako, Glostrup, Denmark). Samples that gave 

an equivocal IHC result were subjected to fluorescence in situ hybridization (FISH) analysis. 

A ratio of HER2 gene signals to chromosome 17 signals greater than 2.2 was used as a cut-off 

value to define HER2 gene amplification. ER and PgR status was considered positive if 

expression was ≥1% and negative if expression was <1%. HER2 expression was graded as 

follows: 0, 1+, 2+, or 3+; tumors with a score greater or equal than 2+ were considered HER2 

positive, whereas scores lesser than 2+ were considered HER2 negative. Ki-67 expression 

≥14% was considered positive and <14% was considered negative. 
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3.1.1.4 Statistical analysis 

Descriptive statistics were accomplished using the statistical software program SPSS© version 

25.0. Statistical significance was set at p < 0.05. 

Spearman’s Rank-Order Correlation was evaluated to assess whether there was a correlation 

between the edema types and categorical variables, both clinical (menopausal status, hormone 

therapy, family history), MRI (location, margins, dimensions, morphology, kinetic curves, 

edema type), histological characteristics (histologic type, grading, expression of ER, PgR, and 

HER2b and Ki-67 index) and lymph node status (positive or negative). We also performed 

Spearman’s Rank-Order Correlation to assess a possible correlation between edema types and 

positive lymph node status, excluding lesions with peritumoral edema. 

The Kolmogorov-Smirnov test was performed to determine whether age and tumor size 

followed a normal distribution. 

Statistical comparison of edema type and age and tumor size was performed using the Kruskal-

Wallis H test. 

 

3.1.2 Methodology  

3.1.2.1 Radiomics Approach 

Edema segmentation 

Each case has been anonymized and identified with a progressive identification number (ID). 

For the analysis of bilateral tumors, lesions were considered one at a time with different IDs. 

For each breast sample the T2-weighted sequence was selected and loaded into a workstation. 

To get the region of interests (ROIs), a semi-automatic segmentation of the edema was 

performed by an expert radiologist, and then proofread by another one, with 3D Slicer 

(http://www.slicer.org, accessed date: 1 January 2015). All the following analysis were run 

using home-made algorithms on MATLAB. Segmentation was performed at first in the axial 
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projections, avoiding tumor lesions and necrosis when present. Each segmentation was 

improved in the sagittal and coronal projections and finally optimized using three-dimensional 

version of the well-known convex-hull algorithm.  

Indeed, although all tumor edemas usually present a spherical and irregular geometry, when 

considering an MR acquisition it is easy to incur in some tissues that are partially difficult to 

segment, either because of tissue stretching due to the imaging phase, or because of hard-to-

detect shapes within the images when edemas are close to other tissues with similar density, 

such as cysts or pure dense glandular tissue, thus often resulting in jagged edges and sometimes 

concavities in the resulting ROI. On this ground, the calculation of the three-dimensional 

convex hull serves a twofold purpose: firstly, it removes all possible segmentation deformities 

otherwise hindering further calculation of textural features and secondly, it can slightly expand 

the ROIs thus also containing a perimeter portion of healthy tissue at the edge of the 

segmentation that might carry information about the tumor status. 

Feature Extraction and Selection  

A total of 253 features were extracted and filtered, selecting the most informative through a 

Best Firsts wrapper algorithm, and using a Random Forest and the labels we would like to 

predict. We performed five experiments, by using the different histological labels set with 

dichotomic values (0–1): histology, grading, ER, PgR, and Ki-67. All the experiments will be 

detailed in the next section.  

Furthermore, it is worth noting that the wrapper-based feature selection was applied avoiding 

any bias between the training and test set and we used all default Matlab’s parameters for the 

classification.  

The classification stage straightforwardly employed the same learning paradigm used in the 

feature selection phase; note also that the use of a Random Forest alleviates the curse of 

dimensionality and permits us to benefit by the aggregation of several decision trees, 

mimicking the consensus mechanism among different experts. This configuration was applied 
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using only semantic features (i.e., patient clinical data and features derived by visual inspection 

of the MR images), and semantic features associated to edema radiomics descriptors.  

We preferred to manually implement the code in order to better control specific computational 

aspects, usually bulked into external software, considered when generalizing features generally 

extracted on planar images to a three-dimensional volume. All the steps to build our code were 

tested against well-established packages.  

A total of 253 features were extracted, of which 11 were semantic (age, menopausal status, 

family history, hormone therapy, MRI location, stadiation, margins, dimensions, morphology, 

kinetic curves, edema type) and 241 were radiomics. In order to fully take advantage of 

gathered acquisitions, no data nor gray level reduction was performed to the images and all 

analysis were intrinsically computed in the three-dimensional voxel space. It worth noting that 

although the relatively large slice thickness of the MRs could alter the isotropy of the acquired 

stacks, all the features we extracted which are sensitive to the voxels texture orientation were 

computed for all the existing three-dimensional orientations and then filtered out, in the further 

feature selection step, all the less informative ones. In detail, there were 11 first-order features 

(mean, standard deviation, skewness, kurtosis, energy, entropy, maximum absolute value, 

position of the maximum absolute value, energy around the maximum absolute value, range, 

number of maximum relative values, energy around the maximum relative values), 48 s-order 

features extracted from the histograms of four variations of the three Orthogonal Planes-Local 

Binary Patterns (TOP-LBP) (the same feature extracted from the first-order group, per each 

variation), and 182 features extracted from the 3D version of the Gray Level Co-occurrence 

Matrix (GLCM) (autocorrelation, covariance, inertia, absolute of the inertia, inverse of the 

inertia, energy and entropy, per each of the 26 possible three-dimensional directions). A 

summary of such features is reported in Table 1. 
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Table 1: Description of the extracted features.  
#: “number of” 
 

Classification  

As mentioned before, the labels have always been assumed dichotomic values of 0 and 1: for 

histology (ductal or lobular invasive carcinoma), for ER and PgR status (≥ or <10%), for Ki67 

proliferation index (≥ or <1%), and also for grading (G1 + G2 vs. G3), grouping the class with 

the lowest number of elements (G1 in the specific case). The dichotomic labeling approach 

was chose in order to avoid a class unbalance and to ease and standardize the classifier 

approach.  

Each of the five experiments was performed in ten-fold cross-validation and repeated for each 

histological label to predict, as detailed in the Figure 2.  
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Figure 2: Schematic representation of the proposed approach to predict the five histological labels.  
In the left box (a) is reported the classic medical approach, using only the semantic features, while in the right 
box (b) the classification was performed associating the radiomics features to the semantic ones. The model 
is then built using the best performing features. 
 

3.1.3 Results 

In this study, 164 breast cancer lesions with 127 presenting edema tumor were used. Four 

patients had bilateral breast cancer, but only one patient with bilateral BC presented edema. 

Edema types were represented as follows: 62 (49%) peritumoral, 26 (20%) pre-pectoral, 16 

(13%) subcutaneous, 23 (18%) diffuse. The history-clinical data of the study population were 

collected. The mean age of the patients presenting edema was 54.86 years (range 30–84). 

Seventy-two (n = 72, 45.5%) patients were pre-menopausal and 88 (55.5%) were 

postmenopausal; 120 (73%) patients did not have any family member affected by breast cancer, 

32 (20%) patients had one family member, and 8 (5%) patients had at least 2 female or male 

family members affected by breast cancer at any age.; 9 (6%) patients assumed hormone 
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therapy for at least 3 continuous months, whether for contraceptive, substitution, or medical 

therapy reasons, and 151 (94%) patients did not assume any hormone therapy. 

The median diameter of the lesions measured was 19 mm (range 9–60 mm). 

Analyzing tumor location, peritumoral edema was more present when the tumor was located 

at the upper-outer quadrant (30.6%), pre-pectoral was more frequent when the tumor was in 

the internal quadrant (upper 12% and lower 46%), subcutaneous edema was predominant for 

lesions located at the lower-inner quadrant (21%), while the diffuse class was more frequent in 

case of central tumors (25%). 

The lesions were more frequently round or oval in peritumoral edema (56%), irregular in case 

of subcutaneous and pre-pectoral edema (36.4% and 41.8% respectively) and non-mass like in 

case of diffuse edema (30.6%). 

The other main clinical, imaging, and histological characteristics of the 126 patients presenting 

edema, divided basing on edema type, are shown in Table 2. 
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Table 2 Clinical, histologic, and MRI characteristics of the patients presenting with breast edema, classified 
according to the type of edema  
(* means the correlation is statistically significant).  
HT: hormone therapy, IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma, LNS: Lymph 
Node Status. 
 

Using Spearman’s Rank test no correlation we did not found between edema type and 

menopausal status, hormone therapy, lesion margins, kinetic curve, histological type, and 

positive lymph node status (p value > 0.5). A significant correlation was found between tumor 

histologic class, grading, ER, PgR and HERb2 expression, and Ki-67 index. A significant 

correlation was found between edema type and positive lymph node status, when peritumoral 

edema was excluded (p = 0.022). The Kruskal-Wallis H test demonstrated a significant 

correlation between edema class and lesion size (p value < 0.001). No correlation was found 

between patient age and edema type. 

Radiomics Approach  

After the feature extraction a signature, composed by the most significative features that lead 

to the final results, was individuated for each histological label (histological class, ER and PgR 

status, Ki-67 index and grading). The selected features and their predictive impact for each 

histological label were reported in the following charts (Figure 3).  
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Figure 3: Features selection 
The charts show the most significant features, selected by a wrapper filter, for each histological label: (a) 
grading, (b) ER, (c) histological class, (d) Ki-67 and (e) PgR. The features were individuated by a color based 
on the specific feature class (yellow for semantic features, i.e., the 11 features collected without considering 
the edema information, blue for radiomics first-order features, green for radiomics GLCM 3D second-order 
features and red for radiomics LBP 3D second-order features). 
 

For the sake of completeness, we would like to stress the fact that in order not to incur in the 

issue known as Curse of Dimensionality, i.e., when during a classification task the number of 

features is empirically higher than 10% of the samples present in the dataset, thus biasing the 

predictions, after the feature selection phase we should have concluded with at least 10 edemas 

in the minority class per feature, and instead the number of selected features exceeds the 

number of analyzed samples in all the classes considered. In fact, after the feature selection we 

accepted a certain abundance of extra features without proceeding with a deeper filtering, due 

to the fact that the algorithm considered in the next step, the Random Forest, is quite capable 

of dealing with a larger number of attributes than the relevant ones, performing an additional 

intrinsic selection of only the most significant features and avoiding bias.  

The difference between the AUC and the accuracy obtained to predict each of the five 

histological prognostic labels, with and without edema radiomics features contribution, is 

reported in Table 3.  
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Table 3: Experimental results  
The AUC and the accuracy for each histological label are obtained, at first, using only the semantic features 
(second column) and, then, adding the edema radiomics features (third column). In the last column is 
reported the difference between the two AUC/accuracies, indicating with * the cases in which edema 
radiomics features increased the result.  
 

3.1.4 Discussion and Conclusions  

Among the different imaging methods, MRI has demonstrated an increasingly important role 

as a breast cancer management guide, from BC diagnosis and loco-regional stadiation, to aiding 

in therapy decision-making5,27. High-field MRI contrast resolution allows a very accurate 

definition of the main morphological and functional tumor characteristics. 

In recent years, in the literature there have been preliminary studies that have attempted to seek 

a correlation between MRI tumor characteristics with BC molecular subtypes and prognostic 

factors using artificial intelligence (AI). Radiomics, which represents the main AI medical 

application, consists of the analysis of medical images and aims to convert the relative 
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information and characteristics, called features, that the observer is not able to see by 

themselves, into quantitative and measurable high-data functions. 

MRI post-contrast sequences have proved to be the main sequences for the phenotypic 

description of the lesion, characterization of the true tumor extension, margins, morphology 

and, almost importantly, definition of tumor neoangiogenesis39. On the other hand, the pre-

contrast sequences, T2-weighted and DWI, are the source of morphological information and 

are used to improve tumor aggression characterization, contributing with data about the degree 

of peri-tumor inflammation. 

Edema, identified as a high-intensity signal in T2-weighted sequences, can therefore be useful, 

although non-specific, data, correlating with peritumoral malignant lesion spread and 

lymphangioinvasiveness59,60,62. Edema can be classified into peritumoral, pre-pectoral, 

subcutaneous, and diffuse, presenting a different degree of correlation with tumor 

aggressiveness. Both malignant and benign lesions, such as mastitis, previous radiotherapy, 

post-surgical inflammation, nephrotic syndrome, lymphoma, venous congestion, and chronic 

heart disease can be a cause of diffuse breast edema63. Focal edema, studied in T2WI sequences, 

however, is associated with malignant lesions in most cases59,64–67. 

Peritumoral edema is caused by the tumoral process of neoangiogenesis, resulting in increased 

vascular permeability in the newly formed vessels and the release of peritumoral cytokines. 

This is specific of invasive breast cancer, even if it is less frequent in lobular cancer than in 

ductal cancer 68. This could be due to the low density of the lesion and the growth pattern of 

lobular carcinoma. Peritumoral edema is also significantly related to rim enhancement69. 

Breast tissue is drained primarily by lymphatic vessels leading to the axillary lymph nodes70,71. 

Invasive BC causes lymphatic vessels to increase in number and size, consequently increasing 

the risk of lymph node metastasis. When the main axillary lymphatic drainage is blocked due 

to carcinoma, collateral intramammary and pre-pectoral lymphatic drains take over59,67,70–72. 

Pre-pectoral edema is related to tumor cells in the retro-mammary areas27,67,70. When lymphatic 

drainage in the subcutis is blocked due to tumor emboli, subcutaneous edema will occur67,72. In 

theory, pre-pectoral edema usually precedes subcutaneous edema as it is considered by 
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Uematsu et al. as “the final stage of breast edema associated with malignancy”. During imaging 

studying, it is therefore useful to clarify the type and the quantity of edema observed, as this 

finding can help in predicting the malignancy of the lesion. 

On this basis, we wanted to explore edema over-reader information, with the aim to analyze 

features which can be added as imaging breast cancer descriptors to the traditional radiologist 

evaluation, by combining information from radiomics, based on T2-weighted 3T MRI 

sequences, with the patient clinical and traditional imaging data of the lesion to predict the 

histological characteristics of the tumor. 

To our knowledge there are no articles that associate tumor edema radiomics to tumor imaging 

in order to improve breast cancer biological aggressiveness. 

In our study, the class of edema correlates significantly with tumor size, histological class, 

grading and expression of ER, PgR and HER2b, and Ki-67 index, reflecting how the presence 

of edema is associated with particularly aggressive tumors. As already hypothesized by Baltzer 

et al. invasive tumor growth and progression are associated with phenomena of tumor 

proteolysis and neoangiogenesis; these factors contribute to an increased vascular permeability, 

because of basal membranes that perform less than in the physiological vasculature [35]. 

Tumor growth and progression are nothing but the expression of tumor aggressiveness, which 

is in turn expressed at histological level by the nuclear grade, mitotic growth index, and 

receptor expression of the tumor lesion. 

We did not find a significant correlation between the class of edema and the presence of 

lymphadenopathy, when considering all the edema types. When considering the lesions with 

pre-pectoral, subcutaneous, and diffuse edema, a significant correlation was found, confirming 

Uematsu’s studies. Uematsu describes the classes of pre-pectoral and subcutaneous edema as 

signs of lymphovascular invasion (LIV), which is responsible for disruption of lymphatic 

drainage in the dermal and subdermal area due to tumor emboli: LIV is significantly associated 

with pre-pectoral edema, and subcutaneous edema which is its final stage, and both are 

associated with inflammatory breast cancer and occult inflammatory breast cancer [10]. 
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Regarding the radiomics impact, our results show consistently higher AUC using breast edema 

radiomics features. The best improvement in AUC was obtained regarding grading (0.789 vs. 

0.590) while estrogen- and progesterone-receptors showed a lower increase of AUC (ER: 0.487 

vs. 0.466; ER: 0.659 vs. 0.546). The improvements can be confirmed by looking at the values 

of sensitivity, specificity, PPV, and NPV of each experiment. In fact, the percentages almost 

always show higher values when considering predictions obtained using edemas when 

calculating features rather than not, only in a few comparisons we have that specificity shows 

a lower result as well as a single NPV, suggesting a more conservative trend for the classifier 

using edema features. These results can probably be explained as edema is an imaging 

manifestation of advanced or inflammatory BC, while hormone-receptors are histological 

features. The only case in this study where the accuracy decreases is in case of histological 

type. This can be explained by the imbalance of our sample (108 CDI vs. 17 CLI). 

It is also interesting to note that only some semantic features survived to the features selection 

process, such as the DCE-Kinetic Curve, which represents the tumor intrinsic vascularization, 

closely connected with the lesion aggressiveness and edema, as strongly reported in literature 
7,8,26,59–62,64,73–76. However, for all the histological labels, the majority of selected features were 

radiomics, and in particular second-order ones. This result suggests that, for this experiment, 

most of the information resides within the tissue pattern and the micro-structure of the tumor 

contours, which are the properties analyzed by these feature families. The spread of tumor-

associated edema follows specific patterns related to tumor aggressiveness, and this can explain 

this class features selection. 

The use of a 3Tesla magnet allows the generation of high-quality images with high information 

content. Our study collected images with high data content to be exploited to obtain features 

that are not only numerous, but also highly detailed in order to achieve the maximum 

correlation with the histological microstructure and facilitate the radiomic path. This is possible 

based on the greater detail provided by high-resolution images, as demonstrated by various 

studies performed on high-field MRI77,78. 
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High resolution image production guarantees an excellent definition of the details allowing a 

selection of most appropriate features, but also optimizes the work of the classifier, both from 

a computational point of view, streamlining the amount of information to be evaluated, and the 

result, ensuring greater appropriateness of the data. 

It has emerged over the years that the application of Artificial Intelligence, even in other fields, 

requires very advanced computational sciences and statistics. Moreover, radiomics needs an 

incredibly collaborative inter-disciplinary, inter-institutional team79. 

The main limitations of this study include the small sample size and the single center nature of 

the study, the unbalanced number of the group component (smaller number of the minority 

class), the manual segmentation, leading to time-consumption and user error and variability, 

the large number of features utilized which may lead to overparameterization, the lack of an 

independent test set, and the lack of an assessment of inter-reader variation. A larger and 

preferably multi-center cohort is needed for a more rigorous analysis. Moreover, an automatic, 

standardized, and validated segmentation method would be ideal even if not yet available at 

present. It is certainly necessary to keep in mind the inherent limits of radiomics: this technique 

is currently still tied to the radiologist’s ability to select ROIs and the engineer’s ability to build 

the algorithm capable of feature selection and their experience. 

However, the results obtained in this preliminary study, as well as those published so far in the 

literature, are highly promising. Considering the significant clinical impact that the appropriate 

use of these tools could offer the physician, the growing research in this area is justified. There 

is the need to produce common datasets in the public domain, in order to make the collected 

data usable and to standardize the protocols. 

This study demonstrates that the BC edema radiomic features of preoperative 3 Tesla MRI 

extracted from the T2 sequences significantly correlate with the main histological prognostic 

factors. Despite its currently marginal role in guidelines as a predictor, the breast associated 

edema may be useful in the preliminary phase to provide additional information on tumor bio-

histological aggressiveness. This concept is more evident by applying Artificial Intelligence 

algorithms to images that can provide objective quantitative data to the limited vision of the 
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radiologist. Radiomics is a complex tool in its implementation phase but simple in its use phase. 

This will inevitably lead to its greater development in the medical field and this study represents 

only a primordial evaluation of what AI can offer as a decision supporting tool. 
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3.2 DWI-sequences and ADC prognostic value 

The highly heterogeneous nature of breast cancer is a consequence of the different histological 

behaviors of the tumor and the different molecular receptor structures. Based on this 

heterogeneity, an improvement in disease-specific survival rates was observed through 

increasingly personalized treatment.  

The cellular microenvironment is crucial to define the aggressiveness of breast cancer and can 

be quantified by cell proliferation and intrinsic cellular changes, such as mitotic count and 

degree of pleomorphism.  

Tumor cellularity is defined by the proportion of tumor cells in the tumor bed: this assessment 

is performed by a pathologist who estimates the local cellularity of the specimen by comparing 

the area containing the tumor with the reference standard. Being a semi- quantitative 

assessment, it is, therefore, subject to inter-rater variability80.  

At the time of this study, cancer cellularity is not employed as a method of further sub-

differentiation of breast cancer and its role is reserved in assessing tumor response to 

neoadjuvant therapy, according to the Sinn, Sataloff, and Miller-Payne Pinder methods of 

evaluating response to treatment81–84.  

The current limit is due to the different cellularity score obtained from biopsy and definitive 

surgical specimens. The former, in fact, could be representative of a single portion and not of 

the whole tumor, distorting the final evaluation.  

Diffusion weighted imaging (DWI) is traditionally included in MRI routine protocol improving 

the specificity of post-contrast-MRI, which is considered the golden standard for tumor 

detection. DWI restriction is proportional to the degree of movement of water molecules and 

can be quantified by the apparent diffusion coefficient (ADC) value. In ADC maps, tissues 

with high cellularity showed lower ADC values85,86. Recent literature has demonstrated an 

inverse correlation between ADC values and histological grade of the tumor, proving its 

usefulness in identifying high-grade invasive breast cancer prior to the surgery87,88.  
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The aim of this study is to define whether ADC values, obtained by 3T staging-MRI, vary with 

Ki-67 expression, tumor grade and cellularity, the latter obtained both after biopsy and after 

surgery, to identify whether ADC may represent a non-invasive predictor of aggressive cellular 

definitive pathophysiology.  

 

3.2.1 Population 

In this study, all breast cancer MRI examinations performed at our Department of Radiological 

Sciences for local staging from January-2010 to September-2019 were retrospectively 

reviewed. A total of 100 patients with histologically proven invasive BC lesions were enrolled. 

The following inclusion criteria were considered: staging 3T-MRI examination, performed 

after biopsy and before surgery; presence of DCE-MRI, T2-WI and DWI sequences; ADC 

evaluation of the main lesion for each exam; histopathological diagnosis confirming invasive 

BC; complete histological analysis including molecular receptor assessment (estrogen receptor 

ER, progesterone receptor PgR; epidermal growth factor receptor HER2), Ki-67 index, and 

calculation of cellularity, both at biopsy and on the operative specimen. 

Exclusion criteria were: presence of breast implants, post-chemotherapy follow-up 

examinations, neo-adjuvant chemotherapy and images that were not of good diagnostic quality. 

Patients clinical data (age, menopausal state, familiarity, hormone therapy), tumor MRI 

features (stadiation, localization, margins, kinetic curves, size) and histological features 

(histological type, grading, ER, PgR, HER2, Ki-67 index, cellularity rate) were collected. 

Institutional Review Board approval was not required because this is a retrospective 

observational study, and only existing information collected from human participants was used 

and there are no identifiers linking individuals to the data/samples. 
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All methods and procedures were in accordance with institutional and research committee 

ethical standards and the 1964 Declaration of Helsinki and its subsequent amendments or 

comparable ethical standards. 

 

3.2.1.1 MRI examination 

All MRI exams were performed on a 3T magnet (Discovery 750; GE Healthcare, Milwaukee, 

WI, USA). Patients were positioned prone and a dedicated eight-channel breast coil (8US 

TORSOPA) was employed. Three orthogonal localizer sequences were performed, then the 

following protocol was acquired: 

• T2-weighted axial single-shot fast spin echo sequence with fat suppression (DIXON) 

(TR/TE 3500–5200/120–135 ms, matrix 352 × 224, FoV 370 × 370, NEX 1, slice 

thickness 3.5 mm). 

• Diffusion weighted axial single-shot echo-planar sequence with fat suppression 

(TR/TE 2700/58 ms, matrix 100 × 120, FOV 360 × 360, NEX 6, slice thickness 5 mm) 

with b values of 0, 500 and 1000 s/mm2. 

• T1-weighted axial 3D dynamic gradient echo sequence with fat suppression 

(VIBRANT) (TR/TE 6.6/4.3 ms, flip angle 10°, matrix 512 × 256, NEX 1, slice 

thickness 2.4 mm), before and five times after intravenous contrast medium injection. 

Current guidelines suggest at least three time points to measure during the post-contrast-phase: 

one before the administration of contrast medium, one approximately 2 min later to capture the 

peak, one in the late phase. This allows us to evaluate whether a lesion continues to enhance or 

is characterized by contrast agent wash-out. At least two measurements after contrast medium 

administration are recommended, even if the optimal number of repetitions is unknown. In our 

center, we usually perform five acquisitions after contrast medium administration ensuring 

obtaining a specific signal intensity curve time without penalizing the duration of the 

examination. 
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Gadobenate-dimeglumine (Multihance®; Bracco Imaging, Milan, Italy) was administered as 

contrast agent (concentration of 0.2 mmol/kg; rate of 2 mL/s) followed by injection of 15 mL 

of saline. In post-processing, subtracted images were automatically produced from the images 

after contrast medium administration for a more accurate tumor analysis. 

The entire exam for each patient was transferred to a workstation (Advantage Windows 

Workstation 4.4; GE Medical System, Milwaukee, WI, USA) for post-processing analysis. For 

a quantitative analysis, ADC values were calculated according to the following equation: 

ADC = −(1/b)ln (S0/S1) 

where b is the diffusion factor, S1 is the attenuated signal (b-value of 1000 s/mm2) and S0 is 

the full spin echo signal without diffusion gradient (b-value of 0 s/mm2), as reported in the 

literature. 

DCE sequences were considered to be reference images for tumor detection and lesion 

characterization. The largest lesion was considered to be the index lesion and included in the 

statistical analysis. The greatest axial diameter was submitted to statistical analysis. On the 

basis of their morphology, lesions were classified into mass tumors with regular, lobulated, 

irregular and spiculated margins, or non-mass tumors. 

For each index lesion, a signal intensity-to-time curve (SI/T) was automatically generated by 

placing a region of interest (ROI) within the lesion on a subjectively recognized area of 

maximal contrast enhancement and evaluating all five of the acquired DCE series. The kinetics 

curves were classified as I (progressive wash-in), II (plateau) or III (rapid wash-out), in 

accordance to the BIRADS guidelines. 

For qualitative analysis, DWI sequences were subsequently evaluated and the lesion was 

simply considered to be visible (characterized by diffusion restriction) or non-visible (without 

any diffusion restriction). For quantitative analysis, the ADC value of the index lesion was 

calculated by superimposing the subtracted images on the ADC map. The ROI was circular, 

measuring 3–6 mm, and was manually drawn on the slice where the lesion reached its greatest 
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diameter. Then, the ADC value was generated and stored automatically. ADC measurements 

were performed only on the enhanced solid portion to avoid areas of T2 shine-through, i.e., the 

necrotic core of the tumor. All ADC values were retrospectively measured by a radiologist with 

more than 10-years of experience with breast MRI, as they were not originally included in the 

reports. 

 

3.2.1.2 Histologic Characteristics 	

All breast lesions were characterized on the histological specimen obtained by core biopsy and 

on the histological definitive sample after surgery, by two pathologists. Histological diagnosis 

was performed according to WHO classification. In the cases with lobular histotype where 

assessing cellularity was particularly troublesome, the count was performed on sections stained 

with immunohistochemistry for cytokeratin (CKAE1AE3). 

The histopathological grade was evaluated according to NGS considering the tubule formation, 

the pleomorphism and the mitotic count through a scoring system. The total score ranges from 

3 to 9: 3–5 corresponds to grade 1 (G1), 6 or 7 to grade 2 (G2) and 8 or 9 to grade 3 (G3). 

Immunohistochemical (IHC) analysis was performed to evaluate molecular receptors status 

(ER, PgR, and HER2) and to calculate Ki-67 index. Evaluation of ER and PgR status was 

performed by IHC using Dako monoclonal antibody, 1:100 dilution. The monoclonal antibody 

Mib-1 (1:200 dilution; Dako, Glostrup, Denmark) was used to assess the Ki-67 index, which 

was reported as the percentage of immune-reactive cells out of 2000 tumor cells in randomly 

selected high-power fields surrounding the tumor core. HER2 status was re-evaluated using 

the Hercep test (Dako, Glostrup, Denmark), following published guidelines [16]. Samples that 

gave an equivocal IHC result were subjected to fluorescence in situ hybridization (FISH) 

analysis. A ratio of HER2 gene signals to chromosome 17 signals greater than 2.2 was used as 

a cut-off value to define HER2 gene amplification. 
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ER and PgR status were considered to be positive if the expression was ≥1% and negative if 

the expression was <1%. HER2 expression was classified as 0, 1+, 2+ or 3+; only tumors 

reaching a score of 3+ were considered to be HER2-positive. The lesions were divided into 

four groups based on the rate of Ki-67 index: <10%, between 10% and 14%, between 14% and 

20%, and >20%, respectively. Patients were further grouped according to Ki-67 expression 

into Ki-67 index <20% and >20%, considering the first group as unequivocally negative and 

the second as unequivocally positive. Cancer cellularity was assessed semi-quantitatively on 

the biopsy specimen and the surgical specimen by estimating the percentage of the tumor area 

covered by neoplastic cells. When more than one tumor bed was identified, cellularity was 

calculated as an average of each area’s cellularity, weighted for its approximate size. Foci of 

necrosis and in situ carcinoma were excluded from the assessment. Subdivision was made into 

groups as follows: <50%, between 50% and 70%, >70%, respectively. 

 

3.2.2 Methodology 

3.2.2.1 2.4. Statistical Analysis 

The ADC was treated as a continuous dependent variable, whereas Ki-67 expression, tumor 

grade and the cellularity rate, were considered to be independent variables. All the analyzed 

variables did not follow a normal distribution, and non-parametric tests were used for statistical 

computations. 

Spearman’s Rho correlation test was used to correlate ADC values with histological features 

(histotype, class, ER, PgR, HER2, grading, Ki-67, biopsy cellularity and surgical cellularity) 

and with other MRI features (tumor size, kinetic curves, and margins). 

To detect significant differences in ADC values among the grading groups, Ki-67 groups and 

biopsy and cellularity groups, both the Wilcoxon–Mann–Whitney U test (two groups 

comparison: G1 vs. G2, G2 vs. G3 and G1 vs. G3; Ki-67 < 20% vs. Ki-67 > 20%; cellularity 

< 50 vs. cellularity 50–70%, cellularity 50–70% vs. cellularity > 70%, cellularity < 50 vs. 
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cellularity > 70%) and Kruskal–Wallis H test (multiple-groups comparisons: G1 vs. G2 vs. G3; 

cellularity < 50 vs. cellularity 50–70% vs. cellularity > 70%) were carried out. 

A ROC curve, plotted with TPR against the FPR, was performed to demonstrate the accuracy 

of ADC values in predicting the most aggressive patterns: G3 class alone, G2 + G3 classes 

together, the Ki-67 > 20% group and the surgical cellularity >70% group. An Area Under the 

Curve (AUC) > 9 indicated an excellent test, between 8 and 9 a good test, between 7 and 8 a 

fair test, between 6 and 7 a poor test and <6 a worthless test. 

Statistical significance was set at p < 0.05. All data analyses were processed using SPSS (IBM 

Statistical Software Program, IBM, Armonk, NY, USA), version 25.0. 

 

3.2.3 Results 

A total of 100 histologically proven invasive breast carcinomas were included in the study, and 

their MRI examinations were retrospectively reviewed. The mean age was 54.72 years (range 

38–83 years); 54 patients were postmenopausal, 46 premenopausal; 10 had undergone hormone 

therapy during their lifetime; 24 patients had a relative with a history of breast cancer, and 12 

had two or more affected relatives. Descriptive statistics for tumor MRI characteristics, which 

are reported for each classification group along with relative frequencies, and Spearman’s Rho 

test results are summarized in Table 4. 
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Table 4 Description of the extracted MRI characteristics.  
* indicates statistical significance (p < 0.05). 
 

The histopathological and immunohistochemical results for all lesions and classification 

groups, with the results of Spearman’s Rho test, are shown in Table 5. 
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Table 5 Description of the extracted histologic characteristics.  

* indicates statistical significance (p < 0.05). 

 

The mean ADC value of the lesions detected at DWI was 1.09 × 10−3 mm2/s (range: 0.7–1.5 × 

10−3 mm2/s). No statistical significance was found by correlating ADC values with kinetic 

curves and tumor size; a significant correlation was found between ADC values and tumor 

margins (p = 0.032). No statistical significance was found between ADC values and 

histological type, PgR and HER2 receptor status (p > 0.05). However, ADC correlates 

significantly with grading, ER receptor status and Ki-67 index (p < 0.05). A high correlation 

was found between ADC values and cellularity rate, both biopsy (p < 0.01) and surgical (p << 

0.001) (Figure 5, 6 and 7). 

 

 

Figure 4: Case 1  
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 Case of a 51-year-old woman with a G1 Luminal A invasive ductal carcinoma, Ki67 of 12%. (A) The post-
contrast image shows an irregular spiculated enhancing lesion in the outer quadrants of the right breast. (B) 
The diffusion weighted image (b-value of 1000 s/mm2) shows high restriction signal in the tumor region. (C) 
ADC map with an ADC value of 1.26 mm2/s. (D) Section from surgical specimen shows 40% cellularity (10× 
HE). 
 

 

Figure 5: Case 2 
Case of a 51-year-old woman with a G2 Luminal A invasive ductal carcinoma, Ki67 of 60%. (A) The post-
contrast image shows an irregular enhancing lesion in the inner inferior quadrant of the left breast. (B) The 
diffusion weighted image (b-value of 1000 s/mm2) shows high restriction signal in the tumor region. (C) ADC 
map with an ADC value of 0.84 mm2/s. (D) Section from surgical specimen shows 60% cellularity (10× HE). 
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Figure 6: Case 3 
Case of a 72-year-old woman with a G3 Luminal B invasive lobular carcinoma. (A) The post-contrast image 
shows an irregular heterogeneously enhancing lesion in the inner upper quadrant of the left breast. (B) The 
diffusion weighted image (b-value of 1000 s/mm2) shows high restriction signal in the tumor region. (C) ADC 
map with an ADC value of 0.62 mm2/s. (D) Section from surgical specimen shows 90% cellularity (10× HE). 
 

The Wilcoxon-Mann–Whitney test showed significant different ADC values when the 

following grading groups were compared individually, with a p value of 0.009 for G1 vs. G2 

and a p value of 0.001 for G1 vs. G3, but no significant difference was found for G2 vs. G3. 

ADC values were significantly higher for Ki-67 < 20 % than Ki-67 > 20%, with a p value < 

0.03. There was a significant difference in ADC values when the biopsy cellularity groups were 

compared individually, with a p value of 0.014 for <50% vs. >70%. No significant difference 

was found for the other classes (<50% vs. 50–70% and 50–70% vs. >70%). ADC values were 

also statistically different for the comparison of the individual surgical cellularity groups, with 

a p value << 0.001 for <50% vs. >50–70%, whereas p was 0.07 for 50–70% vs. >70% and p << 

0.001 for <50% vs. >70%. 
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The Kruskal-Wallis test showed that ADC values were significantly different among the three 

grading groups (p = 0.009), the three biopsy cellularity groups (p = 0.21) and, most strongly, 

the three surgical cellularity groups (p << 0.001). 

Using ADC values, the prediction for G3 corresponded to an AUC of 0.720, whereas it 

corresponded to a score of 0.835 if G2 and G3 were grouped (Figure 8 and 9 respectively). The 

AUC for Ki-67 < 20% corresponded to 0.679 (Figure 10). The AUC for surgical cellularity > 

70% was 0.805 (Figure 11). 

 

 

Figure 7: Receiver operating characteristic (ROC) curve when G3 was compared with G1 and G2.  
Area under the curve (AUC) = 0.720. 
 



 

 

 

63 

 

Figure 8: Receiver operating characteristic (ROC) curve when G2 and G3 were compared with G1.  
Area under the curve (AUC) = 0.835 
 

 

Figure 9: Receiver operating characteristic (ROC) curve when Ki-67 Index > 20% was compared with Ki-67 
Index < 20%.  
Area under the curve (AUC) = 0.679 
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Figure 10: Receiver operating characteristic (ROC) curve when surgical cellularity rate > 70% was compared 
with surgical cellularity rate > 50 and surgical cellularity rate 50–70%.  
Area under the curve (AUC) = 0.805. 
 

3.2.4 Discussion and Conclusions  

ADC values and their correlation with malignant lesions have been extensively studied in 

several papers, which have shown that ADC values of infiltrating lesions are statistically lower 

than those of in situ tumors, and that similarly ADC values of in situ tumors are lower than 

those of B3 lesions and these in turn of benign lesions89. Since ADC values are an expression 

of tumor cellularity, perfusion and angiogenesis, in the context of malignant tumor lesions they 

can be used to assess the degree of malignancy and aggressiveness, being inversely related to 

tumor grade and Ki-67 index, as already demonstrated by literature61,90–92. 

Therefore, while DWI cannot be strictly considered to be an expression of the presence or 

absence of receptors on cell membranes, it can be representative of the microscopic assessment 

of morphological and cytological features of tumor cells: those include the degree of tubule 

formation, nuclear pleomorphism, and mitotic count, all of which are included in the grading 

assessment. 
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The histological tumor grade is one of the most effective and practical prognostic factors in 

breast cancer93. The morphological characteristics of the tumor mass correlate with its 

biological and clinical behavior and thus can accurately predict the response to therapy and the 

patient prognosis. The prognostic significance of the Nottingham Grade System was first 

demonstrated in 19912, providing important tumor information with reproducible results. NGS 

has been shown to be a simple, easily reproducible, and relatively cost-effective method for 

predicting tumor evolution and prognosis. For this reason, it has not been completely 

superseded by newer molecular tests, which have cost limitations, are not as widespread as 

grade analysis94, and may lead to misclassification in the presence of rare histologic subtypes 

(e.g., neuroendocrine tumors)95. 

Our aim is to test in our sample whether ADC, obtained from 3T MRI examination, can be 

used as a predictable non-invasive index of tumor aggressiveness and whether it can summarize 

the macroscopic biological behavior of the tumor, considering not only grading and Ki-67, but 

also exploring the role of ADC values in cellularity prediction. 

The results present in the literature concerning the correlation between ADC and grading are 

highly variable between studies. In particular, some papers did not find a significant association 

between ADC values and histological grade of breast cancer96,97 and there is currently no 

consensus on the b values to determine ADC values, and no cut-off has yet been proved to 

predict pre-biopsy tumor grade. 

In our study, a statistically significant inverse correlation between ADC value and tumor 

grading was demonstrated. G1 tumors presented significantly higher ADC values compared 

with G2 tumors, and also G2 compared with G3 tumors. Our results are in agreement with 

Yuan et al., who found significantly lower ADC values in the high pathological grade class 

compared to the low pathological grade class (p = 0.001), with a median value of 0.864 × 

10−3 mm2/s for G2 + G3 lesions vs. 0.946 × 10−3 mm2/s for G1 lesions61. 

The relationship between ADC values and histological grade was also evaluated by ROC 

analysis. The ROC curve showed that the evaluation of ADC values was a fair test when 

considering the accuracy in predicting tumors in the G3 group (AUC = 0.720); interestingly, 
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an AUC = 0.835 was obtained if G2 and G3 were combined. When compared to the study by 

Kızıldağ Yırgın et al.92, our AUC was smaller considering the G3 class alone (0.720 vs. 0.875), 

but very similar when G2 and G3 were combined together (0.835 vs. 0.840). These results, 

expressed by the ROC curves, reflect the difficulty of distinguishing G2 tumors from the other 

two classes of lesions and in particular from G3 tumors, as is the case in anatomo-pathological 

evaluations. ADC is nothing more than an ex-vivo expression of the histological behavior of 

the lesion: to obtain a better predictive value of ADC, a better histo-pathological stratification 

between G2 and G3 classes is needed. While it is easier to identify the G1 class, the G2 

definition is still controversial. 

Ki-67 is a protein that is not expressed in the G0 phase of the cell cycle, and is therefore closely 

linked to tumor proliferation and consequently to tumor aggressiveness and cellularity. As 

cellularity increases, there is a reduction in the free diffusion of water molecules, which in turn 

corresponds to a reduction in ADC values. Ki-67 has also already been shown to be a good 

indicator of response to neoadjuvant chemotherapy and is a useful predictor of pCR98. In the 

field of MRI, changes in ADC values can be a non-invasive alternative to biopsy to estimate 

the effect of Ki-67-positive BC chemotherapy99. 

Our results regarding the correlation between ADC values and Ki-67 are in line with what has 

been basically demonstrated in the literature, where an inverse correlation between ADC and 

Ki-67 index has already been demonstrated20,100–102. Ki-67 positive tumors have significantly 

lower ADC values than Ki-67 negative tumors. In our study, we obtained an AUC of 0.679 in 

differentiating between Ki-67 positive BCs, which is similar to the AUC estimated by Shen et 

al. (0.683) even if they considered Ki-67 status as positive when Ki-67 index was greater than 

14%101. Our AUC was significantly lower than Mori et al., who obtained an AUC of 0.81: this 

phenomenon is probably explained by the lower heterogeneity of their study sample, in which 

the included lesions were composed solely of luminal-type invasive breast cancers NOS102. 

Cellularity is presently assessed in the breast cancer specimen after surgery, reserving the 

assessment of cellularity biopsy only for patients destined for neo-adjuvant therapy. Some 

studies have shown that cellularity rates are already evident on MRI exams, and ADC values 
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may help in distinguishing between benign and malignant lesions and predict in the early stages 

the patients who may respond to the eventual neoadjuvant treatment. Cytotoxic effects are, in 

fact, responsible for a reduction in tumor cellularity, resulting in reduced signal in DWI-

weighted sequences and increased ADC values103,104. However, the biopsy cellularity cannot be 

representative of the real cellularity of the whole tumor, coming from a tumor portion sample. 

Ahn, S et al. and Reisenbichler, E et al. found no correlation between cellularity and survival, 

while other studies demonstrated a correlation between stroma-rich tumors and an increased 

risk of relapse and decreased survival, especially in triple-negative BC81,105–107. In the present 

work, we aimed to demonstrate an inverse correlation between ADC and tumor cellularity, and 

in particular the ability to more accurately predict the cellularity of the definitive sample 

compared with the biopsy sample, providing an additional decision support tool in the pre-

surgical phase. 

To our knowledge, there are no articles aiming to identify a non-invasive prognostic factor that 

can support the assessment of the cellularity of the biopsy specimen and, also, in specific cases, 

replace this assessment, giving indirect information on the histological aggressiveness of the 

tumor. We successfully demonstrated an inverse correlation between the pathophysiological 

phenomenon of cancer cellularity and the change in cellularity as shown in DWI sequences. 

The relative ROC curve showed that the evaluation of ADC values was a fair test when 

considering the accuracy in predicting tumors in the surgical cellularity >70% group (AUC = 

0.805). These findings are in agreement with the results of Hatakenaka et al.100 and 

Matsubayashi et al.20, which, in contrast to us, studied cellularity in the biopsy specimen and 

in the neo-adjuvant setting. 

The major contribution of our work lies in demonstrating that ADC values predict main 

macroscopic cell growth and replication factors in a highly accurate manner. In particular, our 

results reinforce the current literature regarding grading and Ki-67, and introduce a new chapter 

regarding cellularity. There are no works that compare cellularity in the biopsy and in the 

surgical phases, therefore this work needs further validation. The ability of the ADC to predict 

surgical cellularity before surgery, during the MRI staging phase, certainly appears promising, 
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offering an additional quantitative tool for the evaluation of the entire tumor, assisting the 

information obtained from the biopsy, which represents only tumor portions. 

The main limitation of this preliminary study is that we did not perform a comparison of ADC 

values with biopsy/surgical cellularity values before and after treatment to define whether there 

is a correlation even during treatment. Additionally, another limitation is the presence of both 

IDCs and ILCs in the study population: the significantly lower number of ILCs may have 

contributed to bias in the statistics. 

Our results indicate a significant correlation between ADC values detected on 3T-MRI in 

invasive breast cancers, biopsy and surgical cellularity, tumor histologic grade, and Ki-67 

index. A higher ADC value corresponds to a lower cellularity rate, which in subsequent follow 

ups may be associated with a better response to treatment. Tumors with a lower histologic 

grade, corresponding to fewer mitoses, are characterized by a larger extracellular volume, 

corresponding to higher ADC values; vice versa for tumors with a high histologic grade. ADC 

values may predict histologic grade, but further studies are needed to evaluate the value of 

ADC as a prognostic factor to predict tumor behavior. In the future, ADC values could be taken 

together with DCE curves to achieve a better understanding of invasive breast cancers in an 

attempt to predict their evolution, prognosis, and response to therapy. 
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4 LYMPH NODES: Artificial Intelligence in LNS prediction, 

from Radiomics to Deep Learning Approaches 

Until the mid-1990s, the axillary cavity involvement was established through radical Axillary 

Dissection (AD), with the removal of all the lymph nodes of I, II order and, in many centers, 

of the III, with the aim of plan eventual systemic adjuvant therapies. Sentinel lymph node 

biopsy (SLNB) has demonstrated to be a valid alternative to AD. Its high diagnostic accuracy 

has allowed it to be elected as the Gold Standard in the vast majority of early breast cancers 

with clinically negative axillary cable. The most important advantage is the significant 

reduction in morbidity compared to AD.  

The AD was actually reserved only for those patients who pre-operatively presented a clinically 

and/or ultrasonographically positive axillary cable or in whom the SLN is metastatic on 

histological examination108. 

However, about half of patients with macrometastatic SLN (metastases> 2mm) and many more 

with micrometastases (<2mm), undergoing AD, do not have other positive lymph nodes 

besides SLN. Various studies such as the ZOO11, the IBCSG study and the AMAROS, did not 

demonstrate differences in disease free survival and overall survival, at more than 6 years of 

follow-up, in patients randomized which received AD or just SLN removal, with clinically 

negative axillary cavity undergoing conservative surgery, and with 1 or 2 macro- or 

micrometastatic SLNs. Controversies still concern the setting of patients with locally advanced 

breast cancer or T2>3cm who, today more and more, are subjected to neoadjuvant therapies 

(especially chemotherapy). 

In the light of these data, it is easy to understand how the topic "the state of the axilla" is of 

great interest and topicality5. 

Nowadays, it is well known that histopathological data of primary tumor, such as 

lymphovascular invasion, Ki-67 proliferation index, histological grade, estrogen receptor (ER) 

status and progesterone receptor (PgR) status, are predictors of SLN metastasis. However, they 



 

 

 

70 

are available postoperatively and cannot be used to guide decisions on performing SLN 

biopsy4,38. 

In this scenario, MRI has played an evolving role in providing anatomical and functional 

properties of breast tissues, in a non-invasive way. Findings on MRI such as tumor size, 

morphology, shape and enhancement have been shown as significant in differentiating breast 

cancer subtypes20–22,61. In particular, several studies have highlighted the value of dynamic 

contrast-enhanced MRI (DCE-MRI), identifying it as the main sequence for the detection and 

characterization of breast lesions, facilitating treatment choice109. However, manual annotation 

of tumor characteristics is generally limited to a few qualitative descriptors and is dependent 

on the operator. 

Over the past few years, pilot studies have attempted to correlate the tumor features extracted 

from MRI with the molecular subtypes of BC. This filed is relatively new and is referred to as 

radiomics, i.e., the conversion of the information contained in medical images into high-

dimensional, mineable and quantitative imaging characteristics, usually referred to as features 

or descriptors, via high-throughput extraction of data-characterization algorithms7,8. 

A growing interest is expressed in radiomics research in many fields. However, almost all 

previous works focused on breast cancer, correlated histological and radiomics features of 

primary tumors and only few works correlate the main breast tumor characteristics with lymph-

node status37,109–112. 
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4.1 Literature review about the role of AI applied in BC MRI for LNS 
prediction 

The impact of analysis of radiomics-derived data on BC lesion diagnosis, prediction of NAC 

response, risk of recurrence and disease-free survival have already been investigated76,113–116. 

However, there are only few studies about the prediction ability of radiomics regarding lymph 

node status in breast cancer and no specific reviews. Only Dong-Man et al. explored the state 

of the art of the application of radiomics in breast MRI including the prediction of axillary 

lymph node metastasis in a less lymph node-specific review7.  

The purpose of this review is to investigate the potential role of radiomics as a decision support 

tool in predicting lymph node status in breast cancer patients.  

 

4.1.1 Methodology  

Two reviewers conducted the search, selected the studies, and extracted data from each study 

independently. From a total of 30 papers, 10 research articles on predicting lymph node 

metastasis in breast cancer using a radiomic approach in breast MRI were considered eligible. 

MEDLINE databases, such as PubMed and Web of Science, were searched using the following 

keywords: “breast cancer” AND “lymph node” AND (“radiomics” OR “radiomics”). No 

limitations were applied to the search strategy. Case studies, abstracts, reviews, letters to 

editors, editorials, and comments were excluded. Diagnostic modalities other than MRI were 

excluded. Only publications in English were included. We completed the search by manually 

reviewing the bibliography of all selected articles. The quality of the methodology was 

evaluated according to the RQS (Radiomics Quality Score) as described by Lambin et al. 

(2017). This score is useful to evaluate the quality of articles concerning radiomics through the 

evaluation of 16 criteria; each criterion was assigned a different maximum score in relation to 

its importance. The two reviewers assigned, in accordance, the RQS to the selected studies in 

absolute values and percentage (maximum value of 36, representing 100%). The following data 

were extracted from each study: title, authors, publication year and journal, study design 
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(retrospective or prospective), number of patients, MRI technical information (magnetic field 

strength and sequences), software used to perform segmentation and feature selection, number 

and type of radiomics features considered, algorithms used for the classification and resulting 

accuracy. 

 

4.1.2 Results 

Our search found 30 publications on predicting axillary lymph node status in BC patients. All 

these studies were published from 2017 to 2020. Ten studies were retrospective in design; only 

Liu et al. was prospective117. All the ten study characteristics, as recorded by the reviewers, are 

shown in Table 6. Chai et al. compared the different discriminative abilities of both pre-contrast 

and post-contrast MR imaging sequences, showing that the combination of CE2 features and 

kinetic features had the highest performance and that preoperative radiomic signatures of 

primary BC were associated with ALNM118. 

Liu et al. demonstrated that ALNM could be predicted using DCE-MRI-based radiomics by 

applying three different classifiers (SVM, logistic regression, and XGboost), finding that SVM 

results based on the strongest enhanced DCE-MRI images gave the best classification efficacy 

(accuracy of 0.85 and AUC of 0.83)119. The SVM showed the best accuracy also in the paper 

by Cui et al. (89.54) in comparison to KNN and LDA118. In their work, the combination of 

morphological and texture features had the highest performance. In addition, a nomogram that 

scored morphological and texture features to calculate the probability of ALNM was 

established. Dong et al. were the first to predict ALNM status in BC patients using radiomics 

based on T2-FS and DWI sequences, demonstrating that the predictive performance of features 

derived from T2-FS and DWI combined (AUC: 0.805) outperformed those of T2-FS and DWI 

when taken independently (0.770 and 0.787, respectively)111. A nomogram incorporating the 

radiomic signature, MRI-reported LN status and LN palpation was developed by Han et al.112. 

The nomogram showed better results than the radiomic signature alone and a radiomic 

signature to distinguish the number of metastatic LNs was also investigated (less than two 

positive nodes/more than two positive nodes). Liu et al. evaluated the first attempt to combine 
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DCE-MRI radiomic features with clinic-pathological features to improve the predictive 

performance of ALNM, citing that the predictive performance was comparable to Dong et al110. 

They reported that DWI is not available in all hospitals and T2-FS sequences alone are not as 

high performing as DCE-MRI. Tan et al. predicted ALNM in BC based on T2-FS images alone 

and established a nomogram incorporating radiomic signatures with clinic-pathological 

features using a linear regression model (AUC: 0.805), also plotting calibration curves to assess 

the consistency between the probability of ALNM predicted by the nomogram and the actual 

results120. Shan et al. validated a nomogram model to detect ALNM in patients with invasive 

BC, which incorporated the kinetic curve model and only five radiomic features extracted from 

DCE-MRI with a high AUC of 0.86121. Patients with early-stage BC were investigated by Yu 

et al. which developed and validated a clinical-radiomic nomogram that successfully stratified 

these patients according to their risk of ALNM122. In addition, they defined a nomogram to 

provide individualized prediction of ALNM and risk of disease recurrence in patients with 

early-stage BC. There is only one work that combines radiomic and hemodynamic features to 

improve preoperative prediction model for ALNM status by including quantitative parameters 

(such as Ktrans and Kep) to allow estimation of angiogenesis and tumor proliferation, by Liu 

et al. (2020). The mean RQS score calculated was 11.1 (maximum possible value=36). The 

RQSs and the criteria by which the studies scored lowest are shown in Table 7. In five studies, 

multiple segmentation was performed 110,111,119,122. In all studies, feature selection was 

performed to avoid the curse of dimensionality. Six studies calculated a multivariable analysis 

with non-radiomic features and discussed biological and radiological correlations110,112,120–122. 

Han et al. and Yu et al. evaluated the clinical importance of applying radiomics by determining 

the decision curve analysis112,122. Only Tan et al. plotted the calibration curves to evaluate the 

consistency between the nomogram-predicted probability of ALNM and the actual surgical 

outcomes120. In Shan et al. and Liu et al., validation was based on datasets from different 

institutions, two and four, respectively. The studies had the lowest RQ scores in the following 

criteria: study type (only Liu et al. was prospective in design)110,121, validation, comparison with 

a gold standard, potential clinical utility, economic analysis, and open science data (none of 

the studies made their datasets open source, although Liu et al., Dong et al. and Shan et al. 

allow access to the datasets upon explicit request). Some bias were described by the authors in 
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the discussion paragraphs. In most cases, the small samples size and the monocentricity were 

considered the major limitations. The population investigated was composed by less than 200 

patients for seven studies37,110,111,118,119,121. Yu et al. used the largest sample size (over 1000 

patients) to develop and validate DCE-MRI radiomic signatures for preoperative identification 

of ALNM. Eight studies lacked external validation for their models121,122. 
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Table 6: Characteristics of the studies on lymph node and tumor MRI radiomics included in the review  
For each one of the ten papers, authors, journal and year of publication, number of patients and type of 
study, MRI technical information, radiomic properties, resulting accuracy and of study conclusions are 
reported  
 

 

Table 7: Overview of the Radiomic Quality Score (RQS)  

 

4.1.3 Discussion and Conclusions  
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Radiomics is an emerging field of relatively recent development and application. The 

consequence, as shown in this review, is the low number of studies in the current literature, 

with only ten articles available regarding ALNM status prediction in breast MRI, all published 

after 2017 and mostly between 2018 and 2020. In addition, nine out of ten studies are 

retrospective in design and three include fewer than 120 patients. Dong-Man et al. (Ye et al. 

2020) have already written a rapid review about the relationship between radiomics and breast 

cancer, including the prediction of axillary lymph node status, however, in our study, we 

preferred to more deeper investigate this topic, updating the results with recent studies and 

assessing the quality of the literature. A lymph node is considered clinically suspicious if at 

least one of the following criteria is present: palpability on physical examination of the axilla, 

suspicious features on imaging, and/or positivity on cyto-histological examinations after fine 

needle biopsy, core-needle biopsy or SLNB/ ALND. Clinical examination of the axillary cavity 

is associated with a high false negative rate, reaching values of 45% (Sacre 1986). Regarding 

imaging methodologies, the main one for the study of the axilla after the diagnosis of breast 

cancer, during NAC or follow-up, is the US examination, which allows the evaluation of the I, 

II and III lymph node level. Considering only the size criteria, US sensitivity and specificity 

range from 49 to 87% and 55 to 97%, respectively (Alvarez et al. 2006). MRI and PET-CT are 

the most accurate methods for studying supraclavicular and internal mammary lymph node 

stations, with MRI performing better than PET-CT (Liang et al. 2017). MRI is also the primary 

imaging modality to evaluate BC response and axillary involvement after NAC (Scheel et al. 

2018). The gold standard for axillary staging is, however, represented by surgical approach 

(SLNB and ALND): if SLNB is negative, no further surgical evaluation is required (Giuliano 

et al. 2017). Although complications in both methods are decreasing over the years, there is 

currently no complication-free method to stage the axilla. For this reason, several non-invasive 

methods are being investigated. Radiomics, as quantitative information extraction and analysis, 

is a very promising new approach for the prediction of axillary metastases, but still limited due 

to its technical and methodological complexity and, therefore, not yet applied to routine clinical 

practice. This review focuses on the current status of the radiomic approach in predicting lymph 

node status based on MRI for breast cancer. Among all the available imaging techniques, MRI 

is non-invasive, generally well-accepted and routinely used in clinical practice for BC staging. 
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For axillary staging, MRI is unaffected by patient habitus and less operator-dependent than US, 

demonstrating the best visualization of the entire axilla (Baltzer et al. 2011). Typical MRI 

suspicious features include lymph node size, morphologic features (cortical thickening, loss of 

fat hilum, irregular margins, and round shape), presence of peripheral edema and asymmetry 

with the contralateral axilla (Baltzer et al. 2011). Through the combination of MRI pure 

information routinely used in breast cancer staging and radiomic features, unnecessary ALND 

and SLNB could be avoided, with a reduction of surgical complication rate and improvement 

of patient’s quality of life. In addition, radiomic signatures applied to MRI could be a step 

toward more personalized and precision medicine in treatment strategies for breast cancer 

patients. Some studies have also developed nomograms, that are graphical representations of 

the mathematical relationship between prognostic factors, both clinical and diagnostic, 

including radiomic features, to visually aid the clinical decision process (Balachandran et al. 

2015). Among breast MRI sequences, DCE is considered the best for primary tumor 

identification and characterization, although the diagnosis of metastatic lymph nodes by MRI 

is still not ideal. However, the current literature indicates promising results in terms of 

predicting metastatic axillary lymph nodes using MRI radiomic signatures in breast cancer 

patients, particularly using DCE sequences. Currently, DWI sequences are rarely used alone in 

radiomics studies because of relatively low image quality and spatial resolution, leading to less 

quantitative data availability. Among all the studies analyzed by this review, one includes DWI 

sequences with T2-FS as pre-contrast sequences (Dong et al. 2018), one is based only on T2-

FS images (Tan et al. 2020) and two studies combined DWI and T2-FS images with DCE 

sequences (Chai et al. 2019; Yu et al. 2020). 

Considering the different DCE phases evaluated, Chai et al. show that the second phase of post-

contrast imaging (CE2) performed the best. It is acquired 60–90 s after contrast administration, 

achieving the most relevant contrast between tumor and background (Chai et al. 2019). This is 

also supported by other studies using CE sequences (Liu et al. 2019a, b, 2020; Cui et al. 2019; 

Han et al. 2019; Shan et al. 2020; Yu et al. 2020). Feature extraction of radiomics usually 

requires prior segmentation. Although studies in which ROIs are manually drawn by 

radiologists may be more prone to error and user variability, prediction is still good, despite 

being a time-consuming method. It would be ideal to develop a reliable and validated automatic 
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segmentation method, but it is not yet available. A critical issue concerns the quality of study 

results, which is currently relatively low. According to Lambin et al. (2017), the quality of the 

results is assessed using the 16 RQS criteria, with a maximum total score of 36. The average 

RQS score, obtained from the analysis of the papers considered by this review, is 11.1 (30.1%), 

indicating modest overall quality. The most critical points are the type of study, the detection 

and discussion of biological correlations, the validation, the comparison with a gold standard, 

the potential clinical utility, the economic analysis and the open science data (details are given 

in Table 7). The study design, year of publication and sample analyzed by the various studies 

are depending on the recent lymph node radiomics application to BC field. Even more, the 

researchers are characterized by an extreme variability in the software employed for feature 

selection and extraction as well as the number and type of classifiers applied. The absence of 

standardization of the applied methodologies reduces or limits the results reproducibility. 

Interestingly, in this regard, all articles were published in scientific medical imaging journals. 

Even more, in the analyzed papers, there are some important biases concerning the number of 

features selected, in some cases too high, as in the work of Dong et al. (>10,000 features) (Cui 

et al. 2019), risking overfitting and redundancy, and the pre-processing phases, such as manual 

segmentation, with results reproducibility reduction. This review has some important 

weaknesses. The first is the low number of articles analyzing lymph node status in breast 

cancer, with all studies but one being retrospective in design. The population numbers are quite 

low for most studies, although this is in accordance with their experimental nature. However, 

we expect that, as the application of radiomics progresses and becomes more widespread, there 

will be an increase in the number of cases examined, also considering the possibility of dataset 

sharing. Second, the results are not homogeneous, which leads to low reproducibility of the 

studies. There is still no standardized approach, for example in terms of the software used 

(some of which are produced “in house”) or the type and number of features analyzed. This 

weakness is reflected in the modest quality of the studies, as described by the RQS, especially 

in the areas of discussion of potential clinical utility and correlation between radiomic 

information and biological data. In conclusion, new prospective studies with larger sample 

sizes and focused on the clinical aspect are needed to thoroughly investigate the behavior of 

BCs in relation to axillary involvement and their radiomic mirroring. It remains clear that 
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radiomics results on axillary lymph node status predictability obtained so far are definitely 

encouraging. Dedicated libraries, open-access datasets and interactive comparison between 

different algorithms are required to test the accuracy of the results and allow for their 

generalization. The results of the review indicate the direction of future research: new works 

should be conducted using DCE-MRI, particularly CE2, introducing automation systems for 

the pre-processing (segmentation) phase and improving feature selection. 

4.2 A new proposed radiomics approach to predict LNS using DCE sequences 

Basing on the growing interest in radiomics and its application in axillary lymph node 

prediction in patients with BC, with this work, we aim to: 

• Demonstrate that a radiomics-based approach can provide a non-invasive approach for 

predicting LN metastases useful for clinical practice, which helps identifying those 

patients who have certain negative lymph node invasion and can avoid unnecessary 

invasive procedure; 

• Show that the combination of texture features extracted from anatomical and 

functional DCE-MRI images combined with clinical and histological descriptors boost 

the performance; 

• Explore a large set of radiomics features, including also a 3D extension of Local Binary 

Patterns to enrich the description. 

 

4.2.1 Population 

All breast MRI exams performed at the Central Radiology Department of Policlinico Umberto 

I, from January 2017 until January 2019 for pre-operative evaluation, were retrospectively 

reviewed. The inclusion and exclusion parameters of the study were defined. Only the patients 

having the following characteristics were included: MRI-examination executed with 3 Tesla 

magnetic field, post-contrast sequences, mass-like tumors, diagnostic confirmation of invasive 

breast cancer by histopathological analysis, complete histological analysis including molecular 
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receptor structure and proliferation index Ki67, final lymph-node status (ipsilateral axillary 

cable). 

Patients who had breast implants or expanders, patients in post-chemotherapy follow-up, 

patients in neo-adjuvant treatment and patients whose images were not of excellent diagnostic 

quality were excluded. 

For all patients, a written informed consensus was obtained before contrast-MRI execution. 

Following the mentioned criteria, a total of 97 breast cancer patients (age range: 37–82 yo; 

mean age: 55.48 yo) with 99 breast lesions were included in the study (2 bilateral breast cancer 

cases, 83 invasive ductal carcinoma (83.8%), 12 invasive lobular carcinoma (12.1%) and 4 

medullary carcinoma (4.0%). 

 

4.2.1.1 MRI examination 

All MRI investigations were performed with a 3 Tesla magnetic field with Discovery 750 

machinery, from GE Healthcare (Milwaukee, WI, USA), using a breast dedicated 8-channel 

coil with patient in prone position. Written informed consensus was obtained before each 

procedure by the patient. 

After a sequence performed for framing and carried out along the three space orthogonal 

planes, were acquired a T2-weighted single shot fast spin eco (IDEAL), a diffusion-weighted 

sequence (DWI) with b values of 0 and 1000 sec/mm2 and T1-weighted 3D axial sequences, 

dynamic gradient echo, with fat suppression (VIBRANT), before and five times after 

administration of the intravenous contrast medium (Gadobenate dimeglumine), administered 

at a concentration of 0.2 mmoL/kg and at a speed of 2 mL/s for a total of 14 mmoL in an ideal 

patient of 70 kg. 
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Therefore, “subtracted” images were obtained automatically, using the post-contrast images to 

which the mask was removed. All the technical details of the sequences are summarized 

in Table 8. 

 

Table 8: Study protocol adopted for MRI examination.  
(TE: Time of Echo. TR: Time of Repetition. FOV: Field of View. FSE: Fast Spin Echo. EPI DW: Echo Planar 
Imaging Diffusion-Weighted. VIBRANT: Volume Imaging for BReast AssessmeNT.) 
 

For each lesion, the following features were collected: localization (breast quadrant position, 

retro-areolar, upper- or lower-external, upper- or, lower-internal quadrant); margins (divided 

in regular, irregular, lobulated and spiculated); maximum diameter (mm), measured on post-

contrast images; contrast enhancement after contrast agent administration, performed using 
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signal intensity/time curve (type I, with both slow wash-in and wash-out, type II, depicted as a 

plateau curve and type III, with both rapid wash-in and wash-out). 

 

4.2.1.2 Clinical and histological data 

Specific anamnestic-clinical data for each patient were previously collected and, according to 

them, the population was divided into groups: age, menopausal status (42 patients in the pre- 

and 57 in the postmenopausal phase), hormone therapy (10 patients who have performed at 

least 3 continuous months of hormone therapy of any kind contraceptive, replacement or 

therapeutic therapy and 89 patients who did not assume any hormone therapy), familiarity (62 

patients without any familiar, 33 patients with one familiar and 4 patients with at least 2 female 

or male family members affected by breast cancer at any age). 

The histological examination was performed for all the 99 breast lesion included in the study. 

The samples were obtained by core-biopsy or surgery and analysed by an anatomo-pathologist 

with more than 15 years of experience. The classification of the tumor histotype was performed 

in accordance with the WHO classification. The tumor histological grade was assigned 

following the NGS for which a score from 1 to 3 was given for each of these parameters: tubular 

formation, nuclear pleomorphism and number of mitoses. Immunohistochemical analysis was 

carried out to determine the receptor structure, Estrogen Receptor (ER), Progesteron Receptor 

(PgR), Human Epidermal growth factor Receptor (HER2), and the proliferation index Ki67. 

ER and PgR expression was considered as positive when >10%; Her2 was considered as 

positive when >+2 and ki67 when >14%. 

Hence, the following histological data were collected for each tumor: histotype (divided in 

invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), medullary carcinoma), 

grading (three groups) and tumor class, basing on hormone receptor expression and 

proliferation index (Luminal A: ER+, HER2- and low ki67; Luminal B: ER+, HER2 −/+ and 

high ki67; HER2 overexpressed; Triple Negative (TN): ER−, PgR−, HER2−). 
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The status of the axilla was assessed after the diagnosis of breast cancer, analysing 

radiologically (ultrasound of the axillary cable in the diagnostic phase and breast MRI in the 

staging phase), clinically and then histologically the status of the axillary lymph nodes during 

definitive surgery. Then, axillary cable definition consisted of sentinel node dissection, 

sampling dissection or total lymphadenectomy, basing on surgeon decision, but curative in all 

cases. The patients were simply classified as positive or negative, depending on whether there 

was, in the first case, at least one lymph node involved, or, in the second case, no positive 

lymph node. The status of the axillary cable defines the so-called final label, dichotomized into 

positive LN or negative LN. 

In the following sections, we present the method that predicts axillary lymph node metastasis, 

therefore being a safe and non- invasive prognostic approach. A schema is offered in Figure 

12, which consists of 4 blocks, numbered I–IV. According to the figure, next sections first 

describe the segmentation and the pre-processing approach adopted. Then, we present the 

proposed method to compute the quantitative descriptors, i.e., feature computation, and next 

we move to feature selection. Finally, we present the classification approach. 
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Figure 11: Schematic representation of the proposed approach.  
TR and TE denote the training and the test set, whilst the subscript e and i stand for external and internal 
cross-validation, respectively. 
 

4.2.2 Methodology 

4.2.2.1 Segmentation and pre-processing 

This initial step of the method is depicted in the first block of Figure 12. This step also includes 

data preparation operations, such as the anonymization. The preparation of the images was 

performed on a personal workstation using 3D Slicer (version 4.8), an open-source software 

freely available online (http://www.slicer.org)123. Each case was identified with a progressive 

identification number (ID). For each tumor, the subtracted post-contrast T1w-MRI was 

selected. Since five post-contrast phases were available, we used the second sequences, 

because image lesions in the second phase (60–120 s) had the highest contrast resolution. 
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At this point, for each case, a label-map was generated. Using manual and assisted 

segmentation techniques with the thresholding technique, the lesions were manually drawn 

(Figure 13). 

 

 

Figure 12:Representation of the extraction of a segmentation mask.  
From left to right: first panel represents an example of 3D image analysed in our dataset which is the second 
phase of subtracted post-contrast sequence; then, for each 2D slice, we have the region of interest drawn 
around the tumour mass and finally the binary mask extracted from this segmentation 
 

The segmentation was initially always performed in the axial projections and subsequently 

remodeled and optimized in the other projections until the lesion was contoured optimally, 

avoiding the necrosis when present into the lesion, as shown in Figure 14. 
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Figure 13: Two cases of breast cancer with positive and negative lymph node axillary involvement at 
definitive surgery, respectively.  
The first (a–c) represented by a 32 mm mass, in 56yo patient with TN CDI tumor characterized by spiculated 
margins, heterogeneous enhancement with a necrotic core and a signal/intensity curve type 3 at MRI exam. 
The second (d–f) is a 13 mm nodule, in a 61 yo patient, LUMINAL A CDI, characterized by irregular margins, 
heterogeneous enhancement and a signal/intensity curve type 3. The segmentation has been performed in the 
axial image (a,d), following the margins and including the spicule characterized by contrast-enhancement. 
The segmentation was then optimized in the sagittal (b,e) and coronal (c,f) planes, avoiding the darker part 
representing the necrosis and the vessels. 
 

Any multifocal or multicenter lesions were also segmented. In the event of a bilateral tumors, 

the lesions were attributed to the same patient but to different IDs, considering them one at a 

time. 

Let us now focus on the segmented slices; we notice that the boundaries of each ROI are often 

coarse, affecting the quality of the features when calculated. This can be easily understood 

considering that many of the second-order measures presented in the following are computed 

from each voxel, considering also the other voxels in its neighborhood. Before the feature 

extraction step, we pre-process the lesions’ contours to obtain a 3D volume with smoother 

edges, thus including large part of voxel neighborhood. This is performed in two stages. First, 

we iteratively compute a 3D convex hull (CH), which is the minimum-volume bounded into a 
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convex polygon and containing the ROI124; this process begins considering all not connected 

three-dimensional regions segmented using a default 26-connectivity. Second, all the 3D 

regions connected using a 26-connectivity are merged into a single volume, determining a new 

global CH. Such technique iterates until there are no more CHs left to merge, i.e., until the 

algorithm converges. 

The CHs obtained so far are considered the definitive ROIs (Figure 15 depicts an example) and 

from these volumes we extract the features defined in the next subsection. 

 

Figure 14: Four pre-processing examples.  
Left side halves: Bifocal lesion localized at upper-external quadrant, characterized by spiculated margins 
and IS/T curve. Right side halves: in pink, we highlight the original segmentation and, in blue, the convex 
hulls obtained. 
 

It worth noting the double benefit of applying of the described algorithm. Indeed, it is able to 

remove all the “outliers” from the ROI, i.e., all sub-volumes that are not large enough to 
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delineate a CH. Moreover, the final volume integrates a slightly larger region surrounding the 

lesion, thus including all those voxels considered after the conversion of the ROI into a three-

dimensional convex shape, and such extra tissue can bring useful quantitative information on 

how the tumor infiltrates during growth. 

 

4.2.2.2 Features computation 

In addition to the clinical data and the histological data presented in the materials, this work 

leverages on several radiomic features that can be divided into first-order and texture features. 

According to Figure 1, this step is performed in the second block. Texture measures, in turn, 

are derived from the 3D Gray Level Co-occurrence Matrix and from the Three Orthogonal 

Planes-Local Binary Patterns. Next will be described each feature group. 

 

4.2.2.3 Feature selection and model construction  

First-Order Features 

They are based on counting of the image voxels grouped by their grey level and, therefore, they 

measure the intensity density distribution of the ROIs. The literature has shown that humans 

are mostly sensitive to the light distribution of pixels in images and are better able to 

discriminate their differences when considering such characteristic rather than others: this is 

because the first order features are usually referred to as human inspired descriptors. In 

practice, we extracted the histogram from the 3D ROI and then we computed 12 characteristics 

up to the fourth-order moments, which are: the mean, the standard deviation, the skewness and 

the kurtosis. In addition, from the histogram, we also extracted the width, the entropy, the 

energy, the value of the histogram absolute maximum and the corresponding grey-level value, 

the energy around such maximum and the number of relative maxima in the histogram and 

their energy. More details and the definitions of all the features are available in the paper by 

Cordelli et al.125. 
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3D Gray Level Co-Occurrence Matrix Features 

Usually, healthy tissues and tumors have different textures. Therefore, a deeper focus on the 

relative distribution of voxels within a ROI rather than simply counting them can reveal many 

details that can be used as a measure of its microstructure. To this goal, for each ROI we 

computed the 3D grey level co-occurrence matrix (GLCM3), i.e., a well-known image 

transformation that captures such a distribution as it can be considered the 3D generalization 

of the more popular planar GLCM. 

Let us denote with I a 3D greyscale image, and consider a Cartesian reference system O(x, y, 

z). If we position the origin of the reference system in the upper left corner of I, the position of 

all its voxels is given by the vector p=pxiˆ+pyjˆ+pzkˆ, with px, py and pz ∈ N, and iˆ, jˆ, kˆ are 

the direction vectors of the axes. We also denote a displacement vector d=dxiˆ+dyjˆ+dzkˆ, 

with dx, dy and dz ∈ N. If we define m equal to the number of bit used to represent I, a GLCM3 

is a square matrix of size N = 2m, where each entry (gi, gj), with both gi and gj ∈ [0, 2m − 1], 

represents the number of times a voxel in p with intensity gi is separated by a 

displacement d from another voxel with intensity gj, therefore located in p + d. Denoting 

as dh the h-th component of d, to assess all possible directions, we considered the combination 

of dh ∈ {−1, 0, 1} as displacements, without considering the (0, 0, 0) vector yielding to 26 

different displacement directions. More details on GLCM3 are reported by Sebastian et al.126. 

As last step, from each GLCM3 we compute 7 measures, namely the autocorrelation, 

homogeneity, entropy, energy, covariance, inertia and absolute contrast127. Concatenating such 

GLCM3 measures we get 26 × 7 = 182 textural descriptors for each ID. 

Three Orthogonal Planes-Local Binary Patterns Features 

This descriptor is a generalization of well-known planar Local Binary Pattern (LBP) and, 

although relatively new in radiomics, it can be applied to a three-dimensional image. Now we 

first present a brief summary of the original LBP’s concepts and, then, we will introduce the 

3D descriptor. 
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Denoting again a generic 2D image with I, if we consider each pixel p, it is possible to compare 

its intensity Ip with the intensities of all its j-th neighbours pixels laying on a circle centred 

in p and with radius r. The i-th pixel is set to 1 if Ij>Ip, 0 otherwise. The next step is to process 

all neighbours of p in a circular fashion, read the resulting sequence of 0 s and 1 s as a binary 

string and encode the value of p to the equivalent decimal value. In practice, all the pixels 

in I are processed following this procedure to obtain an image encoding all the intensity 

distributions of the pixels with respect to their neighbours. Using this descriptor, we thus grasp 

part of textural information contained in I. Finally, notice that, if we denote with P the number 

of local neighbours that surround the central point p, the number of patterns for this planar LBP 

implementation is 2P. 

In order to extend this approach to a three-dimensional environment, in 128 the authors presented 

a solution that considers an helicoidal neighbourhood for each voxel. However, this produces 

23P+2 patterns; to avoid this computational burden, we introduce another 3D implementation of 

LBP transformation that considers the co-occurrence on three orthogonal planes crossing the 

center of the analysed volume, as detailed in 128. This method is named Three-Orthogonal-

Planes LBP (TOP-LBP) and computes three 2D LBPs, one for each plane, and the obtained 

histograms are concatenated to obtain a unique representation for the specific volume. This 

conspicuously alleviates the computational load, since the number of patterns for TOP-LBP is 

3 × 2P. Furthermore, in our LBP implementation, we consider two more variants to cope with 

other two issues of 2D LBP definition. First, we computed rotation invariant LBP, i.e., all 

binary strings obtained as the circular shift of a fundamental string are considered the same. 

Second, we implemented a uniform version of LBP, i.e., all binary strings containing more 

than two crossings from 0 to 1 or from 1 to 0 are considered not uniform and coded with a 

specific string. In our case, setting P = 8, we get 48 features by computing first-order measures 

from each histogram of the three 2D LBP. 

Feature Selection 

One of the main goals of radiomics is to find a signature, i.e., the set of all those features with 

the highest discriminative power for the task at hand. Moreover, this is also beneficial for the 
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learning phase of a classification algorithm, as reducing the number of features to be considered 

reduces the risk of the curse of dimensionality. To this goal, we searched for the most 

discriminative features by using a wrapper (third block of Figure 1). This feature selection 

method is known for being able to find dependencies between the descriptors and, at the same 

time, it exploits the interaction between the subset of features to be found and the model 

selection itself 129. In fact, after determining a search method for all possible subsets of features, 

it evaluates them by training and then testing a specific classification model. 

We used the Random Forest (RF) as a learning paradigm evaluating the feature subsets by 

maximizing the area under the curve of the receiving operator (AUC-ROC). The reason for 

selecting the RF is its ability to work with both qualitative and quantitative features, its capacity 

to reduce the risk of data overfitting, and the fact that it can also handle datasets with a large 

number of characteristics. Furthermore, for all its parameters, we used the default values 

provided by the Matlab library, without any fine tuning. Indeed, we were not interested in the 

best absolute performance and, also, it has been empirically observed that in many cases the 

use of tuned parameters cannot significantly outperform the default values of a classifier 

suggested in the literature 130. 

With regard to the subset exploration strategy, it is worth noting that we set the wrapper to 

work with the best first search by proceeding with nested cross-validation to evaluate the 

model. This approach ensures that the performance of the model during validation is not 

affected by a possible favourable split of the data into training and testing, and thus eliminates 

any bias in the final performance evaluation since the outer test set was never used in the 

wrapper model evaluation, as also shown in the third block in Figure 12. 

In practice, in each cycle of external cross-validation all samples are divided into a training set 

and a test set. Then, in the feature selection we take into account only the training samples and 

apply an additional five-fold internal cross-validation to them. On each inner loop, we test 

several subgroups of Fm features, where each subgroup is composed of the first m features of 

the whole pool. 
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Finally, for constructing the radiomic signature, we consider only those features that are 

selected at least 20% of times in the nested cross-validation experiments described so far. The 

purpose of this approach is two-fold: first, in this way a balance is maintained between the 

discriminative power of Fm and the risk of overfitting, also reducing the curse of 

dimensionality which, although mitigated thanks to the use of RF, still remains partly present; 

second, the validity of this method has been experimentally determined in some preliminary 

tests, omitted here in order not to burden the discussion. In conclusion, this procedure returned 

the final set of 15 features shown in Table 9. 

 

Table 9: The final feature set 

 

Classification and Model Construction 

The fourth and last block in Figure 12 depicts the final classification stage, which provides the 

resulting performance when using a RF as classifier. As before, we set its parameters to the 
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default values. In order to cope with the class imbalance in the dataset we introduce a 

misclassification cost making the algorithm cost-sensitive. Let us recall that cost sensitive 

learning is one of the three main approaches that can be used to address class imbalance, a.k.a. 

class skew, which is the problem of having a disproportionate training set among different 

classes. This issue arises since traditional learning algorithms are designed to minimize errors 

over the majority samples, ignoring or paying less attention to instances of the minority classes, 

and this usually results in poor predictive accuracy over the minority ones. The predicted label 

will assume values of 0 in case of negative axillary involvement, and 1 in case of positive 

axillary involvement. On this basis, in the following, we consider an error cost matrix that sets 

to 0.59 the cost of false negative errors (FN error = 0.59) and we set to 0.41 the cost of wrongly 

classifying a negative lymph node into a positive one (FP error = 0.41). Straightforwardly, no 

penalties are set in the case of a correct prediction. The rationale lies in observing that 

improperly indicating the presence of a LN metastasis is less dangerous than wrongly 

indicating its absence, since in the latter case the patient will be no further treated; we account 

for this by setting misclassification cost to 50% more than the value of the other one. 

We performed all the experiments in ten-fold cross-validation, using different randomly 

generated partitions when cycling over the inner loop with respect to the outer cross-validation 

loop of the feature selection. This approach as well as not using the outer test partition in the 

feature selection stage, avoids any bias into the final classification model. 

Finally, in order to quantify the results obtained in all the outer folds and, therefore, evaluate 

the overall classification performances, we built the ROC and computed the underlying area 

(AUC). 

 

4.2.3 Results 

In this study, 97 breast cancer patients with 99 breast lesions were enrolled (2 patients had 

bilateral breast cancer). The average age of the entire cohort was 55.48 years. There were 27/99 

axillary cables confirmed as ALN positive metastases and the rest 72/99 as negative. 
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The clinical and pathological characteristics of the patients are summarized in Table 10. 

 

Table 10: Main frequencies for the various semantic classes analyzed. 

 

For the sake of presentation, the proposed radiomic approach is divided into specific steps as 

shown in Figure 12. After the feature selection, a signature of 15 features that lead to the final 

results was individuated. The selected features were 14 radiomic features and one semantic. 

These features were used to build the classifier, whose performance is shown in the first row 

of Table 11. Our classifier achieved a sensibility and specificity of 86% and 74%, respectively. 

To deepen the results, we perform additional experiments by investigating one group of 

features at a time. Hence, we obtained four features’ groups (1° order, GLCM3, LBP-TOP and 
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semantic features) in addition to the signature used to build the proposed classifier. The 

sensibility and specificity calculated by each feature group were 85% and 48% for 1° order 

features, 79% and 52% for GLCM3 features, 69% and 41% for LBP-TOP features and 97% 

and 11% for semantic features, respectively. 

 

Table 11: Metrics that describe the various accuracies considering each feature class stand alone and the 
proposed approach, obtained by the combination of all the features classes.  
(TP = True Positive. FP = False Positive. TN = True Negative. FN = False Negative. ROC = Receiver 
Operating Curve. CI = Confidence Interval) 
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Figure 15: The chart shows the ROC curve which is representative of the classifier performance. 

 

4.2.4 Discussion and Conclusions  

In the literature, it is well known that the condition of the axillary lymph nodes in breast cancer 

patients is one of the most important prognostic factors in terms of loco-regional recurrence 

and overall survival. In this regard, the American College of Surgeons conducted an important 

study on 20,547 patients with local or regional disease treated with radical mastectomy, and 

identified a recurrence rate of 19% and 49% and 5-year survival rates without recurrence of 

60% and 35%, for patients with negative and positive lymph nodes, respectively131. Given the 

importance of lymph nodes status, not only for the prognosis but also in the guide of 

oncological therapeutic choice, safer and non-invasive approaches have been investigated for 

the initial lymph node staging38,112,132. 
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Today, we know that radiological images contain much more information than that which is 

perceivable and visible to the radiologist. This hidden information can provide several 

interesting data about the tissues, data that are quantifiable. As stated by Gillies RJ et al. in8, 

radiomics is based on this principle because it extracts and analyses large quantities of 

characteristics, defined as “features”, computed from medical images routinely acquired. 

In this work, we present an approach for providing valid, rapid and non-invasive support in the 

prediction of axillary lymph node status, using radiomics features computed from post-contrast 

MR images associated with patient clinical information and tumor histology. 

To date, there are works on breast radiomics which evaluate its effectiveness in diagnosis, 

identification or characterization, prognosis or response to therapy, using the imaging 

information produced by different techniques (US, mammography and MRI). The most recent 

review on radiomics and breast cancer7 has only 17 studies. Additionally, even fewer are the 

studies which evaluate the use of breast radiomics in predicting axillary lymph node status. To 

the best of our knowledge, there are six main papers that have been published since 2017. All 

are monocentric retrospective studies, with a population ranged from 62 to 163 patients with 

only one work using 411 samples. Our study includes 97 patients with 99 breast lesions, being 

in the average of the current literary trend. Chai et al. analyse the features with and without 

contrast medium agent sequences and compare the two derived accuracy and AUC118, while 

Dong et al. use only the T2-weighted and diffusion sequences with the aim of identifying an 

instrument that prevents the use of the intravenous contrast medium, obtaining AUC values of 

0.770 and 0.787, respectively111. Our contribution and all the other work in the 

literature37,110,112,119,131 use only contrast enhanced sequences: this choice is motivated by the 

results obtained from studies of both breast radiomics7,75 and breast MRI110,115, which identify 

in the contrast enhanced sequence the main sequence for detection and characterization of the 

breast lesion. 

Regarding the choice of the contrast enhanced phase, there is currently no consensus in defining 

in which phase the extraction of features offers the best forecast. Liu et al. have applied, for the 

same purpose of this paper, radiomic features extracted from the first contrast enhanced phase 
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obtaining an AUC of 0.806119. In our study, instead, the second contrast enhanced phase was 

used. 

The higher contrast resolution of the contrast enhanced sequences among all the sequences 

allows a high definition of the morphological lesion details115. Even more, the use of a high-

field magnet, 3 Tesla here, guarantees the production of high temporal and spatial resolution 

image133. Obtaining high quality images not only allows a more adequate definition and 

selection of the features, but reduces the classifier noise. 

In our sample of 99 breast tumors, the selection method applied identified 14 quantitative 

radiomic and 1 semantic features, represented by tumor histological class, correlating 

significantly with the lymph node status. 

Among the 15 selected features, the most numerous were first and second order ones, which 

describe the intensity and textural characteristics of the tumor, representing the intratumoral 

heterogeneity and the subtle alterations of the morphology of the tissues. The selection of tumor 

histological class and not grading or dimension, as we can it can be expected, may be explained 

to the type of wrapper used for the selection. The reason of such behaviour is probably relied 

to the multivariate approach of the chosen feature selection algorithm. In fact, when 

considering multiple features pools, the discrimination power of each tested subset is usually 

outperforming the capability of predicting the correct class using single features. Therefore, 

when considering a large set of features mainly computed from the images, where only a 

smaller percent belongs to a semantic nature (i.e., the clinical and histological data), the final 

signature is reasonably expected to contain only those semantic features useful to maximize 

the performance when used in conjunction with the radiomics features. Another motivation is 

related to the physiologic tumor behavior since, as demonstrated by other studies, ductal 

carcinoma is characterized by morphological and enhancement patterns which are expression 

of more aggressive behaviour. 

Then, the combination of the selected features made it possible to train a classifier capable of 

predicting the lymph node status in patients with breast cancer, with an AUC of 0.86. The AUC 

reported in Figure 15 shows the relation between the true positive (sensitivity) and the false 
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positive (1–specificity) rates. Our classifier identifies 20/27 TN patients with a specificity of 

74%, which is considered a very good result in comparison with US overall specificity for 

palpable and non-palpable LN, which it is based on the LN size criteria and it ranges between 

44.1% and 97.9%. It is interesting to note that the specificity achieved using only semantic 

feature is of 11%, indicating the relevance of radiomics as supporting tool. 

An example of how the classifier correctly works is reported in the two cases shown in Figure 

17.  

 

Figure 16: Example of applicability of the proposed approach.  
Two cases of invasive breast cancer, characterized by very similar MRI features (morphology, margin, post-
contrast intensity, IS/T curve, and size and position of the two lesions are comparable) as shown in the left 
panels. The first case (first row) is a ductal G3 LUMINAL A carcinoma, in 31yo patient with familiarity, the 
second one (second row) is also a ductal G2 LUMINAL A carcinoma, but in 68yo patient without familiarity. 
Despite the common MRI and histological features, the produced classifier correctly categorizes the two 
patients as positive and negative LN status, respectively. 
 

The study has several aspects worth highlighting. The set of analysed images was acquired in 

a single center using a single MRI device, repeating the same protocol for all patients, which 

allows maximum reproducibility in the extraction and analysis of radiomic characteristics. 

Segmentation was performed for all patients by a single radiologist, who used the same 

methodology; also the extraction of the features was performed starting from free commercial 

software, validated in many previous studies, but modified according to the specific study 
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needs, in particular the features analysed included also a 3D extension of Local Binary Patterns 

in addition to the best known first-order features, GLCM and LBP. 

There are also several limitations: first of all, it is a retrospective study with a relatively small 

sample. The provenance of the population from a single medical center limits the possible 

generalization and results. A larger cohort of patients, from multiple centers, is needed for a 

more rigorous analysis. Secondly, ROIs were drawn manually by the radiologist, so they are 

time-consuming and subject to user errors and variability. An automatic, reliable and validated 

segmentation method is ideal but not yet available. Thirdly, it was decided to use only the 

contrast enhanced sequences. Although these have been demonstrated to have the best 

accuracy, we recognize that it could be limiting and, in any case, lose some important 

information provided by the other sequences. 

Our results suggest that histological data and radiomics features can be combined for the 

prediction of lymph node metastases, guiding the treatment planning. The results achieved 

suggest that they have the potential to impact the clinical practice by offering to clinicians and 

to patients the possibility of avoiding invasive procedures such as lymphadenectomy or lymph 

node biopsy in unnecessary cases. 
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4.3 A DL approach to predict LNS with different bounding boxes using DCE 
sequence 

Among the DL-based solutions used to analyze visual imagery, the use of convolutional neural 

networks (CNNs) is the most applied in medical field. A CNN consists of a set of convolutional 

layers capable of learning a compact hierarchical representation of the input that is well suited 

to the specific task to be solved. 

In BC, radiomics has been studied considerably for the characterization of primary cancer, 

while there are still relatively few works that evaluate its application to the relationship between 

tumor imaging characteristics and LNS74,134,135. In these works, in particular, traditional 

radiomics systems were mainly investigated, while DL applications are limited to a few studies 

and ultrasound cas136–138. Furthermore, the majority of these studies focused on analyzing the 

imaging features of the primary tumor exclusively, ignoring the tissue adjacent to the tumor. 

Nevertheless, evidence has shown that the peritumoral region contains valuable information 

on the potential tumor aggressiveness and, also, lymphatic spread, in particular in cases of 

multifocal and multicentric tumors73,139,140. In our previous works74,139, we analyzed the impact 

of the radiomics of the primary tumor and the peritumoral edema on the LNS prediction. This 

time, based on the previously cited papers demonstrating the importance of the peritumoral 

parenchyma, we assume that, close to the tumor lesions, there might be some data not visible 

to the human eye that influences the metastatic lymph node spread. 

Then, in this work, we investigate the role of the lesions neighboring parenchyma features 

through CNNs by experimentally analyzing different tumor bounding (TB) options. The 

novelty of the technical contribution can be summarized as follows: 

• We propose and implement different tumor bounding options to systematically assess 

the contribution gathered by the healthy tissue in the prediction of the axillary lymph 

node status; 

• We propose three different CNNs whose architectures vary according to the 

characteristics of the volumes considered as inputs; 
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• We evaluate the impact of the 3D and 2D features extracted from input volumes and 

the influence of healthy tissue in cases of multifocal and multicentric tumors. 

 

4.3.1 Population 

All breast MRI exams were performed for preoperative evaluation at the Central Radiology 

Department of Policlinico Umberto I between January 2017 and January 2020 and 

retrospectively reviewed. A written informed consensus was obtained before the execution of 

a contrast-MRI for all examinations. 

All patients met the following inclusion criteria: three Tesla magnetic field MRI examinations, 

post-contrast sequences, mass-like tumors, histopathological confirmation of invasive breast 

cancer, a complete histological analysis, and definitive lymph-node status of the ipsilateral 

axilla. In cases of BC bilateral lesions, the two lesions were evaluated separately since the two 

breasts can be considered a single part. Patients with an incomplete MRI examination or 

damaged images and patients without a complete histopathological analysis were excluded. 

The patients were excluded if they had breast implants or expanders, were in follow-up neo- 

or adjuvant chemotherapy, or the MRI images were not of excellent diagnostic quality. 

A total of 153 patients (average age 55 years; range 30–85) met the inclusion criteria. In two 

patients who had bilateral breast cancer, the two breasts were considered as a single, 

independent part. Therefore, a total of 155 malignant breast cancer lesions were included in 

total. 

The LNS status was assessed as positive if at least one lymph node involved by metastasis was 

present in the definitive histopathological axillary cable sample (LN+); the LNS was 

considered negative if all axillary lymph nodes were safe (LN−). 
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4.3.1.1 MRI Examination  

All MRI examinations were performed using a 3T magnet (Discovery 750; GE Healthcare, 

Milwaukee, WI, USA). The sequence used for the analysis was the dynamic Contrast-enhanced 

T1-weighted 3D sequence using fat suppression with a TR and a TE of 6.6 ms and 4.3 ms, 

respectively, with an ip angle of 10°, a matrix of 512 × 256, NEX 1, and a slice thickness of 

2.4 mm. An amount of 0.2 mmol/kg of Gadobenate-dimeglumine (Multihance®; Bracco 

Imaging, Milan, Italy) was used as the contrast agent, injected through a 20G intravenous 

cannula at a rate of 2 mL/s plus 15 mL of saline solution at the same speed. For each acquisition, 

the relative subtracted images were automatically generated and used for tumor analysis. 

The images were analyzed by two radiologists with 10 and 3 years of experience, respectively. 

The tumors were described as unifocal when only one lesion was present; multifocal when 

more than one tumor lesion was present in the same breast quadrant/region; and multicentric 

when multiple tumor lesions were present in different breast quadrants/regions. For each lesion, 

the target dimensions, margins (regular, irregular, lobulated, or spiculated), and intensity signal 

timing curve (I, II, or III, based on wash-in and wash-out) were reported. 

 

4.3.1.2 Clinical Data  

The patients’ clinical data were collected, and, according to these data, the population was split 

into subgroups: age, familiarity (considered positive if at least one familiar member was 

affected by breast cancer at any age), hormone therapy (considered positive if the patient 

performed at least 3 continuous months of hormone therapy including any kind contraceptive, 

replacement, or therapeutic therapy), and menopausal status. 
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4.3.1.3 Histological Data  

The samples were obtained by a core biopsy or surgery and analyzed by an anatomic 

pathologist with more than 15 years of experience. The tumor histotype classification followed 

the WHO classification141. The tumor histological grade was assigned in accordance with the 

NGS, and a score from one to three was given for these tumor characteristics: tubular 

formation, nuclear pleomorphism, and the number of mitoses. Furthermore, the estrogen 

receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor (HER2), 

and the proliferation index Ki67 were assessed for immunohistochemical analysis. A cut-off 

of 10% was used to consider the ER and PgR expression as positive; while HER2 was 

considered positive when >+2, and ki67 was considered positive when >14%. 

Moreover, other histological data were collected: histotype (including ductal carcinoma (IDC) 

and invasive lobular carcinoma (ILC)), grading (divided into G1, G2, or G3), and tumor class, 

which includes the hormone receptor status and the proliferation index percentage (Luminal 

A: ER+, HER2− and low ki67; Luminal B: ER+, HER2 −/+ and high ki67; HER2 

overexpressed; Triple Negative (TN): ER−, PgR−, HER2−). 

 

4.3.1.4 Axillary Lymph Node Status  

The axillary lymph node status was considered as the final output. The LNS was assessed after 

an invasive breast cancer diagnosis using definitive surgical characterization (sentinel node 

dissection, sampling dissection, or total lymphadenectomy, based on surgeon decision but 

curative in all cases) [1,2]. The LNS was simply classified as positive, if there was at least a 

sentinel LN involved, or negative if there was no positive lymph node. On this basis, the dataset 

accounts for 27 positive and 128 negative patients, which are referred to as LN+ and LN− in 

the following. Table 12 reports the details of the dataset used in this paper. 
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Table 12: Details about the involved dataset. 

 

4.3.2 Methodology 

4.3.2.1 Pre-Processing and segmentation  

The patients’ clinical data and the frequencies of the tumor histological and MRI characteristics 

were reported. The Wilcoxon test was performed to compare these data between patients with 

and without LN involvement, setting the statistical significance at p < 0.05. The statistical 

analysis was performed using MatLab v. 2020b. 

The images were anonymized and uploaded on a dedicated open-source software (3D Slicer, 

version 4.8). An identification number (ID) was assigned to each patient. Bilateral tumors were 

considered with two different IDs. For each case, the subtracted post-contrast T1w-MRI was 

selected. The second phase (60–120 s) was selected for ROI segmentation, due to its higher 

contrast resolution. Then, a label map was created. The lesions were manually drawn through 

manual and assisted thresholding segmentation techniques on the axial projection (Figure 18). 

When present, necrosis was avoided by segmentation. For multifocal or multicentric tumors, 

all lesions, even the smallest, were segmented. 
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Figure 17: Tumor lesion segmentation 
Tumor lesion segmentation using 3D Slicer software in axial (a), coronal (b), and sagittal (c) MRI projections 
during the second phase of the post-contrast sequence as demonstrated in a case involving a 56-year-old 
woman with right invasive ductal breast cancer with unifocal mass-like lesion characterized by spiculated 
margins and heterogeneous enhancement after contrast medium administration with curve SI/T type III. 
 

4.3.2.2 Deep Learning Analysis  

An assessment of axillary lymph nodes reflects inherent primary tumor features, whose 

examination enables the discovery of non-invasive substitutes for the sentinel node biopsy 

currently being utilized. Most literature proposals have focused on the DCE sequence-extracted 

hand-crafted characteristics of breast lesions and performed the classification with ML 

techniques. The absence of a well-defined, efficient collection of features in the area of BC 
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has, however, prompted researchers to investigate large and heterogeneous characteristics, 

implementing a feature selection step to pick the most discriminative ones. 

The use of CNNs for the ALN metastasis prediction in this study is made possible by their 

capacity to automatically learn the set of features that best suits the problem at hand, thereby 

eliminating the need for the feature extraction stage common to ML techniques and resolving 

the challenge of identifying the most discriminating set of primary tumor characteristics. 

Furthermore, we investigate several tumor boundary alternatives that vary depending on the 

quantity of healthy tissue to include in order to assess how the peritumoral area influences the 

performance of the involved networks. 

The implemented analysis consists of three main steps: the imaging data definition, used to 

prepare data belonging to the DCE sequences of different patients; the volume extraction and 

bounding options, which describe the tumor bounding options; and the architecture of the 

CNNs for the ALN assessment, which introduces the involved CNNs that differ according to 

the characteristics of the volumes considered as input. 

 

4.3.2.3 Imaging Data Definition  

The DCE acquisition consists of MRI images (3D volumes) taken before (pre-contrast) and 

after (post-contrast) the contrast agent (CA) injection, resulting in 4D data, with three spatial 

(x,y,z) dimensions and one temporal (t). Although MRI exams are acquired with the same 

instruments, patients may present a different number of acquired volumes, resulting in a need 

for the selection of a subset of them. By denoting the number of acquired volumes for a patient 

p with Np, with ti the ith acquisition, where t0 and tNp−1 are the pre-contrast and the last one, 

respectively, the subtractive series is obtained by considering ti − t0 with i form 1 to Np − 1. To 

equalize the number of acquisitions for all patients, four specific subtractive volumes are 

selected: the first (t1), second (t2), and last (tNp−1) volumes and the median index (tm) volume 

between the third and the second-to-last volume. In this way, information about the wash-in 

and wash-out of the CA due is preserved. 
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4.3.2.4 Volume Extraction and Bounding Options 

Based on the hypothesis that peritumoral tissue may contain valuable information on tumor 

aggressiveness, and thus affects the ALN metastasis spread [19,20,21], we evaluate how the 

amount of the included non-tumor tissue impacts the ALN involvement, considering that 

patients differ in the size and number of lesions. In particular, a total of six different tumor 

bounding options are proposed and analyzed. They differ according to their included quantities 

of healthy tissue, which allows us to evaluate the contribution gathered from the area 

surrounding the tumor. Figure 19 shows the differences in the axial projections of the proposed 

bounding options. 



 

 

 

110 

 

Figure 18: Differences in axial projections of the implemented tumor bounding options.  
(a) In the SFB, a fixed-size 3D bounding box is used; (b) in the SVB option, the smallest 3D bounding box 
circumscribed to the tumor region is considered, and (c) in the SLVB, the SVB option is applied to each lesion 
of the patient. 
 

In the single fixed-size box (SFB), a fixed-size 3D bounding box is centered in the tumor, 

completely encompassing the whole tumor region (or of all lesions, in cases of multifocal or 
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multicentric tumors), and is used to crop each subject. The bounding box is always the same; 

it is applied to all four subtractive acquisitions (t1, t2, tm, tNp−1) and is patient-independent. 

The amount of non-tumor tissue directly depends on the tumor lesions’ dimensions: in the case 

of a single and small lesion, the extracted volume contains a high portion of healthy tissue 

compared to a damaged one and vice versa. 

In the single variable-size box (SVB), the smallest 3D cubical bounding box is used to crop 

each subject in the four subtractive selected acquisitions. In contrast to the SFB, the cubical 

box in the SVB option is patient-dependent and aims to limit the amount of included non-tumor 

tissue. As a consequence, the amount of non-tumor tissue depends on the shape of each 

patient’s tumor region and he difference between the largest and smallest dimensions. 

Nevertheless, in cases of multifocal and multicentric tumors, the parenchyma between lesions 

is included in the extracted 4D volume. 

As aforementioned, the DCE sequence of a patient is 4D data, in which each voxel is associated 

with information regarding its measurement in millimeters. In more detail, the attribute of pixel 

spacing is the physical distance between the centers of each two-dimensional pixel, specified 

by two numeric values representing the row and vertical spacing, while the spacing between 

slices measures the spacing between slices along the normal to the first image. The above 

attributes represent the DCE image resolution. Since the DCE sequences belonging to different 

subjects may have different resolutions, in the single isotropic-size box (SIB) option all the 

volumes are firstly re-sampled to obtain MRI images with isotropic voxels, and then the tumor 

bounding option SVB is applied, as described above. 

In the single lesion variable-size box (SLVB), the SVB option was applied to each tumor lesion 

of the considered patient. A box for each tumor lesion is extracted, and, therefore, the tissue 

between lesions is excluded in the prediction of the ALN status with the aim of analyzing how 

much the parenchyma between lesions in multifocal/multicentric tumors impacts the ALN 

assessment. 

In the single lesion isotropic-size box (SLIB), the tumor bounding box involves extracting a 

different box for each of the involved patient’s lesions that considers a DCE sequence with 3D 
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volumes re-sampled to obtain isotropic voxels. The SLVB procedure is applied after having 

resized each acquisition. 

In the two-dimensional slice (2DS) option, we propose applying the SVB procedure and then 

cutting the sequence of the 3D cropped volumes along the projection with the highest spatial 

resolution, which results in a series of two-dimensional slices with four temporal instants. For 

each patient, this process generates a set of 3D slices, with two spatial dimensions and one 

temporal, which represents the same section of tissue seen at four different time points (t1,t2, 

tm, and tNp−1). It is worth noting that only the slices containing lesions are taken into account: 

this is possible since the ALN status assessment requires lesion segmentation/detection. 

Table 13 summarizes the six different bounding options proposed in this paper. 
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Table 13: Details of the proposed bounding box options 

 

4.3.2.5 CNN Architecture for ALN Assessment  

Based on these different bounding box options, we investigate different CNNs, whose 

architectures were developed for turning to the characteristics of the volumes considered as 

inputs, for their ALN status predictions. Hence, we designed three CNNs: the SFB-NET, used 

for the SFB option; the VB-NET, considered when the size of the bounding box varies 

according to each tumor lesion, that is, for the SVB, SIB, SLVB, and SLIB; and the 2DS-NET, 

introduced for the 2DS bounding option. Each CNN receives four-channel volumes as input, 

which represents the considered acquisitions of the DCE sequence. The proposed networks 

consist of different reduction layers and two fully connected layers. The output of each CNN 

consists of a two-element vector, which, after the application of the softmax function, is 

interpreted as the probability that the network associates with each class, namely the positive 

(LN+) and negative (LN−) ones. 

The SFB-NET is a 3D CNN with three reduction layers, whose architecture is shown in Figure 

20a. Each reduction block consists of a convolutional layer with 5 × 5 × 5 kernels (the number 

of kernels depends on the output channels) and a stride set to four. 
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Figure 19: Architectures of the different CNNs used.  
Panel (a): The SFB-NET is a 3D CNN with three reduction blocks and two fully connected layers. Panel (b): 
The VB-NET is a 3D CNN with five reduction blocks and two fully connected layers. Panel (c): The 2DS-
NET is a 2D CNN with five reduction blocks and two fully connected layer. 
 

The architecture of the VB-NET is shown in Figure 20b. It is a 3D CNN, consisting of five 

reduction blocks. The 4D input volume represents the smallest cubical box surrounding the 

tumor region or each lesion considered at four different time instants. Therefore, the sequence 

of the five convolutional layers with 4 × 4 × 4 kernels aims to implement a gradual 

dimensionality reduction. The stride is set to two, and the padding is one, except for the last 

convolutional layer. 

The 2DS-NET is reported in Figure 20c. It presents the same characteristics as described for 

the VB-NET and is implemented by replacing the 3D convolutions with the standard 2D ones. 

In other words, the 2DS-NET is a 2D CNN since the input is a 3D volume that represents a 

bidimensional slice with four temporal instants (channels). Each convolutional layer consists 
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of 4 × 4 kernels, and the stride is set to two. The padding is one, except for the last convolutional 

layer. 

 

4.3.2.6 Experimental Setup  

The proposed tumor bounding box options result in volumes with different characteristics. 

Indeed, in the SFB case, a 160 × 160 × 80 box centered in the lesion center is used, generating 

a 160 × 160 × 80 × 4 volume for each patient, which represents the input for the SFB-NET. 

The size of the box is chosen in such a way that, for each patient, the tumor is completely 

enclosed. Since the SVB, SIB, SLVB, and SLIB options consider a bounding box size that 

varies according to each patient’s tumor region, a resize stage with the bilinear interpolation 

method provides a standardized size of 64 × 64 × 64 × 4, which then fed the VB-NET. The 

resize stage is also needed for the 2DS option. The extracted four-channel images are resized 

to a common size of 64 × 64 × 4, before consideration as inputs for the 2DS-NET. 

As aforementioned, the SLVB, SLIB, and 2DS bounding options generate a set of volumes or 

3D slices (four-channel images) for each patient. However, the aim is to provide a unique label 

for each subject that represents the potential risk of having axillary lymph node metastasis. As 

a consequence, the predicted classes of all volumes (or 3D slices) belonging to the same patient 

need to be combined. From all of the combining strategies, majority voting (MV) is used, in 

which the label for each subject is the most common predicted class over all of its volumes (or 

3D slices). 

We select the implemented CNN architectures by choosing the best configurations obtained by 

varying the size of the convolutional kernels from three to seven and the number of reduction 

layers from three to five. Moreover, we also take into account the architecture proposed by 

Nguyen et al.19, which is the only architecture that aims to predict ALN metastasis using the 

primary tumor DCE-MRI features with a DL approach. In particular, we consider the solution 

proposed in 19 as a starting point for providing different changes. 
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The performance is evaluated in terms of accuracy (ACC), sensitivity (SENS), specificity 

(SPE), area under the ROC curve (AUC), and Cohen’s kappa coefficient (K). All experiments 

were run by applying a patient-wise 10-fold cross-validation (CV) to better assess the 

generalization ability of each approach, avoiding the use of volumes belonging to the same 

subject both in the training and evaluation steps. We split the set of patients into 10 different 

folds, and, in each iteration, we use one fold for testing, one for validation, and the remaining 

folds for training. In particular, we ensure that each patient is included once in the validation 

set and once in the test set by using the i-th iteration, the i-th fold as the test, and the previous 

one as the validation, as reported in Figure 21. 

 

Figure 20: Details about the implemented patient-based 10-fold CV.  
In the i-th iteration, the i-th fold is selected as the test (green), and the previous one is selected as the validation 
(orange). The remaining folds are included in the training set. 
 

When training the CNNs, we augmented the dataset by applying random rotation and flipping. 

In particular, during the training, each volume underwent a vertical and horizontal flip and a 

rotation of an angle of either 90, 180, or 270 degrees with a probability of 0.5. The training set 

was balanced by replicating some randomly chosen volumes belonging to the minority class, 

which relies on data augmentation operations to introduce variability among the samples. The 
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extracted volumes were normalized in the (0,1) range to ensure that, in the classification step, 

the used convolutional neural networks operate with volumes that have the same scale across 

different patients. During the experiments, the maximum number of epochs was set to 500; the 

batch size was set to 16 for the SFB-NET and VB-NET and 32 for the 2DS-NET. The learning 

rate for the cross-entropy loss was set to 10−6. We used the Adam optimizer with a weight decay 

set to 10−4. To find the appropriate hyper-parameters, we implemented a grid search by varying 

the batch size in (8, 64), the learning rate in (10–7, 10–3), and the weight decay in (0, 10−4). 

All experiments were carried out using Pytorch (version 1.10, developed by Meta AI and now 

part of the Linux Foundation umbrella), and the pre-processing step, including the different 

bounding box options, was implemented in MATLAB 2020b. 

 

4.3.3 Results 

The clinical characteristics of the patients and the pathological and MRI features of each tumor 

are summarized in Table 14. The menopause status, grading, and class significantly differ (p < 

0.05) between patients in cases of lymph node involvement. No other significant differences 

were observed between the two examined groups (LN+ vs. LN−). 



 

 

 

118 

 

Table 14: Patient and tumor feature frequencies and relative percentages are reported in relation to the final 
label (lymph node LN− involvement).  
The difference between the two groups (LN+ vs. LN−) was reported, and the statistical significance was set 
at 0.05 (*). HT (hormonotherapy), IS curve/T (intensity signal curve/time), IDC (invasive ductal carcinoma), 
ILC (invasive lobular carcinoma), TN (triple negative). 
 

Each of the performances of the different CNNs, based on each bounding option, is shown in 

Table 15. The best performances in terms of accuracy and AUC are obtained for the 2DS-NET: 

78.63% and 77.86%, respectively. The 2DS-NET also showed the highest specificity; the 

highest sensibility was reported for the VB-NET based on the SVB and SIB as bounding 
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options. Moreover, the solution involving the SIB option obtained the highest performance in 

terms of K. 

 

Table 15: Performance of the CNNs in LNS prediction (LN+ vs. LN−).  
ACC (accuracy), SPE (specificity), SENS (sensibility), AUC (area under the curve), K (Cohen’s kappa 
coefficient), SFB (single fixed-size box), SVB (single variable-size box), SIB (single isotropic-size box), SLVB 
(single lesion variable-size box), SLIB (single lesion isotropic-size box), 2DS (two-dimensional slice), and NET 
(network). The best test performances are evident in bold. 
 

Figure 22 shows the ROC curves of the implemented experiments, obtained by plotting the 

true positive rate against the false positive rate at various threshold settings. It is possible to 

note that when the SLVB and SLIB options are used, the model performs worse than when a 

random classifier is used. 
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Figure 21: ROC curves of the implemented experiments. The title of each plot refers to the tumor bounding 
option that is used. 

 

Figure 23 shows the precision-recall curves of the implemented experiments that report the 

tradeoff between the precision and recall for different thresholds. When the classes are severely 

imbalanced, they are an effective indicator of how well the predictions worked. In particular, 

considering LN+ as the positive class and denoting with tp, tn, fp, and fn the true positive, true 

negative, the false positive, and the false negative, respectively, the precision and recall are 

computed as follows: Precision=tp /(tp+fp); Recall=tp /(tp+fn). 
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Figure 22: Precision-recall curves of the implemented experiments. The title of each plot refers to the tumor 
bounding option that is used. 

 

In particular, the recall matches the sensitivity, while the precision represents the fraction of 

positive instances correctly classified among all the samples predicted as positive. 

Finally, Figure 24 reports the confusion matrices computed by taking into account the 

predictions of the implemented models. 
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Figure 23: Confusion matrices of the implemented experiments.  
The title of each matrix suggests the tumor bounding option that is used. In order to have a matrix for each 
experiment, we merged the predictions of the 10 folds considered as test sets. The colour depends on the 
number inside the square: the higher the number, the lighter the colour. 
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4.3.4 Discussion and Conclusions  

It is now well established that the ALNS is directly dependent on tumor aggressiveness, which 

is reflected in a different representation of the breast lesion during DCE-MRI39. It has also been 

widely confirmed that the peritumoral tissue is influenced by tumor angio- and lympho-

invasiveness139,140,142. Clinical and anamnestic data are actually not enough to determine the 

LNS with certainty, although some of these may benefit the doctors (in our case, cohort 

grading, class, and menopause status differ significantly between patients with lymph node 

involvement). In the majority of the works present thus far in the literature that exploits ML 

classifiers as predictors of the axillary cavity’s status in patients with breast cancer, generally 

only the features of the primary lesion have been evaluated, without considering the breast 

parenchyma adjacent to the lesions and, in particular, the tissue between the multiple lesions 

in cases of multifocality and multicentricity44,74,135. 

Furthermore, these works are highly heterogeneous in terms of the involved dataset sizes, 

feature extraction/selection methods employed, and trained classifiers. Most literature 

proposals extract the shape, texture, morphological, and first-order features, while 

pharmacokinetic parameters are exploited only by Liu et al. 117. In our previous work73,134 3D 

extension of local binary patterns (LBPs) was also explored as features to enrich texture 

description. Regarding the proposed classifiers, they are predominantly support vector 

machines, logistic regressions, linear discriminant analyses, and random forests. 

In our previous work, we combined patients’ clinical data, primary breast tumor histological 

information, and MRI radiomic features (First-Order, 3D Gray-Level Co-Occurrence Matrix, 

Three Orthogonal Planes-Local Binary Patterns) to predict the ALNS. In more detail, in a very 

innovative way, in this previous work, we considered both breast lesions and peritumoral 

regions for feature extraction considering a convex hull algorithm, which is the minimum 

volume bounded into a convex polygon and contains the ROI. The high dimensionality of the 

problem to solve (257 features) makes the wrapper features selection method necessary before 

using a random forest (RF) classifier to provide the prediction. 
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In this work, we make a step forward by exploiting DL approaches and CNNs, in particular, 

for ALN status prediction. Their ability to autonomously learn the set of features that fits the 

specific task to solve makes the feature extraction step unnecessary, which is typical of ML 

techniques, thus overcoming the problem of finding the most discriminating set of primary 

tumor characteristics. Moreover, we also evaluate how the peritumoral region affects the 

performance of the involved networks by investigating several tumor bounding options that 

differ according to the amount of healthy tissue to be included. 

The implemented methodology consists of three main steps: the imaging data definition, used 

to prepare data belonging to the DCE sequences of different patients; the volume extraction 

and bounding options, which describe the tumor bounding options; and the CNN architecture 

for the ALN assessment, which introduces CNNs that differ according to the characteristics of 

the volumes considered as input. 

Among all of the experiments, the results obtained involving the SIB option and the VB-NET 

showed the best performance. We argue that the obtained result is completely in accordance 

with the specific problem to be solved. In the SFB option, the fixed-sized bounding box may 

result in the inclusion of an excessive amount of healthy tissue with respect to the lesioned one, 

especially in patients with a small tumor lesion. As a consequence, the SFB-NET may focus 

on areas of the input volumes that do not contain useful information for the prediction and do 

not reflect the tumor’s intrinsic behavior. The SVB and SIB options consider the smallest 3D 

cubical bounding box circumscribed to the tumor region, which limits the amount of the 

included peripheral and healthy tissue. As a result, the VB-NET directly takes the region of 

interest as input, leading to an increase in performance. However, the SVB extracts volumes 

whose voxels have different dimensions (in terms of mm) along the three spatial axes. In more 

detail, the spacing between slices is usually greater than the pixel spacing, resulting in a 3D 

cubical box whose dimension greatly depends on the x- or y-axes. As a consequence, the SVB 

option may introduce a high amount of healthy tissue along the z-axis, resulting in the need to 

introduce the SIB procedure that considers volumes with isotropic voxels. The considerations 

made between the SVB and SIB can be also used for the SLVB and SLIB. However, the results 

shown in Table 15 suggest that approaches that deal with a box for each lesion may not be the 
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best solution. We argue that the presence of multiple lesions may be relevant information for 

the prediction of axillary lymph node metastasis. Therefore, if the lesions are split into different 

boxes, such information may be lost when considering, in particular, the multifocal and 

multicentric tumors as a single entity and not as different tumors. Finally, the 2DS option that 

creates a set of 3D slices for each patient, has the advantage of increasing the size of the dataset. 

However, when comparing the results with the solution involving the SIB procedure, it is 

possible to note a high difference in terms of sensitivity that makes us confirm the SIB as the 

preferred bounding option. 

Moreover, Table 15 shows that the different bounding box options affect the results. In 

particular, the solutions involving the SIB and SVB options are the approaches with the more 

balanced results of the two classes, providing also the largest performances in terms of 

sensitivity (76.67% and 71.67%, respectively). On the contrary, the other bounding box options 

tend to favor the negative class (LN−); we deem that this cannot be considered a limitation of 

the work, but rather a result. Indeed, an explanation can be found in the following reasons: 

• In the SFB option, the fixed-sized bounding box may result in an excessive amount of 

healthy tissue with respect to the lesioned one; 

• We argue that the presence of multiple lesions may be relevant information for the 

prediction of axillary lymph node metastasis. Therefore, when the SLVB and SLIB 

options are used, such information may be lost; 

• The 2DS option considers 2D slices and, thus, does not exploit volumetric features. 

To the best of our knowledge, this paper represents the first work exploring the use of different 

primary tumor bounding options and convolutional neural networks to evaluate how the 

peritumoral region affects the ALNS assessment. 

The work proposed by Nguyen et al. [25] represents the only one that has aimed to predict 

ALN metastasis using primary tumor DCE-MRI features with a DL approach. In that work, a 

3D CNN is implemented to process the DCE-MRI images using a subtractive approach that 

works with the third, fourth, and fifth post-contrast volumes. A 3D cuboidal bounding box of 

the size 50 × 50 × 50, encompassing the tumor region, is used to crop the DCE-MRI data. 
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Nguyen et al. obtained the best values with 64.64%, 69.29%, 37.37%, and 58.56% for ACC, 

SPE, SENS, and AUC, respectively; all are lower compared to our best results (78.06%, 

78.91%, 74.07%, and 75.84%), although they are not directly comparable since the datasets 

are different. 

In our opinion, the fixed-size bounding box used in Nguyen et al. reduces the generalization 

capability of the implemented model. We also consider the absence of significant differences 

between our architectural model and that used by Nguyen et al. Furthermore, the authors 

included patients from two different hospitals, which may influence the imaging acquisition 

homogeneity. 

Our work demonstrates that the peritumoral parenchyma, and, in particular, ones located 

between multiple lesions in the case of a multicentric or multifocal tumor, contains information 

not visible to the radiologist’s eye that correlates with the metastatic spread to the lymph nodes 

of the axillary cable. Parenchyma near the tumor lesions in current MRI clinical practice is not 

considered. In detail, in our work, the bounding box that has shown the best results is that 

which includes the parenchyma closest to the lesions and between multiple lesions but excludes 

the parenchyma furthest from the lesions themselves. These data suggest that there is an 

invisible cellular diffusion near the tumor lesions that artificial intelligence can help to reveal. 

In our previous works, we have shown how the features contained in the primary tumor, first 

shown in 74,117, and in the peritumor edema, then explored in 139, significantly influence the 

LNS. The demonstration that the contribution of the peritumoral parenchyma is significant 

paves the way for new research, which has had little or no exploration in the current literature. 

The main limitation of our study is the small number of patients that belong to a single medical 

center. Although the size of the dataset is similar to that used in other works110,117,119,136, which 

analyzed samples in the range of 146–164 patients, a future perspective aim is to include data 

collected from different centers and also to evaluate how different image modalities contribute 

to the prediction of axillary lymph node metastasis. Another important limitation is the 

imbalance of class priors (22 patients with LN+ vs. 128 patients with LN−), which, in several 
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cases, resulted in sensitivity values lower than the specificity ones, although we implemented 

standard techniques to cope with this issue. 

In our future work, we want to implement data and test CNNs on different datasets and validate 

the bounding box technique on different kinds of images and MRI sequences. Furthermore, we 

want to investigate the role of the individual histological parameters reported in this article in 

relation to the radiomics data in the prediction of LNS. 

However, these results are absolutely noteworthy in relation to the role played by the 

peritumoral parenchyma. 

In conclusion, we demonstrated that a selective inclusion of peritumoral tissue increases the 

performance of the CNNs in predicting lymph node involvement and that the tissue localized 

among different tumoral lesions, especially in cases of multifocal and multicentric cancers, is 

strongly related to angio- and lymph-invasiveness and to lymph node metastasis. This tissue is 

barely evaluated by the radiologist’s eye on all MRI sequences and, in this way, an AI approach 

may represent a valid supporting tool. 

Of course, more studies are needed to confirm these results. Future perspectives include 

increasing the number of patients, in particular patients with a positive LNS, to test the 

reproducibility of the results on different samples (different MRI and samples) and to include 

semantic features in the CNN analysis.  
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4.4 The DL contribute to predict LNS using a multimodal approach 

To our knowledge only few works used DL approaches to predict lymph node status in BC 

patients using MR images.  

Gao et al evaluated DCE-MRI of 941 patients and proposed a DL model containing a 3D Deep 

residual network (ResNet) architecture and a convolutional block attention module called 

RCNet. Three RCNet models were used based on tumor, ALN and combined tumor-ALN 

regions. The latter showed the highest auc 0.907 in the internal test cohort and 0.852 in the 

external test cohort18. 

Nguyen et al19 study the preoperative DCE MRI 4D of 357 patients from two hospitals through 

CNN 2D 3D 4D and 4D that integrate multiple types of data in order to prevent lymph node 

metastases, with a 10 Fold cross validation and reaching a sensitivity of 72% and an AUROC 

of the 71%. 

The first used only features extracted from DCE-MR image. On the other hand, Nguyen et al 

for the first time used a multimodal approach including histological features. In this work, we 

introduce an MDL-based methodology for ALNS evaluation, exploiting three MRI sequences 

(DCE, T2, and DWI), and clinical and histological characteristics of the primary tumor. In 

particular, we implement a Multi-Input Single-Output 3D CNN where the TF makes the 

different modality-specific DNNs influence each other in the extraction of features constituting 

the shared representation, thus improving the integration of different image modalities.  

 

4.4.1 Population 

4.4.1.1 MRI Examination  

All the MRI examinations of the breast performed at the Central Radiology Department of 

Policlinico Umberto I, from January 2017 until January 2020 performed for tumor staging, 

were retrospectively evaluated. A total of 153 subjects (average age 55 years; range 30–85), 



 

 

 

129 

with 155 malignant BC lesions, were included in the study. The MRI investigations were 

performed with a 3 Tesla magnetic field using a Discovery 750 machine (by GE Health- care, 

Milwaukee, WI, USA), using an 8-channel coil (8 US TORSOPA) dedicated for breast study, 

with the patient in prone position. A first sequence was carried out along the three orthogonal 

planes of the space for framing. Then the following sequences were performed:  

• T2-weighing single shot fast spin eco with Dixon technique (IDEAL) for the intravoxel 

separation of the water/fat interface (TR/TE 3500–5200/120–135 ms, matrix 352 × 

224, FoV 370 × 370, NEX 1, slice thickness 3.5 mm)  

• Axial, single shot, fat suppressed planar echo, diffusion-weighted (DWI) sequences 

with a diffusion-sensitized gradient applied along the x, y, z axes and with b values of 

0 and 1000 sec/mm2 (TR/TE 2700/58 ms, matrix 100 × 120, FOV 360 × 360, NEX 6, 

slice thickness 5 mm). From each DWI sequence a relative quantitative (ADC) map 

was generated143.  

• Axial T1-weighted 3D dynamic gradient echo sequences (DCE), with suppression of 

fat signal (VIBRANT), before and 4-6 times after intra- venous contrast medium 

administration (TR/TE 6.6/4.3 ms, flip angle 10◦, matrix 512 × 25, NEX 1, slice 

thickness 2.4 mm). The contrast agent used during the examination was gadobenate 

dimeglumine (Multihance®; Bracco s.p.a, Milan, Italy), administered at a 

concentration of 0.2 mmol/kl through intravenous injection with a 20 Gauge cannula 

at a rate of 2 ml /sec and followed by the infusion of 15 ml of physiological saline at 

the same rate. Therefore, subtracted images were automatically obtained using the 

post-contrast images.  

Each exam was transferred to a workstation (Advantage Windows Work- station 4.4; GE 

Medical System, Milwaukee, WI, USA) for post-processing analysis. The images were 

analyzed by two radiologists with 10 and 3 years of experience and the following 

characteristics were recorded: tumor localization based on breast quadrant; tumor distribution 

(unifocal, multifocal, multicentric); diameter of the target lesion; tumor margins (regular, 

irregular, lobulated, or spiculated); lesion intensity signal timing curve (IS/T curve) on DCE 
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sequence; visibility on T2 of the lesion; visibility on DWI of the lesion; apparent diffusion 

coefficient values (ADC).  

For each patient, specific anamnestic-clinical data was previously collected, on the basis of 

which the patients were divided into groups as follows: age; menopausal status (pre- or post-

menopausal); hormonal therapy (patients who have performed at least 3 continuous months of 

hormone therapy of any type, namely contraceptive, replacement therapy or therapeutic); 

familiarity (patients with at least 2 female or male family members affected by breast cancer 

at any age).  

 

4.4.1.1 Histological Data  

The histological examination was performed on tumor material obtained through core-biopsy 

or surgery and analyzed by a pathologist with more than 15 years of experience. The tumor 

histological grade value was assigned in accordance with the Next-generation Sequencing 

(NGS) for which a score from 1 to 3 was given. The immunohistochemical analysis was 

conducted, evaluating the estradiol (ER), the progesterone (PgR), the herceptin2 receptor 

(HER2) and the proliferation index Ki67.  

The state of the axillary cavity was histologically determined after the diagnosis of breast 

cancer. The patients in our study were simply classified as positive (LN+) or negative (LN-), 

depending on whether there was, in the former case, at least one lymph node involved, or, in 

the latter case, no positive lymph nodes. On this basis, the dataset accounts for 27 positive and 

128 negative samples.  
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4.4.1.1 Images analysis 

The images were anonymized and uploaded on a dedicated open-source soft- ware (3D Slicer, 

version 4.8, November 2012). An identification number (ID) was assigned to each patient. 

Bilateral tumors were considered with two different IDs. For each case, the subtracted post-

contrast T1-MRI was selected. The second phase (60–120 s) was selected for ROI 

segmentation, due to its higher contrast resolution. Then, a label map was created. The lesions 

were manually drawn through manual and assisted thresholding segmentation techniques on 

the axial projection. When present, necrosis was avoided by segmentation. For multifocal or 

multicentric tumors, all lesions, even the smallest, were segmented.  

The features collected for each patient can be grouped in three main classes, namely, clinical, 

histological, and image-derived. For the sake of simplicity, the three classes are indicated only 

with clinical features (CL) and are summerized in Table 16.  

 

Table 16: Details about the collected clinical features. 

 

4.4.2 Methodology  

The presence of clinical features and multiple sequences acquired during the MRI scan results 

in the need of merging information coming from heterogeneous sources. Multimodal learning 

provides fusion techniques that vary according to when the integration is performed, exploiting 

different levels. The early fusion acts at data-level, using a single model for the specific task to 
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solve. As a consequence, it only requires a single training stage, moving the complexity of the 

solution to the data integration step, where different modalities are fused in a common 

representation. The late approach represents a decision-level method, requiring a model for 

each data source, with a high computational cost. The intermediate fusion is the most flexible 

solution, since it exploits the layers in a deep-based architecture, enabling the integration of the 

learned representations at various levels of abstraction 144. Indeed, it consists of the presence of 

different modality-specific paths that learn the features representation of each data source, with 

the aim of providing a shared representation processed by a shared path. The involvement of 

deep learning approaches, such as CNNs, and the adopted training strategy with 

backpropagation make the architecture find the best shared representation for the specific task 

to solve, overcoming the limitation of the early fusion method regarding the integration of data 

in common features set that is determined before the use of a model. Moreover, in contrast to 

the late fusion, in the IF technique, the heterogeneous sources simultaneously contribute to the 

decision, avoiding the implementation of a final decision step. In the case of CNNs, the 

multiple modality-specific paths provide features maps, directly extracted from each data 

source, that are defined during training iterations to be well suited to the task to be solved. The 

aim of this paper is to propose a transfer module that improves the integration of heterogeneous 

modalities, implementing the features maps calibration during their extraction in the modality-

specific paths. The calibration consists of allowing the features maps to influence each other 

through an alteration process aimed at reducing the contribution of less significant features. 

The backpropagation algorithm in the training phase allows the creation of a calibration 

customized for the task under consideration.  

The implemented methodology consists of two main steps: the Pre-processing, used to prepare 

data belonging to different patients, including both MRI sequences and clinical information, 

and the IF approach for ALN status assessment, introducing the implemented methodology 

based on intermediate fusion technique with the proposal of a Transfer Model (TM), that 

contributes into making the features maps extraction process dependent on heterogeneous data 

modality.  
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4.4.2.1 Pre-processing 

In MRI examination, the DCE sequence consists of the intravenous injection of a contrast agent 

(CA), whose absorption and release determine the specific wash-in and wash-out times 

respectively. Indeed, the DCE involves the acquisition of 3D volumes at different times, 

considering MRI images taken before (pre-contrast) and after (post-contrast) CA injection. The 

result is a 4D data with three spatial and one temporal dimension, that can be interpreted as a 

3D image with several channels. Denoting with ti the ith acquisition, where t0 is the pre-

contrast volume, the subtractive series is obtained by considering ti − t0 with i raging from 1 

to T p − 1, that corresponds to the number of acquisitions for the patient p. Following the 

methodology proposed in 142, four specific subtractive volumes are selected: the first, the 

second, the last volume, and the median index volume between the third and the second-to-last 

volume, with the aim of preserving information about the wash-in and wash-out of CA owing.  

Differently from DCE, T2 and DWI scans consist of the acquisition of a 3D volume without 

the temporal information, which can be considered as a 3D image with 1 channel. Since the 

breast lesion is segmented considering the second subtractive volume, the T2 and DWI 

acquisitions are aligned to the segmentation mask generated from the T1 volume exploiting the 

Slice Location attribute that corresponds to the relative position of each slice. In particular, 

slices belonging to different acquisitions with the same Slice Location value are considered 

aligned. As a consequence, it is possible to apply the segmentation mask to all the sequences 

by taking into account only the aligned slices. Moreover, before applying the information about 

the lesion localization, the DWI scan is co-registered to the DCE volume considering the 

second post-contrast acquisition as a reference and using mutual information as a similarity 

metric145,146.  

In the study proposed in 142, different tumour bounding options are analyzed considering the 

characteristics of the DCE dataset for the assessment of ALN status. In particular, the work 

described in 142 evaluates how the amount of the included non-tumour tissue impacts the ALN 

assessment, taking into account that patients differ in size and number of lesions. Among all 

the proposed tumour bounding options, the Single Isotropic-size Box (SIB) presents the best 
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performance for the evaluation of the metastasis. It considers the fact that different patients 

may show acquisitions that vary in terms of resolution, namely the information regarding the 

measurement of each voxel in millimetres (mm). As a consequence, all the volumes are re-

sampled to obtain isotropic voxels with dimension 1 × 1 × 1mm3, before selecting the smallest 

box surrounding the tumour area. According to the results re- ported in 142, the SIB bounding 

option is selected and applied to DCE, T2, and DWI volumes.  

Information coming from images needs to be merged with the clinical features (CL) acquired 

as described in Sections 3. In particular, all the collected data are detailed in Table 16 consisting 

of 19 features. However, a subset of them is selected by the domain expert (D.S), obtaining the 

subset CL-S1. The basic idea is to remove all the features which can be derived from the 

images, retaining those that provide additional information to the acquisitions. Inspired by 19, 

the CL-S1 includes age, familiarity, hormone therapy, menopausal status, dimensions, ER, 

PgR, HER2, ki-67, and grading, resulting in a set of 10 features.  

 

4.4.2.2 IF approach for ALN status assessment  

In this paper, we propose a methodology based on intermediate fusion as its flexibility enables 

overcoming all the limitations observed in early and late methods. Moreover, the implemented 

solution focuses on the proposal of a module improving the integration of heterogeneous 

modalities and on the definition of a neural network exploiting both images and tabular data. 

The resulting network is a Multi Input - Single Output CNN-based architecture able to process 

both MRI sequences and clinical information.  

 

4.4.2.3 Transfer Module (TM)  

We aim to improve the integration of different data modalities at an intermediate level, 

proposing a Transfer Module (TM) that makes the specific modality paths influence each other 
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while extracting the features maps. In particular, inspired by the works presented in [53; 60], 

TM is able to perform a cross-modality calibration by implementing a gating procedure to 

reduce the importance of the less significant components. It can be inserted be- tween layers 

belonging to different convolutional cores to take into account the complementary 

characteristics of the images in the determination of the resulting features maps.  

For each modality j, we denote the output of the Lij as Fji ∈ RXji×Yji×Zji×Cji , where Xji × 

Yji × Zji is the spatial dimension, while Cji is the number of channels. The TM inserted in the 

layer i is a multi-input multi-output module since it considers as input M features maps Fji and 

provides M outputs F ̃ji, corresponding to the calibrated versions of the features maps, that are 

obtained by applying the gating procedure. TM is organized in two different steps, namely the 

Shared vector computation and the Multimodal calibration, as summarised in Figure 2.  
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Figure 24: Architecture of the proposed TM module for three different image modalities.  
The input consists of the features maps coming from the modality-specific paths, that are further processed 
by considering two steps acting in a pipeline, namely the Shared vector computation and the Multimodal 
calibarion. It is worth noting that the index i of the layer in which the module is inserted is omitted to avoid 
overly complex notation in the image.  
 

The first one aims to determine the shared representation zsi of the i − th layer considering the 

vectors computed from the features maps. The channel descriptor vector sij ∈ R1×Cji for each 

features map is obtained by using a Global Average Pooling operation G(·), that acts in each 

channel computing the mean value and providing a channel-wise descriptor. The concatenation 

of all the sij determines the vector zi ∈ R1×Ci, where Ci = M
j=1 Cji. Then, zi is further 

processed by considering it as input for the fully connected layer fc, followed by the ReLU 

function R(·), thus marking the first difference from the module presented in [53]. Indeed, the 

presence of ReLU function introduces a nonlinear map between the elements of the input vector 

zi, consisting of descriptors relating to the different image modalities. The result is the shared 

representation zsi ∈ R1×Ct, where Ct = Ci/r, and r is the reduction ratio. The Shared vector 

computation can be summarized as follows:  

1. sij,withjfrom1toM 

2. zi =[si1 ⌢si2...⌢sij ⌢siM]  

3. zsi = R(fc(zi))  

The Multimodal calibration uses the shared representation zsi to calibrate the features maps 

Fji, thus exploiting information coming from different data sources. zsi is considered as input 

for M fully connected layers fj, each for a specific modality j. The Sigmoid activation function 

σ(·) is used to force the output in the range [0,1], resulting in M calibration vectors cj ∈ R1×Cji 

. The features maps F ̃ji are obtained by implementing a channel-wise product between the 
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input Fji and the corresponding cj, creating a gating mechanism, where the contribution of the 

selected filters is reduced. This allows each Fji to be influenced by the others during the features 

extraction step. In contrast to the solution proposed in [53], we do not change the output range 

of the Sigmoid function with the multiplication by a scalar value, obtaining a self-gating 

mechanism, that is able to emphasize the most informative characteristics while suppressing 

the less useful ones [60]. The Multimodal calibration step can be summarised as follows:  

1. cj = σ(fcj(zsi)) with j from 1 to M  

2. F ̃ji = cj ⊙ Fji with j from 1 to M , where ⊙ represents the channel-wise product  

The proposed transfer module exploits the underlying connections between information 

coming from heterogeneous and complementary data sources, fully extending the work 

proposed in [60], which studies the relationship be- tween channels, into a multimodal scenario. 

Indeed, the implemented gating mechanism acts on the channels of the extracted features maps, 

leveraging the shared representation to highlight in each data source the characteristics that 

contribute the most to the task under consideration. When it is inserted between the i−th layers 

of the convolutional cores, each F ̃ji is affected by the other M − 1 modalities, allowing the 

integration of information from the first levels of the network and enhancing the modality-

specific paths dependency. The proposed TM can be used to implement a cross-modality 

calibration in application with a generic number of image modalities. In this paper, we consider 

three different image sources (M = 3), with j ∈ {DCE, DW I, T2}.  

 

4.4.2.4 CNN Architectures  

In this paper, we focus on four different data sources, namely three MRI sequences, and the set 

of clinical information CL-S1. As a consequence, the proposed network is a Multi Input - 

Single output CNN, whose architecture is presented in Figure 3 and consists of 3 convolutional 

cores, the Multilayer Perceptron (MLP) for the clinical features, and two concatenating 
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operations. In particular, two different CNNs are exploited for the definition of the 

convolutional (ConvC) and the classification (CC) parts, regardless of the specific data 

modality considered. Such two networks are named in the following as BasicNet and ResNet.  

 

Figure 25: Architecture of the IF approach including TM between layers belonging to different convolutional 
cores and clinic features  

The ConvC of the BasicNet, responsible for features maps extraction, consists of five reduction 

layers, including blocks with a 3D-convolutional operation, followed by batch normalization 

and ReLU function. Each convolutional layer consists of a 3D operation with 4×4×4 kernels 

and a stride set to 2 in order to extract features from the input volume while having a gradual 

dimensionality reduction. The padding is set to 1 in each layer, excluding the last one where it 

is set to 0. Moreover, each layer doubles the number of channels, while the convolutional 

operation in the first block presents output channels. In the BasicNet architecture, the 

classification core consists of two fully connected layers, resulting in the architecture shown in 

Figure 26a.  
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Figure 26a: Architecture of the CNNs used to de ne the convolutional and classification cored of the proposed 
network.  
BasicNet architecture: the network consists of five reduction layers, representing the Convolutional Core  
(Conv-C), followed by two fully connected layers spaced by ReLU function, constituting the Classification 
Core (CC).  

 

Figure 27b: Architecture of the CNNs used to de ne the convolutional and classification cored of the proposed 
network.  
ResNet architecture: the Convolutional Core (Conv-C) consists of a first convolutional layer, followed by 
batch normalization, ReLU and Max Pooling layers, and a chain on four layers containing the blocks 
implementing the residual network, while the Global Average Pooling and the fully connected layer rep- 
resent the Classification Core (CC).  
 

The ResNet involved in this paper is inspired by the state-of-art net- work proposed in 147, 

considering the work described in 148, where 3D ResNet variants are implemented, offering a 

set of architectures pre-trained with medical images for segmentation tasks. The architecture 

consists of a ConvC, which is an encoder with residual layers, and a set of decoders for the 

generation of the segmentation masks. Hence, the ResNet is adapted for the classification task 
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as proposed in 148: the encoder is retained while the set of decoders is replaced with a CC 

consisting of a global average pooling and a fully connected layer. Figure 26b shows the 

resulting ResNet architecture highlighting the ConvC, consisting of a first convolutional layer, 

followed by batch normalization, ReLU and Max Pooling layers, and a chain on four blocks 

containing the layers implementing the residual network as proposed in .  

In both networks, the number of input channels of the first convolutional layer in the ConvC 

depends on the imaging modality. In particular, the first layer in the ConvCDCE presents 4 

channels, while ConvCT2 and ConvCDWI consider 1 channel volumes as input. The CNN 

proposed in this paper exploits for each ConvCj only the convolutional part of BasicNet or 

ResNet.  

The MLP used to process CL-S1 presents a fully connected layer with 10 input and 4 output 

features, followed by the ReLU function.  

In the multimodal scenario, described in Figure 3, the first concatenation operation integrates 

FNDCE,FNT2,FNDWI, obtaining the Fimg features map, DCE T2 DWI with C channels, 

where C = Mj=1 Cj and Cj is the number of channels of the features map related to the modality 

j at the end of its convolutional core. Then, the shared image features map F ̇img is generated 

by the block Ls that includes a convolutional operation with a number of input and output 

channels set to C, a 1 × 1 × 1 kernel, values of stride and padding set to 1 and 0 respectively, 

followed by batch normalization and ReLU function. Moreover, when the ResNet architecture 

is exploited for the ConvC, Ls also includes a Global Average Pooling layer to obtain a features 

vector. The second concatenation operation merges the F ̇img with features vector Fcl coming 

from the MLP that processes the clinical information. The resulting representation Fs is 

considered as input for the CC, which consists of two fully connected layers spaced by ReLU 

function. In particular, the first layer in the classification core considers an input features vector 

of C + 4 elements, with C/3 output features, while the second one is responsible of the 

prediction, presenting two output neurons.  
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4.4.3 Results 

This section reports in Table 17 the results of the implemented experiments, considering both 

the proposed solution (IF-MT) and different fusion techniques. In particular, each 

configuration is detailed according to the involved network, the ML model, the used data 

modality, and the fusion approach in columns Net, Model, Modality, and App respectively. 

Moreover, the performance is evaluated in terms of ACC, Spe, Sens and AUC, reporting the 

average rate computed adopting a 10-fold CV and the standard deviation after the ± symbol. 

Table 17 is organized into seven main sections.  
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Table 17: Performance of the implemented experiments evaluated in 10-fold CV setting considering different 
models and multimodal data fusion techniques.  
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The first one does not consider any CNN since it focuses on the clinical features represented 

in the form of tabular data. In particular, the first and second rows exploit the SVM classifier 

with the CL set and the MLP model with CL-S1 set respectively. The experiment involving the 

CL features presents a slightly better performance in terms of ACC and Sens, gaining 

76.77±0.12% and 70.37±0.19% respectively. On the other hand, the MLP model achieves 

78.74±0.10% and 75.61±0.17% of SPE and AUC respectively, using the CL- S1 set.  

In the following parts, CNNs are exploited, presenting the proposed IF-MT architecture and 

several variants. In the configurations considering the U approach, the network is trained for 

each imaging modality, leveraging the ne-tuning in the case of ResNet [61]. In the EF(CL-S1) 

and EF(CL), all data modalities are involved, exploiting the network as a features extractor and 

performing the classification using the SVM and NN respectively. The solution with the LF 

merges the predictions coming from the CNNs trained with the unimodal approach and the 

experiment presented in the first row of the table with the SVM model and CL set.  

The results obtained with the BasicNet are reported in the second section. It is possible to note 

that the configuration using the IF-MT approach outperforms the others in all metrics, 

achieving 87.01±0.08% in ACC, 88.19±0.08% in Spe, 81.48±0.17% in Sens and 90.14±0.10% 

in AUC. More- over, the EF(CL-S1) exceeds the EF(CL) by a large margin (at least 15%) in 

each metric, while the LF shows an increase in terms of ACC and Spe compared to EF 

solutions.  

The third part of the table presents the results involving the ResNet10. The proposed approach 

(IF-MT) reports the best performance in terms of ACC and Sens, obtaining 90.91±0.08% and 

81.48±0.17% respectively, improving the U approaches in all metrics. It is worth noting that 

although the EF(CL) presents the highest specificity, it shows the lowest value of Sens 

(22.22±0.25%). Furthermore, the experiment with the LF outperforms the EF solutions, 

achieving also achieving the highest AUC (92.85±0.10%).  

The fourth section focuses on the ResNet18, where the methodology considering the IF-MT 

obtains 89.61±0.06%, 91.34±0.06%, 81.48±0.17%, and 85.04±0.14% in terms of ACC, Spe, 
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Sens, and AUC respectively. The experiments with the U approach present lower values in all 

metrics than both the IF and IF-MT solutions, while the LF continues to outperform both the 

EF(CL-S1) and EF(CL) configurations, showing 83.23±0.08%, 85.94±0.08%, 70.37±0.10%, 

and 86.98±0.10% in terms of ACC, Spe, Sens, and AUC respectively.  

The performance obtained with the ResNet34 is presented in the fifth part of the table, where 

the methodology proposed in this paper still reports the best performance, achieving 

87.66±0.10% in accuracy, 89.76±0.09 in specificity, and 77.78±0.16 in sensitivity. On the other 

hand, the IF approach shows the same value in terms of Sens and slightly better performance 

in AUC, obtaining 84.49±0.12%. Moreover, the EF(CL-S1) exceeds the EF(CL) in each 

metric, reporting an improvement of at least 30% in the sensitivity. The methodology involving 

the LF gains the same sensitivity of IF and IF-MT, with lower values in ACC, Spe, and AUC.  

The sixth part focuses on the ResNet50, where the IF-MT outperforms the unimodal 

approaches, the EF, and LF techniques, achieving 84.42±0.11%, 85.83±0.11%, 77.78±0.16% 

in accuracy, specificity, and sensitivity. More- over, the LF exceeds both the EF configurations, 

obtaining the highest AUC in the section, that is 85.19±0.15  

The implemented methodology is also compared with the solution proposed in the literature by 

Nguyen et al.19 that represents the first attempt to apply multi-modal learning for ALN 

metastasis prediction. The authors propose a solution that exploits a CNN, DCE sequence of 

the primary tumor and four clinical features, namely age, ER, ki-67 and HER2, that in this 

paper repre- sent the CL-4 set. In 19 a 3D CNN is implemented to process DCE-MRI images 

using a subtractive approach that works with the third, fourth and fifth post-contrast volumes. 

A 3D cuboidal bounding box of size 50×50×50, encompassing the tumor region, is used to 

crop each DCE-MRI data. The CL-4 set is inserted in the first fully connected layer of the 

classification core of the implemented network. We consider two different configurations, 

exploiting only the DCE sequence and the DCE volumes with clinical features, respectively. It 

is possible to note that the implemented methodology out- performs the solution proposed by 

Nguyen et al.19 in all metrics, regardless of the specific CNN.  
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Finally, Table 18 reports a comparison between the CL-S1 set and features selected from the 

solution involving the SVM and the CL in the unimodal approach. It is possible to note that 

the features determined by the domain experts are included in the results of the backward 

features selection.  

 

Table 18: Comparison of the features selected by the domain expert (D.S), and those obtained with the 
backward features elimination and SVM.  

 

4.4.4 Discussion and Conclusions  

In this paper, we propose a Multi Input-Single Out CNN, able to process breast MRI sequences 

and patients’ clinical information for axillary lymph node metastasis prediction, implementing 

an intermediate fusion approach and enhancing the integration of data coming from 

heterogeneous sources with the involvement of a transfer module. In particular, the 

implemented model can perform a cross-modality calibration, with a process aiming to modify 

the extracted features maps in the convolutional cores, highlighting the most useful 

characteristics while reducing the effects of the less informative ones. The results reported in 

Table 18, it is possible to note that, for each network, the solutions exploiting the IF-MT 

configuration achieve the best performance, outperforming by a wide margin, the experiments 

involving a single data modality (U). Moreover, the LF performs better than the EF approaches, 

thus supporting the preference of the former over the latter. Indeed, the LF leverages different 

models, each trained for a specific data modality. As a consequence, the four classifiers learn 

to extract features that reflect the distinctive characteristics of each modality, delaying the 

combination of the results in a post-processing step and also exploiting the uncorrelated nature 
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of errors performed by models. On the other hand, in both EF solutions, the networks trained 

in the U approach are used as features extractors, creating a high-dimensionality shared 

representation, that may make it di cult to capture the complementary characteristics of each 

data modality. In solutions involving the IF and IF-MT configurations, the shared 

representation is created by concatenating features coming from the convolutional cores at an 

intermediate level, thus preserving the distinctiveness of the different image modalities, which 

is then exploited in the classification core. Moreover, the training strategy exploiting the 

backpropagation algorithm allows the definition of a representation well suited for the specific 

task to solve, improving the integration of heterogeneous data compared to the EF and LF 

experiments. In particular, the presence of the proposed transfer module makes the layers of 

the convolutional cores influence each other during the features extraction step, enabling the 

CNN to self-select the characteristics in each modality that best contribute to the problem to 

be solved. Indeed, the gating mechanism reduces the impact of the selected features according 

to a shared representation that considers all data sources.  

From Table 18 it is also possible to note that, when the ResNet architectures are exploited, the 

performance decreases as the complexity of the network increases. We argue that this 

characteristic can be explained by the limited amount of data used in the study. Although ne-

tuning is exploited, the small number of MR images may affect the convergence of the involved 

CNN, limiting its generalization ability.  

When the work proposed by 19 is considered, it is possible to note that the solution 

implementing the IF technique achieves better performance than the unimodal configuration. 

However, the proposed methodology with the transfer module outperforms by a wide margin 

the approach described by Nguyen et al. We argue that different aspects contribute to the 

explanation of this result. Since authors in [43] used a dataset consisting of 357 patients, the 

performance is reasonably affected by the size of the dataset involved in our work (153 

patients). Moreover, the fixed-size bounding box used in [43] reduces the generalization 

capability of the implemented model as reported in [7]. In this paper, we also exploit different 

complementary imaging modalities that contribute to the characterization of the primary tumor, 

leveraging the transfer module to improve the integration of data.  
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In conclusion, in this study, we performed different experiments with the aim of showing the 

effectiveness of the proposed transfer module inserted in a CNN implementing the intermediate 

fusion in a multimodal scenario. Despite the role of magnetic resonance imaging of primary 

tumors in predicting the involvement of the axillary state has been strongly demonstrated in 

the literature, it still remains unused in international guidelines [16; 17; 18]. The results 

presented in this work intend to highlight not only, as previously demonstrated in other works 

[43; 65], the importance of the role of DL approaches in predicting the state of the axillary 

lymph node, but also the contribution that pre-contrast sequences can offer. In particular, the 

T2w sequence allows to highlight the morpho-structural properties of the tumor while the DWI 

describes the intrinsic properties and tumor aggressiveness. As demonstrated in our previous 

works, both the peritumor edema evaluated in the T2w sequences and the ADC value, a 

quantitative expression of the cellular restriction of the tumor lesion, correlate significantly 

with the state of the axilla [14; 66].  

Despite the promising results, we argue that the limitations of our work are represented by the 

reduced size of the dataset and the involvement of a single medical center. Although the 

number of patients is similar to that used in [21; 27; 28], future works will focus on the 

evaluation of the proposed methodology on data collected from different centers, increasing 

also the size of the considered population.   
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5 METASTASIS: Artificial Intelligence in Metastases 

prediction 

Only about 5% of breast cancers have metastases at the time of diagnosis. Most diagnoses of 

metastatic disease occur during the follow-up and treatments for localized disease. The risk of 

recurrence over time mainly depends on the stage at diagnosis and the molecular subtype. The 

latter is also usually associated with a different pattern of metastatic sites. After documenting 

a recurrence of the disease, a complete restaging should be performed. 
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5.1 Artificial Intelligence in Bone Metastases: an MRI and CT Imaging Review 

Bone is the third most frequent site for metastatic localization, after lung and liver149, with 

breast and prostate cancer accounting for almost 70% of primary tumors150. In most cases, bone 

metastases influence a patient’s short-term prognosis, as bone lesions can rarely be completely 

eradicated. Patients with bone metastases have the option of undergoing palliative care to 

reduce the size of the lesions, slow their growth, or allow for improvement in symptoms. Bone 

metastases lead to a sharp reduction in life expectancy: average survival in patients with bone 

metastases from melanoma is 6 months; from breast cancer, 19–25 months; and from prostate 

cancer, 53 months151. 

The improvement of therapeutic strategies to deal with the various forms of cancer has led to 

an increase in life expectancy and, consequently, a lengthening of the time a patient can coexist 

with metastatic disease152. The most frequent site of bone metastasis is the axial skeleton 

because of its high red marrow content149,150,153,154, which is therefore frequently responsible for 

the increased morbidity and decreased quality of life of patients. 

The spectrum of clinical manifestations is very heterogeneous, ranging from complete absence 

of symptoms to severe pain, reduced mobility, pathologic fractures, spinal cord compression, 

bone marrow aplasia, and hypercalcemia. Hypercalcemia is in turn responsible for 

constipation, polyuria, polydipsia, and fatigue151,155. In the final stages, hypercalcemia may lead 

to cardiac arrhythmias and acute renal failure149. 

Therefore, to identify a proper course of treatment, it is essential to differentiate metastatic 

lesions from any primary or benign lesions of the bone. In order to assess the patient’s 

prognosis and choose the most appropriate medical treatment according to their life 

expectancy, bone metastases should be diagnosed at the time of the diagnosis of the primary 

tumor: the aim is to reduce the incidence of complications and improve the quality of life. 

Bone scintigraphy, computed tomography (CT), magnetic resonance imaging (MRI), and 

positron emission tomography (PET) are all capable of assessing the presence of bone 

metastases156. The sensitivity and specificity of bone scintigraphy are 78% and 48%, 
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respectively, but despite its relatively low specificity which may require further imaging 

examinations, it is still the most widely available technique and the most suggested by the 

guidelines for the study of bone disease. The CT exam, with a sensitivity and specificity of 

74% and 56%, respectively, can be used as a guide during interventional diagnostic procedures. 

In addition, CT allows simultaneous evaluation of bone and systemic staging, reducing the 

burden of imaging for patients. MRI shows a sensitivity and specificity of 95% and 90%, 

respectively. It is a radiation-free technique and is considered the imaging modality of choice 

for assessing metastatic spread in the bone marrow. 18F FDG-PET (fluorodeoxyglucose) has 

a sensitivity and specificity of 98% and 56%, respectively: the sensitivity may vary among 

different histologies, as some well-differentiated tumors can go undetected because of their 

low metabolism157. 

Radiomics is an emerging branch of artificial intelligence (AI) that involves converting digital 

medical images that contain information related to tumor pathophysiology, also known as 

features, into measurable and quantifiable data. These data, combined with clinical and 

qualitative imaging-derived data, can improve medical decision making158. 

The field of radiomics is constantly and rapidly evolving. The purpose of AI is to aid the 

physician in the assessment of lesions beyond subjective visual interpretation in order to obtain 

additional information about tumor behavior and pathophysiology that is otherwise not 

inferable by the human eye with currently used techniques. 

As a topic of relatively recent emergence and application, there is considerable variability in 

the workflow that determines the results of radiomics-related studies. For traditional radiomics 

approaches, the workflow is divided into specific steps: data selection, medical imaging 

evaluation/segmentation, feature extraction, exploratory analysis, and modeling. The 

acquisition technical specifications and medical image reading modalities, the software and 

how the segmentation of the regions of interest (ROIs) is produced, the feature extraction, and 

the algorithm of the predictive model are all subject to numerous factors, making the research, 

and therefore the literature on it, highly heterogeneous. The radiomics quality score (RQS) was 
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introduced in order to evaluate the past and future radiomics studies by achieving homogeneity 

in study reporting159. 

The purpose of this review is to investigate the potential role of radiomics as a decision-

supporting tool in predicting bone disease status, differentiating benign from malignant bone 

lesions, and characterizing malignant lesions at the genetic level. 

 

5.1.1 Methodology  

MEDLINE databases, such as PubMed and Web of Science, were employed for the research, 

using the following strings: ((“radiomics” OR “machine learning”) AND (metastases OR 

metastasis) AND (“bone” OR “spine” OR “spinal”)). 

No limitations were applied to the search strategy. The following criteria were used for the 

inclusion of the studies: (a) imaging analysis involved only CT and MRI modalities; (b) the 

studies addressed the ability of radiomics to predict, diagnose, or characterize bone lesions; (c) 

the studies involved humans only; (d) the articles were accessible through our institution; and 

(e) the publications were in English. 

Case studies, abstracts, reviews, letters to editors, editorials, and commentaries were excluded. 

We completed the search by manually reviewing the bibliography of all selected articles. 

Two reviewers conducted the search, selected the studies, and extracted data from each study 

independently. From a total of 100 articles, 13 research articles were considered suitable and 

then collected. 

The quality of the methodology was assessed according to the RQS as described by Lambin et 

al.159. 

Each of the 16 criteria, covering individual aspects of the radiomics workflow, was assigned a 

different maximum score in relation to its importance. The absence of feature selection and 

validation results in a reduction in the final score by −3 and −5 points, respectively. The two 
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reviewers assigned, in agreement, the RQS to the selected studies in absolute and percentage 

values (maximum value of 36, representing 100%). 

The following data were extracted from each study: title, authors, year and journal of 

publication, study objective, study design (retrospective or prospective), number of patients, 

CT and MRI technical information, software used for segmentation and feature selection, 

number and type of radiomics features considered, algorithms used for classification, summary 

of results, and RQS. 

 

5.1.2 Results 

Our search found 13 publications on radiomics as a decision support tool regarding bone 

lesions. All studies were published between 2018 and 2021 and were retrospective in design. 

Study characteristics, as recorded by the reviewers, are shown in Table 19. 
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Table 19: Characteristics of the selected radiomics studies. 

 

Eleven (85%) studies were MRI-based, whereas two (15%) were CT-based. Four (30%) studies 

were focused on whether radiomics could predict epidermal growth factor receptor (EGFR) 

mutation in spinal metastases of primary lung adenocarcinoma. Three (23%) studied bone 

metastases from prostate cancer: two aimed to predict the presence of bone metastases from 
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prostate cancer, one studied the prognostic role in terms of overall survival (OS) and cause-

specific survival (CSS) of radiomics in prostate cancer patients with bone metastases. Four 

(30%) studies aimed to differentiate bone metastases from other pathological conditions: two 

studies evaluated the ability of radiomics to differentiate bone metastases from benign vertebral 

bone disease, and two studies evaluated the ability of radiomics to differentiate bone metastases 

from other pathological bone lesions. One (7%) study aimed to differentiate between metastatic 

and non-metastatic vertebral bodies, and one aimed to differentiate between metastatic lesions 

in the spine originating from lung cancer and other non-pulmonary cancers. 

 

5.1.2.1  EGFR Mutation Prediction in Spinal Metastasis from Primary Lung 

Adenocarcinoma 

Jiang et al.160 analyzed MRI-based multiparametric radiomics for EGFR mutation prediction 

on T2-weighted (T2W), T2-weighted fat-saturated (T2W-FS), and T1-weighted (T1W) 

images: both traditional handcrafted and deep learning-based features were derived from each 

MRI sequence. For each of the two types of approach, radiomics models showed better results 

using combined features from all the MRI sequences than those with features extracted from 

each individual sequence. A fusion model created by integrating traditional handcrafted and 

deep learning-based features from the three sequences achieved the best prediction 

performance. A radiomics nomogram was obtained by integrating the best performing 

radiomics features: a decision curve analysis (DCA) confirmed the potential clinical utility of 

the radiomics nomogram. 

Ren et al.161 produced a nomogram using an MRI-based radiomics signature and smoking status 

to classify patients with EGFR mutation and wild-type EGFR through analysis of spinal 

metastases on T2W, T2W-FS, and T1W images. In addition to the radiomics model, a deep 

learning approach was considered: the combined signature generated higher AUCs than either 

feature type alone. Four different machine learning classifiers were developed and compared, 

with logistic regression outperforming the others. The nomogram achieved an AUC of 0.821 
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(SEN = 0.667, SPE = 0.909): DCA showed that the nomogram had a higher net benefit than 

all treatment and nontreatment strategies when the threshold was greater than 0.013. 

Fan et al.162 proposed a predictive model that could determine the presence of EGFR mutation 

in spinal metastasis subregions. Spinal metastases were divided into subregions based on 

patient- and population-level clustering: marginal, fragmentary, and internal subregions and 

the total tumor region. Radiomics features were extracted from the subregions’ T2W-FS and 

T1W images. For both sequences, the radiomics signature derived from the inner subregions 

outperformed other subregions or the entire tumor regions in terms of AUC: the multiregion 

radiomics signature derived from merging the inner subregion from T1W and T2W-FS MRI 

achieved the best detection capabilities. The results suggest that the inner region is biologically 

more aggressive than the others. 

Ran et al.163 further investigated the predictive ability of the EGFR mutation in spinal 

metastases by constructing a radiomics model that could identify the mutation subtype in exon 

19 and exon 21. The radiomics signature derived from the T2W-FS MRI consistently 

outperformed the T1W-derived signature in terms of AUC, ACC, sensitivity, and specificity. 

A nomogram model was constructed by incorporating the combined radiomic signature, age, 

and CEA level, achieving an AUC of 0.881 in the validation set: a decision curve analysis 

(DCA) confirmed that the model potentially guides individual treatments for patients with lung 

adenocarcinoma. 

 

5.1.2.2 Bone Metastasis from Prostate Cancer 

Wang et al.164 determined that multiparametric prostate MRI predicted the presence/absence of 

bone metastasis in prostate cancer patients using radiomics features alone and combined with 

free PSA level and Gleason score. The combined MRI features derived from T2W and DCE 

showed higher prognostic performance than features derived from the single sequence and 

Gleason score. The radiomics MRI model combined with clinicopathological features (free 
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PSA level, age, and Gleason score) yielded the highest AUC (AUC = 0.916), further improving 

predictive performance. 

Hayakawa et al.165 investigated the potential prognostic value of clinical risk factors 

(anamnestic and laboratory data and histological prostate cancer characteristics), imaging 

features, and radiomics of pelvic bone metastases in patients with newly diagnosed prostate 

cancer: patients were studied for OS and CSS. Only shape-based features were detected as risk 

factors for OS, and “maximum 2D diameter”, defined as the largest tumor surface dimension 

in the axial plane, was detected as a risk factor for OS after multivariate analysis (HR = 1.007). 

None of the radiomics features were detected as a risk factor for CSS in the uni- and 

multivariate analysis. After multivariate analysis, LDH, hemoglobin, and “maximum 2D 

diameter” were detected as risk factors for OS, whereas total Gleason score, LDH, and 

maximum 2D diameter were detected as a risk factors for CSS. Radiation therapy to the 

prostate gland and bone metastases did not significantly improve both OS and CSS. 

Zhang et al.166 established and validated a radiomics model that combined prostate 

multiparametric MRI-based radiomics signature and clinical risk factors to predict bone 

metastasis in patients with prostate cancer before treatment. The radiomics signature 

constructed from features extracted from DWI, T2W-FS, and DCE images showed good 

predictive efficiency. The nomogram, which incorporated the radiomics signature based on 

MRI and clinical risk factors, had an AUC of 0.92 in the validation set. DCA also demonstrated 

the clinical use of the radiomics model, which had better discriminatory efficiency than t-PSA 

or radiomics signature alone. 

 

5.1.2.3 Differentiation of Bone Metastases from Other Bone Diseases 

Sun et al.167 proposed a CT-based nomogram able to distinguish between benign and malignant 

bone tumors. The nomogram, obtained by combining the radiomics signature and clinical 

model (consisting of demographics and CT characteristics), had higher diagnostic performance 

than the clinical model, but there was no statistical difference compared with the radiomics 
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signature (AUC = 0.823 in the validation set). The DCA showed that the nomogram had higher 

diagnostic performance than the clinical model and achieved greater net clinical benefits than 

the clinical and radiomics signature models when considered alone. 

Xiong et al.168 evaluated the discrimination ability in T1W and T2W-FS MRI sequences 

between bone lesions from multiple myeloma and metastasis through several machine learning 

models: support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), 

artificial neural networks (ANNs), and naïve Bayes (NB). The ANN classifier from T2W 

images showed the best performance, both in differentiating myeloma from metastases and for 

classifying metastasis subtypes. 

Yin et al.169 developed and validated a multiparametric prostate MRI-based radiomics model 

to differentiate primary sacral chordoma, giant cell sacral tumor, and metastatic sacral tumor. 

Radiomics features extracted from the combined T2W-FS and CE T1W images exceeded those 

from the T2W-FS or T1W images alone, but T2W-FS outperformed T1W images. The highest 

radiomics model AUC was achieved when clinical and imaging data were combined. 

Zhong et al.170 proposed an MRI-based radiomics nomogram to differentiate cervical spine 

osteoradionecrosis from metastasis in patients with nasopharyngeal carcinoma after 

radiotherapy. The nomogram model demonstrated good calibration and discrimination, and 

DCA indicated that, if the threshold probability of a lesion for diagnosis as osteoradionecrosis 

is >12%, the radiomics nomogram adds net benefit when compared to either the treat-all-

patients scheme or the treat-none scheme. 

 

5.1.2.4 Other Studies 

The study of Filograna et al.171 is the only study that demonstrated the ability of radiomics-

based MRI to differentiate between metastatic and non-metastatic vertebral bodies in non-

radiotherapy-treated cancer patients with metastatic bone marrow disease from primary tumors 

of different nature (three lung cancers, one prostate cancer, one esophageal cancer, one 
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nasopharyngeal cancer, one hepatocarcinoma, and one breast cancer). Internal cross-validation 

showed an AUC of 0.814 for T1W images and 0.911 for T2W images. One histogram feature 

(minimum gray level) and one textural feature (joint variance of the gray level co-occurrence 

matrix) were found to be the best-fitting features in T1W and T2W images, respectively. 

Lang et al.172 aimed to differentiate metastatic spine cancer derived from primary lung cancer 

and other no pulmonary cancers (breast, thyroid, prostate, liver, kidney) using an ROI-based 

model, radiomics, and deep learning. The accuracy of the radiomics model when histogram 

and texture features were combined was higher than that when histogram and texture features 

were evaluated alone. By increasing the number of features from three to five, the accuracy 

showed slightly higher values (from 0.68 to 0.71 in the histogram + texture model). The 

accuracy of the radiomics model was worse than that of the hot-spot ROI-based (ACC = 0.79) 

and deep learning (ACC = 0.71 ± 0.043 and 0.81 ± 0.034) methods. 

The application of radiomics in the diagnosis and characterization of bone lesions is recent and 

constantly evolving, as is the entire field of radiomics. The articles identified by our two 

researchers are few and were all published within the period between 2018 and 2021, with 

approximately 70% in the period immediately after 2020. Reflecting the relative freshness of 

this area of research, all studies are retrospective, performed at a single center, and with a small 

study population, ranging from 8 to 176 patients. 

Radiomics can not only predict the presence of bone metastases and differentiate skeletal 

regions without lesions from those containing metastases, but its application is able to 

determine the primary tumor, differentiate metastases from other bone lesions (both benign and 

malignant), and predict mutation status (such as EGFR). Apart from MRI and FDG-PET, which 

have high predictive values, the other imaging methods have relatively low sensitivity and 

specificity values, although they are easily accessible and widespread156,157. Despite the 

predictive capabilities of the traditional imaging methods, there is some clinical information 

regarding bone metastases, including the genetic status or the primary tumor, that the naked 

eye is not able to perceive, due to similar clinical and imaging manifestations. Complete 

pathological confirmation and histological analysis are currently only possible by sampling 
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through bone biopsy, which is associated with relatively high procedural risks (such as 

vertebral artery or spinal cord damage)173. Radiomics models, by inferring quantifiable data 

from the features, allow obtaining information that, once applied in the clinical setting, can be 

decisive for the specific therapeutic treatment choice. Because data are extracted from 

noninvasive methods, and in most cases radiation-free methods, radiomics is a further step 

towards the reduction in a patient diagnostic burden, and at the same time towards a patient-

centered medicine. Some studies have also constructed nomograms in order to graphically 

represent the mathematical relationship between radiomics features and other prognostic 

factors, both clinical and diagnostic, in order to improve the clinical applicability of a field still 

difficult for nonexperts to interpret. 

All articles included among their limitations the relatively small sample size (<200 patients), 

the single-center nature of the study, and the selection bias introduced by the retrospective 

design. Even in studies in which validation was performed on an internal dataset, the absence 

of external validation leads to reduced evidence of the possible clinical application of the 

research: multicenter studies are necessary to validate radiomics models and nomograms. Some 

articles complained about the tediousness of manual segmentation, which, in addition to being 

time-consuming, is not free of human error despite the option of multiple segmentation: the 

hope is that the spread of automatic, or semiautomatic, segmentation will speed up the process 

and further reduce the margin of error. 

Our review confirms the considerable heterogeneity in current radiomics research, as 

evidenced by the relatively low RQS value obtained when analyzing the reviewed studies 

(22.6%). There is not a homogeneous protocol used for MRI sequences among the different 

studies, although the highest predictive ability was always obtained in T2W-FS. Wide 

variability also exists in the software used for image segmentation and feature extraction; the 

number and the type of features explored, with and without feature selection method 

application; and even the models used to classify the final features. All of these elements 

contribute to the reduced reproducibility of the results, even if none of them are considered 

integral to the RQS assessment. 
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As described above, the most critical limitation concerns the small sample size, which leads to 

selection bias. A possible way to overcome this important limit is to increase the number of 

patients under investigation or to extend the research and results validation to other centers. In 

fact, it is well known that, after a first validation of a radiomic model, a subsequent path of 

validation through multicenter studies is necessary to allow radiomics to get closer and closer 

to widespread clinical applicability, even and especially through prospective studies. 

This review has some important limitations. To our knowledge, no other review has exclusively 

investigated the role of radiomics in the analysis and prediction of bone metastases, particularly 

the spine localization. Even within the field of radiomics, this is a niche subfield, as is evident 

from the low number of studies analyzed. This novelty, in addition to the high variability of 

the included studies, both in methodology and in objectives, prevented us from pursuing a 

robust meta-analysis. We expect that as radiomics evolves and becomes more widespread, 

there will be an increase in the number of patients included and more extensive validation of 

existing datasets. Another critical issue at this early stage of research is the ability to share data 

across public datasets that have already been validated, as currently none of the papers publicly 

released their data. 

In addition, we have deliberately eliminated from the research the studies based on scintigraphy 

and PET (we have not detected studies that have used ultrasound) and papers in non-English 

language or not accessible from our institution, reducing the number of the articles included. 

Due to an implicit publication bias, most articles on this topic focus on the use of MRI. This 

implies that many other methods, on which there are no current studies, do not result in a 

significant contribution to research in the radiomics field, a phenomenon that introduces further 

bias into our review. Furthermore, at the time of publication, it is safe to assume that there are 

additional feature extraction software and classification models currently in development that 

we are unaware of in the literature, which are therefore protected from our review. 
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5.1.2.5 RQS Assessment and Study Limitations 

The average recorded RQS was 22.6% (0–38.8%). This low score confirms what has been 

reported in other reviews in the field of radiomics, representing a relatively low quality of 

research methodology7,74,173–177. None of the reviewed studies were prospective in design, no 

external validation on a dataset from another institution was performed, no cost-effectiveness 

of the clinical application of the radiomic models was reported, and no datasets were made 

publicly available (although four authors allowed access to the datasets upon request). Two 

articles (15%) did not perform any validation of their results. In only four (30%) of the articles, 

multiple segmentations were performed to assess the robustness of features to segmentation 

variabilities. The majority of articles (12/13, 92%) performed a feature reduction to decrease 

the risk of overfitting. Eight (61%) studies reported discrimination statistics (such as ROC 

curve and/or AUC), and six (46%) studies reported calibration statistics. Six articles (46%) 

reported on the potential application of the model in a clinical setting with a DCA. 

 

5.1.3 Discussion and Conclusions  

The application of radiomics in the diagnosis and characterization of bone lesions is recent and 

constantly evolving, as is the entire field of radiomics. The articles identified by our two 

researchers are few and were all published within the period between 2018 and 2021, with 

approximately 70% in the period immediately after 2020. Reflecting the relative freshness of 

this area of research, all studies are retrospective, performed at a single center, and with a small 

study population, ranging from 8 to 176 patients. 

Radiomics can not only predict the presence of bone metastases and differentiate skeletal 

regions without lesions from those containing metastases, but its application is able to 

determine the primary tumor, differentiate metastases from other bone lesions (both benign and 

malignant), and predict mutation status (such as EGFR). Apart from MRI and FDG-PET, which 

have high predictive values, the other imaging methods have relatively low sensitivity and 

specificity values, although they are easily accessible and widespread156,157. Despite the 
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predictive capabilities of the traditional imaging methods, there is some clinical information 

regarding bone metastases, including the genetic status or the primary tumor, that the naked 

eye is not able to perceive, due to similar clinical and imaging manifestations. Complete 

pathological confirmation and histological analysis are currently only possible by sampling 

through bone biopsy, which is associated with relatively high procedural risks (such as 

vertebral artery or spinal cord damage)173. Radiomics models, by inferring quantifiable data 

from the features, allow obtaining information that, once applied in the clinical setting, can be 

decisive for the specific therapeutic treatment choice. Because data are extracted from 

noninvasive methods, and in most cases radiation-free methods, radiomics is a further step 

towards the reduction in a patient diagnostic burden, and at the same time towards a patient-

centered medicine. Some studies have also constructed nomograms in order to graphically 

represent the mathematical relationship between radiomics features and other prognostic 

factors, both clinical and diagnostic, in order to improve the clinical applicability of a field still 

difficult for nonexperts to interpret. 

All articles included among their limitations the relatively small sample size (<200 patients), 

the single-center nature of the study, and the selection bias introduced by the retrospective 

design. Even in studies in which validation was performed on an internal dataset, the absence 

of external validation leads to reduced evidence of the possible clinical application of the 

research: multicenter studies are necessary to validate radiomics models and nomograms. Some 

articles complained about the tediousness of manual segmentation, which, in addition to being 

time-consuming, is not free of human error despite the option of multiple segmentation: the 

hope is that the spread of automatic, or semiautomatic, segmentation will speed up the process 

and further reduce the margin of error. 

Our review confirms the considerable heterogeneity in current radiomics research, as 

evidenced by the relatively low RQS value obtained when analyzing the reviewed studies 

(22.6%). There is not a homogeneous protocol used for MRI sequences among the different 

studies, although the highest predictive ability was always obtained in T2W-FS. Wide 

variability also exists in the software used for image segmentation and feature extraction; the 

number and the type of features explored, with and without feature selection method 
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application; and even the models used to classify the final features. All these elements 

contribute to the reduced reproducibility of the results, even if none of them are considered 

integral to the RQS assessment. 

As described above, the most critical limitation concerns the small sample size, which leads to 

selection bias. A possible way to overcome this important limit is to increase the number of 

patients under investigation or to extend the research and results validation to other centers. In 

fact, it is well known that, after a first validation of a radiomic model, a subsequent path of 

validation through multicenter studies is necessary to allow radiomics to get closer and closer 

to widespread clinical applicability, even and especially through prospective studies. 

This review has some important limitations. To our knowledge, no other review has exclusively 

investigated the role of radiomics in the analysis and prediction of bone metastases, particularly 

the spine localization. Even within the field of radiomics, this is a niche subfield, as is evident 

from the low number of studies analyzed. This novelty, in addition to the high variability of 

the included studies, both in methodology and in objectives, prevented us from pursuing a 

robust meta-analysis. We expect that as radiomics evolves and becomes more widespread, 

there will be an increase in the number of patients included and more extensive validation of 

existing datasets. Another critical issue at this early stage of research is the ability to share data 

across public datasets that have already been validated, as currently none of the papers publicly 

released their data. 

In addition, we have deliberately eliminated from the research the studies based on scintigraphy 

and PET (we have not detected studies that have used ultrasound) and papers in non-English 

language or not accessible from our institution, reducing the number of the articles included. 

Due to an implicit publication bias, most articles on this topic focus on the use of MRI. This 

implies that many other methods, on which there are no current studies, do not result in a 

significant contribution to research in the radiomics field, a phenomenon that introduces further 

bias into our review. Furthermore, at the time of publication, it is safe to assume that there are 

additional feature extraction software and classification models currently in development that 

we are unaware of in the literature, which are therefore protected from our review. 
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In spite of the variability in the radiomics method application, the similarity of results and 

conclusions observed is encouraging. Furthermore, all six studies that have measured the 

possible application of the radiomics model in the clinical setting through DCA have shown a 

net benefit compared to the use of the other strategies alone, confirming the promising role of 

radiomics in guiding the choice of treatments for individual cancer patients. 
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5.2 The DL approach applied to BC DCE images to predict distant metastasis 
status 

Building a ML system requires engineering and expertise to design an extractor that transforms 

the features into an appropriate representation that the learning subsystem can detect or 

classify. For this reason, there has been an emergence of the Deep Learning (DL) approach, 

which improves this process by automatically discovering the representations needed for the 

specific task from the raw data{Formatting Citation}. A key role is played by Convolutional 

Neural Networks (CNNs), which are a set of deep architectures that receive raw image data as 

input and extract features to learn discriminative properties using hierarchical representations 

of images. 

Deep Learning has already been applied to BC-MRI in the lesion diagnosis, prediction of tumor 

molecular subtypes, pathological complete response, and axillary lymph node status 

[13,14,15,16,17]. To our knowledge, there are no articles that have studied the role of AI 

through DL in predicting the risk of distant metastasis from primary BC. Therefore, the purpose 

of this study is to develop a DL-CNN model to predict the risk of distant metastasis using 

Contrast-Enhanced 3T-MRI. 

 

5.2.1 Population 

This is a retrospective observational study where only existing information collected from 

human participants was used, with no identifiers linking individuals to the data/samples. All 

methods and procedures meet institutional and research committee ethical standards in 

accordance with the 2013 Declaration of Helsinki. 

All breast 3T-MRI exams performed at the Radiology Department of our hospital, from 

January 2011 to July 2022 for pre-operative evaluation, were retrospectively reviewed. The 

inclusion criteria were as follows: (a) pre-operative breast 3T-MRI with Dynamic DCE-MRI 

sequences; (b) diagnostic confirmation of invasive breast cancer by histopathological analysis; 
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(c) complete histological analysis including molecular receptor status (estrogen receptor ER; 

progesterone receptor PgR; epidermal growth factor receptor HER2) and proliferation index 

Ki-67; (d) patients undergoing clinical and imaging follow-up at our institution for at least 

seven years or until distant metastases diagnosis. 

The presence of breast implants, post-chemotherapy follow-up patients, exams for neo-

adjuvant treatment evaluation, and images that were not of good diagnostic quality were all 

considered as exclusion criteria. 

Written informed consent was obtained for all patients before MRI. 

Following the mentioned criteria, a total of 157 breast cancer patients with 160 breast lesions 

were included in the study. Patients clinical data (age, menopausal state, family history, 

hormone therapy) were collected. 

 

5.2.1.1 MRI Examination  

All MRI exams were performed on a 3T magnet (Discovery 750; GE Healthcare, Milwaukee, 

WI, USA). Patients were positioned prone and a dedicated eight-channel breast coil (8US 

TORSOPA) was used. Three orthogonal localizer sequences were employed, then images were 

acquired following this protocol: 

• T2-weighted axial single-shot fast spin echo sequence with a modified Dixon 

technique (IDEAL) for intravoxel fat-water separation (TR/TE 3500–5200/120–

135 ms, slice thickness 3.5 mm). 

• Diffusion-weighted axial single-shot echo-planar with fat suppression sequence. 

• (TR/TE 2700/58 ms, slice thickness 5 mm) with diffusion-sensitizing gradient 

with a b-value of 0, 500, and 1000 s/mm2. 

• Dynamic 3D-T1w axial and sagittal gradient echo sequence with fat suppression 

after injection of 0.1 mmol/kg body weight of Gadoteric acid (Dotarem®, 

Guerbet S.p.A., Villepinte France, or Claricyclic®, GE Healthcare S.r.l, Chicago, 
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IL, USA) at a rate of 2 mL/sec followed by a bolus of 15 mL saline flush (TR/TE 

4/2 ms, slice thickness 2.4 mm), before, and five to ten times after intravenous 

contrast medium injection. 

Subtracted images were automatically produced in post-processing from the images after 

contrast medium administration for a more accurate tumor analysis. The largest lesion was 

considered to be the index lesion for statistical analysis purposes. Reading was performed 

without access to the original reports and clinical data. 

The following MRI characteristics were collected for each lesion using DCE sequences as 

reference images for tumor detection and characterization. 

• Location on the breast quadrant; 

• Margins: regular, irregular, lobulated, speculated, non-mass; 

• Size (mm); 

• Morphology: round, oval, or irregular. 

For each index lesion, a signal-intensity-to-time curve (SI/T) was automatically generated by 

placing a region of interest (ROI) within the lesion on a subjectively recognized area of 

maximal contrast enhancement and evaluating all the acquired DCE series. The kinetics curves 

were classified as I (progressive wash-in), II (plateau) or III (rapid wash-out), as reported in 

the current ACR BI-RADS guidelines [18]. 

ADC values were calculated for quantitative analysis by superimposing the subtracted images 

on the ADC map. An ROI with a diameter of 3–6 mm was manually drawn on the slice where 

the lesion reached its greatest diameter. ADC measurements were performed only on the 

enhanced solid portion to avoid areas of T2 shine-through. 

Distant metastasis status for each patient was recorded using clinical and imaging follow-up, 

with definitive histological characterization confirming breast cancer cells as a dichotomous 

result: positive, if there was at least one organ with metastases, or negative, if there were no 

metastases. Radiological examinations (MRI, CT, and PET) and medical records of the Patients 
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were collected up to a maximum of seven years after the initial diagnosis of breast cancer; if 

distant metastases were found, their organ site was recorded. 

 

5.2.1.1 Histologic Characteristics 

All breast lesions were characterized on the histological specimen obtained by a core biopsy 

and on the histological definitive sample after surgery by two pathologists. Histological 

diagnosis was performed according to the WHO classification. 

The histopathological grade was evaluated according to the Nottingham Grading System, 

considering tubule formation, pleomorphism, and mitotic count through a scoring system. The 

total score ranges from 3 to 9: 3–5 corresponds to grade 1 (G1), 6 or 7 to grade 2 (G2), and 8 

or 9 to grade 3 (G3). 

Immunohistochemical (IHC) analysis was performed to evaluate molecular receptor status 

(ER, PgR, and HER2) and to calculate the Ki-67 index. Evaluation of ER and PgR status was 

performed by IHC using Dako monoclonal antibody, 1:100 dilution. The monoclonal antibody 

Mib-1 (1:200 dilution; Dako, Glostrup, Denmark) was used to assess the Ki-67 index, which 

was reported as the percentage of immune-reactive cells out of 2000 tumor cells in randomly 

selected high-power fields surrounding the tumor core. HER2 status was re-evaluated using 

the Hercep test (Dako, Glostrup, Denmark), following published guidelines. Samples that gave 

an equivocal IHC result were subjected to fluorescence in situ hybridization (FISH) analysis. 

A ratio of HER2 gene signals to chromosome 17 signals greater than 2.2 was used as a cut-off 

value to define HER2 gene amplification. ER and PgR status were considered to be positive if 

the expression was >1% and negative if the expression was <1%. HER2 expression was 

classified as 0, 1+, 2+ or 3+; only tumors reaching a score of 3+ were considered to be HER2-

positive. 

 

5.2.2 Methodology 
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5.2.2.1 Pre-Processing and segmentation  

All breast lesions were characterized on the histological specimen obtained by a core biopsy 

and on the histological definitive sample after surgery by two pathologists. Histological 

diagnosis was performed according to the WHO classification. 

The histopathological grade was evaluated according to the Nottingham Grading System, 

considering tubule formation, pleomorphism, and mitotic count through a scoring system. The 

total score ranges from 3 to 9: 3–5 corresponds to grade 1 (G1), 6 or 7 to grade 2 (G2), and 8 

or 9 to grade 3 (G3). 

Immunohistochemical (IHC) analysis was performed to evaluate molecular receptor status 

(ER, PgR, and HER2) and to calculate the Ki-67 index. Evaluation of ER and PgR status was 

performed by IHC using Dako monoclonal antibody, 1:100 dilution. The monoclonal antibody 

Mib-1 (1:200 dilution; Dako, Glostrup, Denmark) was used to assess the Ki-67 index, which 

was reported as the percentage of immune-reactive cells out of 2000 tumor cells in randomly 

selected high-power fields surrounding the tumor core. HER2 status was re-evaluated using 

the Hercep test (Dako, Glostrup, Denmark), following published guidelines. Samples that gave 

an equivocal IHC result were subjected to fluorescence in situ hybridization (FISH) analysis. 

A ratio of HER2 gene signals to chromosome 17 signals greater than 2.2 was used as a cut-off 

value to define HER2 gene amplification. ER and PgR status were considered to be positive if 

the expression was >1% and negative if the expression was <1%. HER2 expression was 

classified as 0, 1+, 2+ or 3+; only tumors reaching a score of 3+ were considered to be HER2-

positive. 

 

5.2.2.1 Volumes Extraction 

To limit the amount of non-tumor tissue to be included, the smallest 3D rectangle 

circumscribed by the tumor region was considered for each patient in Single Variable-size Box 

(SVB), as shown in Figure 27 
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Figure 28: Representation of the SVB option, only the smallest 3D bounding box confined to the tumor region 
is considered. 

 

Denoting with dxp × dyp × dzp the size of the bounding rectangle of patient p, a 3D cubic box 

of size dmp × dmp × dmp is used, where dmp = max(dxp, dyp, dzp), to crop the subject. The 

cubic box of the SVB option depends on the patient. Therefore, the amount of non-tumor tissue 

depends on the shape of each patient’s tumor region and the difference between the largest 

(dmp) and maximum (dxp, dyp, dzp) size, and the difference between the largest (dmp) and 

smallest (dmp) size. 

However, in the case of multifocal and multicentric tumors, the parenchyma between lesions 

was included in the 4D volume extracted. Each voxel was associated with its size information 

in millimeters (mm). During the acquisition of the DCE sequence for patient p, the Pixel 

Spacing attribute was the physical distance between the centers of each two-dimensional pixel, 

specified by two numerical values (ˆxp, ˆyp) that represented the row spacing and vertical 

spacing, respectively. In addition, the attribute spacing between slices specified by the 
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numerical value ˆzp was the distance between slices measured along the normal to the first 

image. 

 

5.2.2.1 Metastasis Prevision Assessment 

We exploited CNNs for the prediction of extra-nodal metastasis. The voxel-based (VB)-NET 

model was used, considering that the size of the selection rectangle varies according to the 

tumor region of each patient. 

The proposed networks consist of several reduction layers and two fully connected layers. A 

reduction layer is a block with a convolutional layer, followed by a normalization layer and the 

ReLU function. Each convolutional layer reduces the dimensionality of the input feature map 

and doubles the number of channels, making pooling operations (maximum or average 

pooling) unnecessary. 

The architecture of VB-NET is shown figure 28. We used a 3D CNN, consisting of five 

reduction blocks. The input volume (4D data) represented the smallest cubic box surrounding 

the tumor region or lesion of each patient. Because the SVB considered a selection rectangle 

size that varies according to each patient’s tumor region, resizing was used to give the volumes 

a common size of 64 × 64 × 64, before feeding them to the VB-NET. 
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Figure 29: Architecture of the VB-NET used for the SVB. The VB-NET is a 3D CNN with five reduction 
blocks and two fully connected layers. 

 

Performance was evaluated in terms of accuracy, sensitivity, specificity, and area under the 

ROC curve (AUC). The experiment was performed in a 10-fold cross-validation (CV) setting. 

A patient-based cross-validation was performed to reliably estimate performance, avoiding the 

use of 3D volumes or slices of the same patient during the training and evaluation phase. The 

experiment was conducted using Pytorch (version 1.10, Meta AI, Astor Place, New York, NY, 

USA), while the pre-processing phase, including the different bounding box options, were 

implemented in MATLAB 2020b. 

5.2.2.1 Statistical Analysis 

Descriptive statistics were carried out using the statistical software SPSS© version 25.0. 

Statistical significance was set at p < 0.05. Spearman’s rank-order correlation was evaluated to 

assess whether there was a correlation between the presence of distant metastases during 

follow-up and categorical variables, clinical (menopausal status, hormone therapy, family 

history), MRI (site, margins, size, morphology, kinetic curves), and histologic features 

(histologic type, grading, expression of ER, PgR and HER2). The Kolmogorov–Smirnov test 

was performed to determine whether age, tumor size, Ki-67 index, and ADC values followed 

a normal distribution. 

Statistical comparisons between the presence of distant metastases during follow-up and age, 

tumor size, Ki-67 index, and ADC values were performed using the Kruskal–Wallis H test. 

5.2.3 Results 

In this study, 157 breast cancer patients with 160 lesions were included. Three patients had 

bilateral breast cancer, but only one patient with bilateral BC presented distant metastases at 

follow-up. The mean age of the patients was 55 years (range 30–85 years). The patients were 

divided into two groups: 
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• Patients with distant metastases at follow-up (39/157 patients, 40 lesions); 

• Patients negative for distant metastasis (control group, 118/157 patients, 120 

lesions). 

Metastasis sites are represented as follows: 3 (5%) brain, 17 (31%) lung, 19 (34%) bone, 14 

(25%) liver, 1 (2%) gluteal subcutis, and 1 (2%) brachial plexus. 

Anamnestic and clinical data of the study population were collected. The mean age of patients 

with metastases at follow-up was 54.3 years (range 30–84 years), while the mean age of the 

control group was 55.2 years (range 30–85 years). The average time to occurrence of distant 

metastasis was 22.8 months (range: 1–84 months). 

The mean diameters of the measured lesions in the study population, the group with distant 

metastases, and the control group were 22.6 mm (range 6–90 mm), 33.3 mm (range 7–90 mm), 

19.7 mm (range 6–80 mm), respectively. 

The main imaging, histological, and clinical characteristics of the patients are shown in Table 

20, 21 and 22. Two examples are reported in Figure 29 and 30. 
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Figure 30: Case 1 
Case of a 52-year-old woman with a G3 triple negative invasive ductal carcinoma, Ki-67 of 30%. (a) The post-
contrast image shows a retroareolar irregular non-mass-enhancing lesion in the left breast. (b) At 1-year 
follow-up: post-contrast axial CT image, with some metastatic nodules in the liver parenchyma. (c) 
Representation of the extraction of the segmentation mask. 
 

 

Figure 31: Case 2 
Case of a 53-year-old woman with a G2 Luminal B invasive ductal carcinoma, Ki-67 of 25%. (a) The post-
contrast image shows an irregular mass-enhancing lesion in the upper quadrants of the right breast. (b) At 
3-year follow-up: post-contrast axial CT image, with a metastatic nodule in the right frontal lobe (arrow). (c) 
Representation of the extraction of the segmentation mask. 
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Table 20: Description of the extracted MRI characteristics. 
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Table 21: Description of the extracted histologic characteristics.  
* indicates statistical significance (p < 0.05). IDC: Invasive Ductal Cancer; ILC: Invasive Lobular Cancer. 
 

 

Table 22: Description of the extracted clinical characteristics. 

 

Using Spearman’s rank test, no correlation was found between the presence of distant 

metastasis at follow-up and menopausal status, family history, hormone therapy, lesion 

margins and morphology, kinetic curve, histologic type, histologic class, grading, and ER 

expression (p > 0.5). A significant correlation was found between the presence of distant 

metastasis at follow-up and the expression of PgR and HER2. The Kruskal–Wallis H test 

demonstrated a significant correlation between the presence of distant metastasis at follow-up 

and lesion size (p value < 0.001). No correlation was found between the presence of distant 

metastasis at follow-up, patient age, ADC values, and Ki-67 index. 

The VB-NET model achieved a sensitivity, specificity, accuracy, and AUC of 52.50%, 

80.51%, 73.42%, and 68.56%, respectively. 
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5.2.1 Discussion and Conclusions 

Conflicting evidence exists regarding the improved survival of metastatic patients from BC. 

Some studies have found that the development and spread of adjuvant systemic therapies have 

resulted in a reduction in the spread of BC metastases, but not an increase in survival, due to 

the shift from lesions developing in sites with higher survival rates, such as the bone, to more 

aggressive sites such as the brain and liver178. However, according to other studies179–182, 

adjuvant therapy has increased patient survival. 

BC can be characterized by clinical cancer dormancy183,184, and a wide window of relapse, 

which can range from months to decades after treatment of the primary tumor. This is related 

to the characteristic histologic heterogeneity of breast tumors; due to a higher incidence rate of 

metastasis, basal-like, and HER2-positive BC having a worse prognosis than tumors that 

express the estrogen receptor185. Therefore, in order to further individualize BC treatment for 

each patient, it is crucial to identify a potential risk marker for metastasis development. 

AI has the ability to infer data from the images that are not visible to the subjective eye of the 

radiologist. Our aim was to test in our sample whether using a 3T-MRI-based Deep Learning 

model we can non-invasively predict the risk of distant metastasis from BC. We also studied 

whether clinical, MRI, or histologic features could play a similar role in this task. 

Ours is the first study that attempts to build a predictive model based on CNN Deep Learning 

for predicting distant metastasis of BC. However, our results demonstrated low AUC, accuracy, 

and sensitivity values of 68.56%, 80.51%, and 52.50%, respectively. These results reflect a 

currently insufficient capacity of the Deep Learning approach with CNN in its ability to predict 

the development of distant metastasis. In our previous studies, we have shown that both a 

radiomic and a DL approach can predict with greater than 80% accuracy the lymph node status 

of patients with BC73,142. We assume that this is due to the presence of lymphovascular invasion 

phenomena, some of which are not perceptible to the human eye. In the radiomic approach 

with a convex hull optimized segmentation, and in DL with the SVB bounding option, 

mammary regions adjacent to the tumor were also analyzed, obtaining information on possible 
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lymphatic spread. For the same reason, we found that radiomics applied to the study of 

peritumoral edema also contribute significantly to predicting tumor histology and prognosis186. 

Furthermore, in this study no correlation was found between the risk of distant metastasis and 

almost all MRI, histologic, and clinical features considered. Tumor size, and therefore tumor 

stage, have a very good correlation with the risk of metastasis, as already found in the 

literature187,188; however, Sopik et al. determined that there is a linear relationship between 

metastatic risk and primary tumor size only for lesions between 7 and 60 mm, while both very 

small and very large tumors do not respect a linear relationship. No correlation was found 

between ADC values and the risk of metastasis; on the contrary, Kim et al. found that patients 

with lower minimum ADC values and higher ADC difference values had worse distant 

metastasis-free survival189. Tumors with these characteristics had greater cellularity and 

intratumoral heterogeneity, corresponding to greater aggressiveness. 

With a DL approach, which is more complex than conventional radiomics, we did not find a 

meaningful performance of the model for several possible factors. BC is a heterogeneous 

disease, characterized by considerable pathophysiologic and histologic variability: the different 

molecular subtypes each have a different rate of aggressiveness and a different mean period 

free of recurrence or relapse. In addition, each molecular subtype has preferential sites of 

metastasis development. In a study by Xiao et al., HR+ BCs were correlated with the risk of 

bone metastasis, HER2+ subtypes were significantly associated with higher rates of liver, 

brain, and lung metastasis, and triple-negative tumors had a higher rate of brain metastasis but 

a significantly lower rate of bone metastasis190. These differences imply variability in the risk 

of metastasis as well as their clinical manifestation. This necessarily implies that surgical and 

pharmacological treatment must be particularly tailored to the patient, an element that may lead 

to further variation in the risk of distant disease and the time required for the onset of 

metastasis. A recent study by Cheng et al. investigated and validated the radiomic approach for 

predicting the risk of metastasis from BC: in this study, patients with the same molecular 

subtype (triple negative BCs) and with metastasis only in the brain site were selected. We 

expect that achieving similar homogeneity of the selected patient cohort may result in increased 

performance of the AI model. 
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Our study has some limits: this is a retrospective study, with a relatively small number of 

patients with highly heterogeneous BC types. In addition, we could not explore the possible 

differences between the different histologic and molecular subtypes, nor the risks of developing 

metastases for each organ site, due to the small sample size. Segmentation was performed by 

one radiologist using the same methodology for all lesions, but with a manual assisted 

approach, which is a method that is time-consuming as well as not error-free. Only the second 

post-contrast phase was used as the segmentation mask, which, although it is recognized as the 

phase with higher contrast resolution for BCs, could cause the loss of additional information 

available from the other sequences. In particular, by considering only the second post-contrast 

phase, we lost information on the temporal dimension of the post-contrast tumoral 

enhancement progression, which was instead included in our previous DL study on the 

prediction of loco-regional lymph node status, which might explain the higher accuracy 

obtained142. 

Therefore, several steps are needed to improve the current performance of our model: 

enrollment of more patients to alleviate histological differences in BCs, sharing of different 

datasets among multiple institutions, development of prospective and multicenter studies, and 

validation and comparison of additional AI models. Thus, the study population should be as 

homogeneous as possible, with equal histological and molecular subtypes, and metastases in 

the same sites. In this regard, in this study we found a significant correlation between HER2, 

PgR expression, and metastasis risk, so the first successive step should be to select a cohort of 

patients with the expression of these two specific molecular receptors. 

Our study demonstrated a currently insufficient ability of the Deep Learning approach in 

predicting distant metastasis status in patients with BC using CNNs. Our results suggest that 

further studies are necessary to investigate the role of AI in this specific task. 
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6 CONCLUSIONS 

This thesis concerns the works we published in about 3 years on the role of artificial 

intelligence in the evaluation of the breast cancer TNM through magnetic resonance imaging.  

Nevertheless, we dealt with three major topics: the breast cancer primary tumor, the axillary 

lymph node involvement and the distant metastasis. 

Although the growing interest demonstrated in literature in recent years, in all the above-

mentioned topics we noticed that several issues were open,  associated to a large heterogeneity 

in terms of methodology and results in the published papers. 

Through our reviews deepened in Chapters 4.1 and 5.1, we realized how the present literature 

only focuses on the so-called “traditional machine learning systems”, with an exceptional 

shortage in terms of papers addressing the use of Deep learning approaches. 

We may boast the absolute novelty of having conducted several experiments, among which the 

most significant are the evaluation of the role of tumor associated edema in the prediction of 

tumor histological aggressiveness and the evaluation of a multimodal approach through a deep 

neural network.  

However, the absence of comparable studies could represent a significant limitation since our 

results require external validation and can be hardly defined as generalizable. 

It is noteworthy how in the field of axillary lymph node prediction, both the application of 

machine learning systems and the deep Learning algorithms led to such encouraging results 

and how the multimodal approach demonstrated the significant role of pre-contrast sequences, 

reinforcing the results obtained in the first works on the pre-contrast sequences about the 

primary tumor, furtherly explained in Chapter 3.1 and 3.2. 

Conversely, the same neural network used in the prediction of distant metastases did not 

perform as well as in the prediction of the axillary lymph node. This essentially means that, 

from a clinical point of view, it is not always immediate to seek an explanation of the tumor 

behavior by moving away from the primary site of the breast tumor itself. But on the other 

hand, from a technical point of view, it indicates the difficulty of finding the optimal algorithm 

which can predict different outputs. 
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Surely, one of the main limits of our studies both concerning lymph node status and metastatic 

diffusion, is represented by the unbalance of input categories. However we tried to overcome 

this bias trough some tricks, for example by setting a misclassification cost, to make results 

more reliable and generalizable results. 

 

In conclusion, if the scientific literature of artificial intelligence in the field of breast cancer is 

in a pioneering phase, the application of radiomics and deep learning in this context are still in 

an embryonic state. 

Research in this topic presents undisputed difficulties due to the absence of consolidated data 

but at the same time enormous application potential. 

The horizon of the medical clinic can be broadened by artificial intelligence if research has 

shared objectives and transversal collaboration. 
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