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Abstract 

 

 

 

The human hand is considered as the highest example of dexterous system capable 

of interacting with different objects adapting its manipulation abilities to them. 

Therefore, the hand loss causes severe impairment for the amputee and can 

significantly reduce quality of life. In the last 70 years there have been significant 

improvements in the upper limb prosthetic hand field thanks to the advancements 

in the technological field and in the surgical procedure leading to prosthetic devices 

that are more conceived to reproduce aesthetical as well as functional features of 

the lost limb. However, the currently adopted hand prosthesis surface 

electromyography (sEMG) control strategies, representing the clinical state of art, 

do not provide the users with a natural control feeling and do not exploit all the 

potential of commercially available multi-fingered hand prostheses. Pattern 

recognition (PR) and machine learning techniques applied to sEMG can be effective 

for a natural control based on the residual muscles contraction of amputated people 

corresponding to phantom limb movements. As the researches has reached an 

advanced grade accuracy, these algorithms are mature and widely validated, and 

the embedding is necessary for the realization of prosthetic devices.  

This thesis wants to address the specific issue of enhancing both the performance 

and the control feeling of existing multi-grasp prosthetic hands, by designing a new 

embedded control based on pattern recognition algorithms applied to sEMG signals. 

To this purpose, firstly a comparison among different supervised machine learning 

techniques on data collected from 30 people with trans-radial amputation is carried 

out in order to provide innovative engineering tools and indications on how to 

choose the most suitable classification algorithm based on the application and the 

desired results for prostheses control. Then, the obtained result has been used for 

the design and evaluation of an embedded control system (hardware-firmware-

software) for hand prostheses capable to handle up to five different grasping 

movements, successfully tested on amputee subjects. 

As complementary activity, this thesis proposes a new approach for neural control 

of hand prostheses, grounded on pattern recognition applied to the envelope of 
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neural signals. It was demonstrated that it is possible to apply the well-known 

techniques of EMG pattern recognition to a conveniently processed neural signal 

and can pave the way to the application of neural gesture decoding in upper limb 

prosthetics. This intends to overcome limitations of traditionally adopted 

techniques of sEMG and ENG processing allowing both to control a prosthetic 

device and to stimulate the PNS. 
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Chapter 1  

 

 

Introduction 

 

 

The hand loss causes severe impairment for the amputee and can significantly 

reduce quality of life. The relevance of upper limb loss in the international scenario 

motivates the flourishing research in the field of upper-limb prosthetic [1]. 

In clinics the state-of-the-art technology for people with trans-radial amputation is 

commonly, a dual-site controlled myoelectric hand prosthesis. The available single 

degree of freedom (DoF) is actuated by applying a simple threshold or a 

proportional amplitude method on surface electromyography (sEMG) signals 

recorded from antagonistic muscles (e.g., wrist flexor and wrist extensor) that can 

be easily contracted in a separate way. In the case of multi-fingered hand prosthesis 

with several degrees of freedom (DoFs), but still having two control signals, the 

switching between DoFs or predefined grasps is normally made by co-contraction, 

as in a finite state machine (control strategy). This serial operation, despite being 

extremely robust, is slow and unnatural; in addition, it requires considerable 

training and cognitive effort [2]. On the other hand, Targeted Muscled Re-

innervation (TMR) [3], via surgical operation, allows replacing nerves from the 

stump of persons with amputation to different anatomical muscles (e.g., chest 

muscles) in order to obtain independent signals. The risk associated to the surgical 

re-innerving operation is the main drawback that limits the applicability of this 

technique to all the kinds of amputations [4]- [1]. Hence, PR techniques based on 

sEMG currently represent the best compromise between invasiveness and 

prosthesis controllability and thanks to the notable scientific progress, allows 

increasing the number of controllable DoFs by keeping low the number of utilized 

electrodes [5]. Recognizing the user’s will, control strategy resorting to PR 

techniques could improve performance by mapping the actuation of the prostheses 
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on sEMG signals produced as result of phantom limb gestures [6]. The system 

becomes more user-friendly and makes easier complex tasks that may include the 

sequential actuation of different DoFs. 

 

1.1 Objectives 

Myoelectric control systems based on PR techniques (Fig. 1) rely on supervised 

machine learning classification algorithms. 

 

 

Figure 1. Block diagram of a generic pattern recognition system based on sEMG signals. 

 

 An initial training phase is needed, during which the system learns the way of 

linking the gestures to specific myoelectric patterns. Subsequently, the trained 

system is able to associate the desired task to the recorded pattern. Usually the 

feature extraction step precedes classification of sEMG signals; hence the most 

important components of the recorded myoelectric signal on a chosen time window 

are identified and selected [7] in order to improve the stability of the features 

(reducing variance and increasing classification performance).  Previous studies 

suggest that the optimum window length for PR controls ranges from 150 to 250 

ms depending on the skill of the subject [8]. For real-time applications it is 

conventionally accepted that the actuation delay must be less than 300 ms. 

Therefore here it is proposed to use “raw” filtered sEMG signals as input features; 

this enables an extreme reduction of the classification time and response time of the 

system without significant loss of system performance [9]- [10]- [11]. The saved 

time is used to improve the stability of the classification by means of post 

processing techniques as voting and/or threshold policies [12]- [13]. 

Linear classifiers, such as Linear Discriminant Analysis (LDA), Logistic 

Regression (LR) or Support Vector Machine (SVM) with linear kernel, and 
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nonlinear classifiers, such as Non-linear Logistic Regression (NLR), Support 

Vector Machine (SVM) with nonlinear kernels and Multi-Layer Perceptron (MLP), 

represent the state-of-the-art about PR classifiers [14]- [15]. The main difference 

between linear and nonlinear classifiers consists in the shape of the decision 

boundary: straight line, or plane in the first case and curved line, or surface, in the 

second. Performance, complexity and computational time usually increase together. 

Hence, the choice of a classification algorithm should not be entirely relied upon 

performance, but rather on a trade-off between computational burden and 

performance, especially in embedded systems. The main issue related to these 

algorithms is the robustness and reliability of the classification and it is unlikely to 

use directly the classification outputs for the online control of the prosthetic device. 

Hence, a control strategy able to combine robustness, reliability and less cognitive 

effort has to be included between the classification algorithm and the internal 

control of the prosthetic hand. Therefore, aim of this thesis is to provide useful 

insights into the choice of the suitable classifier (and its specific internal settings) 

for the embedded control of multi-fingered hand prostheses and to design a fully 

embedded control unit able to recognize the user will, via PR algorithms, and to 

control a multi-fingered prosthetic hand exploiting a new control strategy. 

However, although solutions based on patter recognition on EMG signals are 

promising, they suffer from the limitation that the subject cannot be provided with 

a natural sensory feedback. On the other hand, it has been shown that invasive 

solutions based on neural electrodes allow directly stimulating the Peripheral 

Nervous Systems (PNS) and eliciting in the patients close-to-natural tactile 

feedback [16]- [17]- [18]- [19]. This kind of interfaces can be used with the twofold 

purpose of stimulating the PNS and recording the neural information coming from 

the brain to drive the residual muscles. Hence, assuming that it is possible to de-

code human motion intention from the neural signals, i.e. the electroneurogram 

(ENG), neural interfaces offer the huge advantage that they can both record from 

and stimulate the PNS in a more natural way than the other interfacing systems. 

Hence, as complementary activity, a new method for processing ENG signals 

specifically aimed at controlling hand prostheses has been proposed. This intends 

to overcome limitations of traditionally adopted techniques of ENG processing by 

(i) computing the ENG envelope (eENG), starting from the recorded neural signals; 

(ii) resorting to sEMG PR techniques applied to the eENG. The main advantages of 
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the proposed approach are related to the reduced computational burden and the on-

line processing (which are paramount for closed loop interfaces). 

This thesis is structured as follows:  

• Chapter 2 presents an overview of the upper limb prostheses at the moment 

clinically available and the state-of-art about research myoelectric controls 

for prosthetic hands; 

• In Chapter 3 is reported a comparative analysis of PR algorithms on sEMG 

data collected from 30 people with trans-radial amputation in order to 

identify the most suited one for the use in the control of multi-fingered 

prosthetic hands. The following contents are taken from the paper that the 

candidate has published on Journal of NeuroEngineering and 

Rehabilitation [20]; 

• Chapter 4 presents the innovative control strategy and the detailed 

description of the steps taken for the design and evaluation of an embedded 

control unit for the control of multi-fingered prosthetic hands; 

• Chapter 5 presents a new approach for neural control of hand prostheses, 

grounded on pattern recognition applied to the envelope of neural signals. 

The following contents are taken from the paper that the candidate has 

submitted on Journal of Neuroscience Methods [21]; 

• In Chapter 6 are finally reported a discussion and conclusive remarks. 
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Chapter 2  

 

Overview on Upper Limb 

Prosthetics 

 

 

2.1 Introduction 

 

Limb prostheses are tailor-made medical devices that try to replace the functionality 

of lost joints and to date they often draw on the engineering field of biomechatronics 

in their technological solutions. In particular, upper limb myoelectric prostheses 

require a high-tech contribution because they try to replace many complex functions 

while respecting rigid constraints in terms of weigh, size and aesthetics. 

The European Standard BS EN ISO 9999:2016 establishes a classification and 

terminology of assistive products, especially produced or generally available, for 

persons with disability. In these terms, prostheses are defined as “externally applied 

devices used to replace wholly or in part an absent or deficient body part. […] An 

upper limb prosthetic system is a collection of compatible components, usually 

produced by a single manufacturer and commercially available; the components 

may be integrated with any individually manufactured component to produce a 

range of different upper limb prostheses”. Despite the advances in prosthetics, not 

all people with amputation choose to use a prosthesis to compensate the lack of the 

limb. Indeed, subjects that have suffered from a complete limb loss, or who were 

born with this absence, in some cases feel the prosthetic device as an obstacle. 

Inexperience and annoyance in the use of a foreign body represent the main reported 

issue. For this reason, it is possible to find in literature several types of prosthetic 

control exploiting machine-learning techniques in order to increase the 

acceptability of the prosthesis. 
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This chapter presents the state-of-art trans-radial prosthetic hands and a detailed 

overview of four of the most common pattern recognition algorithms used in 

scientific literature for the control of prosthetic hands. 

 

 

2.2 Prostheses for Trans-Radial Amputation 

 

It is generally possible to pick out four fundamental elements in the mechanical 

architecture of a generic upper limb prosthesis: the terminal device, artificial limb 

segments, a certain number of functional components (active and passive 

articulation) driving the artificial segments and the socket [22]. The socket is the 

interface between the patient by means of which the prosthesis is suspended to the 

subject’s stump and has a fundamental role for satisfactory use of the device. Made 

with plastic resins or carbon fiber, each socket is custom hand-made from a plaster 

cast of the stump in order to ensure the maximum comfort. There are three main 

types of prostheses in the upper limb scenario: (i) Cosmetic, (ii) Kinematic, and (iii) 

Myoelectric. Cosmetic restoration is a popular prosthetic option that is similar in 

appearance to the non-affected arm or hand (Fig. 2) and provides just a simple aid 

in balancing and carrying (passive prostheses). This type of prostheses is used by 

people for which the outward appearance plays a very important role or by people 

that cannot successfully used active prostheses. Cosmetic Prostheses are very 

realistic and assure a psychological support to permit the amputees to live in the 

society avoiding to be shy for their difference with people having sound limbs. 

 

 

 

Figure 2. Cosmetic Prosthesis. 
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A kinematic prosthesis is powered and controlled by gross body movements. These 

movements (usually of the shoulder, upper arm or chest) are captured by a harness 

system, which is attached to cables controlling the active joints (Fig. 3).  

 

 

Figure 3. Kinematic elbow Prosthesis. 

 

Despite excellent construction characteristics, lightness, robustness and reliability 

such prostheses provide a low level of comfort, due to the presence of the support 

straps and traction cables. 

Myoelectric prostheses the energy required to operate the active joints is supplied 

by external sources. The widespread kind of this category uses small electrical 

motors to provide power to the articulations. The motors driving the active joints 

are directly activated by the amputee by means of sEMG input commands that are 

collected by proper sensors placed in appropriate location provided in the socket of 

the prosthesis (Fig. 4). These signals are processed by a programmable electronic 

circuit, which carries out the control strategy to operate the device.  

 

 

Figure 4. Myoelectric Prosthesis. 
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Unlike a body-powered prosthesis that requires gross body movement to operate it, 

a myoelectric prosthesis only requires the wearer to generate simple control signals. 

However, the battery system requires maintenance, (which includes charging, 

discharging, eventual disposal and replacement) and, because of the 

electromechanical components, this type of prosthesis tends to be heavier than other 

prosthetic options, although advanced suspension techniques can minimize this 

sensation. 

For this last type of prostheses are commercially available two types of terminal 

device: sDoF and DOFs hands. sDoF hands, or manipulators, are prosthetic devices 

the manipulator is a prosthesis optimized for manual work and, in its realization, 

usually no particular attention is paid to the aesthetics in lieu of gripping force, 

robustness and reliability (Fig. 5). 

 

 

Figure 5. Single degree of freedom hands. a) Ottobock myoelectric speed hand without external cover. b) 

Ottobock myoelectric speed hand with extern cover. c) Ottobock electric Greifer terminal device. 

 

DoFs hand prostheses are instead very similar to the human hand with five fingers 

and on the market, there are three main devices: “Michelangelo” (Ottobock), 

“Ultra-Limb” (Touch Bionics) and “Bebionic” (Steeper). The Michelangelo hand 

[23] (Fig. 6) is an anthropomorphic prosthesis with three degrees of actuation: one 

to open-close the hand, one to adduct-abduct the thumb and the last to rotate the 

wrist.  
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Figure 6. Michelangelo hand prosthesis by Ottobock. 

 

Bebionic3 hand [24] (Fig. 7a) is a five-fingered prosthetic device with one actuator 

for each finger. It can achieve 14 different grip patterns and is designed to handle 

almost anything that the amputee needs to do in an average day, from eating meals 

and carrying bags, to opening doors switching on lights and typing. The sound hand 

of the user moves Thumb and wrist. 

At last, the Ultra-Limb prosthesis [25] (Fig. 7b) features powered rotating thumb 

and individually active articulating fingers offering unparalleled dexterity and 

reliable access to precision grip patterns. With 24 grip options can also be controlled 

via a mobile application. 

 

 

Figure 7. a) Bebionic3S prosthetic hand by RLS Steeper. b) Ultra-Limb prosthetic hand by Touch Bionics 
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2.3 Clinically Available Myoelectric Controls 

 

As mentioned above, myoelectric prostheses use small electrical motors, which are 

directly driven by the amputee by means of sEMG input resulting from the 

contraction of residuals muscles of the stump. In clinics, the state of art allows the 

user to control just one degree of freedom (DoF) at a time even in the case of DOFs 

hands. The available DoF can be actuated by different amplitude methods on sEMG 

signals recorded from antagonistic muscles (e.g., wrist flexor and wrist extensor) 

that can be easily contracted in a separate way. Three are the main myoelectric 

controls to regulate the speed of the prosthesis: 

1. Single Threshold; 

2. Double Threshold; 

3. Proportional. 

The single threshold (Fig. 8a) is the simplest type of motion control allowing the 

constant speed actuation of the motor when the sEMG signal exceeds a pre-set 

threshold. Both the speed and the threshold are customizable according to the 

characteristic of the person with amputation. 

Having very few requirements, this technique has the advantage to be applicable to 

almost all subjects. On the other hand, not being able to adjust the speed in real time 

is undoubtedly an unnatural solution, which has great limitations both in the taking 

of objects and in human interactions. A direct evolution from this method is 

represented by the double threshold (Fig. 8b) in which the movement speed can 

take two values discriminated by two different sEMG threshold.  

 

 

Figure 8. a) Single Threshold control trend. b) Double Threshold control trend. 
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Exceeding the first threshold the prosthesis moves with a minimum speed, while 

surpassing the second one results in a greater speed. Again, it is possible to 

customize both the thresholds and the rotation speeds of the actuators. This model 

of control, although still rudimentary, represent an improvement in the usability of 

the prosthetic device, however it still suffers issues due to real-time 

uncontrollability of the movement speed. Proportional sEMG signal amplitude 

control (Fig. 9), which is the most commonly used, overcomes these issues by 

regulating the speed of the actuation imposing a proportional linearity with the 

muscular contraction. 

 

 

Figure 9. Proportional control trend. 

 

In the case of multi-fingered hand prosthesis with DoFs as well as for multi-limb 

prostheses, but still having two control signals, the switching between DoFs, or 

different active joint, or predefined grasps is obtained by mean of a control strategy 

usually representable as a finite state machine. Certainly, the most used control 

strategy relies on a cyclic selection (Fig. 12). The switch among the states of the 

cycle is achievable by mean of different trigger command. Commonly: 

1. Electro-Mechanical Switch: the transition to the next state can takes place 

pressing an electro-mechanical switch with the sound limb. 

2. Third Sensor: the progress in the cycle is made by contracting a muscle that 

has exclusively this function (e.g. anteposition of the shoulder) on which is 

placed a dedicated sEMG sensor. 

3. Co-contraction: The selection signal relies on a combination of signals from 

the motor control sensors by contracting the two command muscles. 

TH
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Figure 10. Cyclic Selection Control Strategy representation for the selection of the desired grasp from a 

predefined set. 

 

This serial operation, despite being extremely robust, is slow and unnatural; in 

addition, it requires considerable training and cognitive effort [2]. Indeed, in order 

to avoid the cyclic selection different strategies has been proposed, exploiting 

multi-position slide switches or even through a mobile app, but they are far from a 

physiological motion control. Hence, thanks to its simplicity and robustness, 

agonist/antagonist proportional control is still the most adopted option for 

myoelectric prostheses in commercially available systems as well as in clinical 

applications [26]. 

 

 

2.4 Advanced Myoelectric Controls 

The technological advancement and the stimulus towards overcoming the cyclic 

selection strategy has led to the development of control systems that combine 

technological advances and those in the surgical field. In these terms two additional 

techniques have been developed, i.e. the Targeted Muscle Reinnervation (TMR) 

[27] and the recent nerve transfer in brachial plexus injury [28]. In the TMR [27], 

the remaining arm nerves are reallocated to residual chest or upper-arm muscles 

FIST LATERAL

TIP

POINT
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that are no longer biomechanically functional due to the amputation. Once re-

innervated, these muscles serve as biological amplifiers of motor commands from 

the transferred arm nerves and provide physiologically appropriate sEMG signals 

for the arm control. This procedure is especially applied to subjects with very 

proximal amputation, which usually control the motors of the prosthetic arm 

through switches actuated with residual shoulder movement or myoelectric signals 

acquired from muscles of the chest and back. With respect to these control 

techniques, TMR (Figure 11) presents several advantages, such as improvements in 

function (measured both objectively and subjectively), ease of use, simultaneous 

control of more than one DoF, fast and seamless motion [29]. 

 

 

Figure 11. TMR prosthetic setup. 
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In [28] nerve transfer in brachial plexus injury is presented. It is defined “bionic 

reconstruction.” After free functioning muscle transfer procedure for the restoration 

of shoulder and elbow functions, the hand muscle activity has been restored 

selectively transferring the nerves in order to optimize the number of 

electromyographic sites. The surgical procedure and the rehabilitation program 

allowed the improvement of sEMG activity and the maximization of the prosthetic 

hand functions. However, the high cost and risk associated to the surgical re-

innerving operation are the main drawbacks that limits the applicability of these 

techniques to all the kinds of amputations [4]- [1]. 

On the other hand, the development of PR techniques on sEMG signals aims to 

increase the number of controllable DoFs (and consequently the number of feasible 

functions) through a physiological control without a significant increase in cost and 

risk. Myoelectric control based on PR techniques resorts to supervised machine 

learning algorithms [7]:  in an initial training phase the system learns to associate 

different hand gestures to different myoelectric patterns based on the phantom limb 

effect (sensation that an amputated or missing limb is still attached). This 

association is then adopted in the daily use of the prosthesis. Since approximately 

60 to 80% of individuals with amputation experience phantom sensations in their 

amputated limb, this technique could be applied for a large number of people with 

upper limb amputation. The first step of PR consists of the feature extraction: the 

main components of the recorded myoelectric signal are identified and selected in 

a time window between 150 and 250ms, depending on the skill of the subject [8]. 

The main purpose of this step is to enhance the information content, retaining 

information about contraction discrimination while discarding the irrelevant ones. 

Feature extraction techniques are typically in the time domain and in the frequency 

domain [14]. Commonly used time domain techniques are: mean absolute value 

(MAV) [30]- [31]- [32], zero crossing (ZC) [30], waveform length (WL) [33], root 

mean square (RMS) [30], slope sign change (SSC) [33], and AR model [34]. 

Techniques in the frequency domain are more accurate, but also computationally 

more demanding than time-domain techniques. They include: Short-Time Fourier 

Transform (STFT), wavelet transform (WT) [35]- [36]- [37]- [38]- [39]- [40] and 

wavelet packet transform (WPT) [41]. In order to reduce the computational 

complexity and, at the same time, increase the performance of the subsequent 

classification [42], the dimensionality reduction through the Principal Component 
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Analysis (PCA) can be applied to EMG signals [43]. Classification follows feature 

extraction and dimensionality reduction. It is responsible for the decoding of the 

patient motor intention. PR classifiers [44]- [45]- [14] can be grouped in the 

following main categories, sorted by increasing complexity: linear classifiers, such 

as Linear Discriminant Analysis (LDA) or Perceptron or Support Vector Machine 

(SVM), non-linear classifiers, such as Non Linear Logistic Regression or SVM with 

non-linear kernels, and Multilayer Perceptron or Multilayer SVM. The main 

difference between linear and non-linear classifiers is the shape of the decision 

boundaries that divide the features space in classes: straight line (or plane or hyper-

plane) in the linear case and curved in the non-linear one. An extensive inspection 

of classifiers can be found in [15] and [7]. In the literature, a large number of feature 

sets and classification algorithms employed in myoelectric control have been 

investigated and compared in detail. Notwithstanding, there is no clear evidence of 

the superiority of one classifier over the other ones; it is shown that classifiers can 

reach similar performance in terms of offline accuracy, provided that an appropriate 

feature set and an adequate number of sampling sites of the EMG signal are used 

[15]. In [46] the effects of the choice of feature sets over classifier performance are 

in-depth investigated. Moreover, methods based on “raw” filtered EMG signals 

have been recently proposed; they allow considerably decreasing the time for 

feature extraction and skipping the feature reduction step without significant loss 

of system performance [10]- [11]. 

The main issue related to control based on PR algorithms on sEMG signals is the 

robustness and reliability of the classification and it is unlikely to use directly the 

classification outputs for the online control of the prosthetic device. It is worth 

observing that the viability of PR in a clinical setting should consider that off-line 

accuracy could not correspond to real-time performance [47]. Actually, despite the 

first proposed control scheme based on PR dates back to the late sixties [48]- [49], 

only recently its clinical viability appears to be closer [15], especially thanks to the 

improvements achieved in signal processing, multichannel instrumentation and 

microprocessor technology. Indeed, the first prostheses control device based on PR 

and surface electrodes (COAPT [50]) is commercially available since January 2015 

(Fig. 12). Developed in cooperation with Dr. Todd Kuiken and NECAL laboratory 

at the Rehab Institute of Chicago, it is undergoing clinical trials in several US 

rehabilitation centres, also in conjunction with TMR.  Nevertheless, long is the way 
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for a, physiological, robust and reliable control system and the developing PR based 

control is still an open challenge. 

 

 

Figure 12. COAPT-Engineering Prosthetic Setup. 

 

 

2.5 Conclusion 

 

In this chapter, a review about myoelectric control for upper limb prosthesis has 

been presented. The main limitation of agonistic/antagonistic control consists of the 

limited number of controllable DoFs. However, thanks to its simplicity and 

robustness, results to be the most adopted control option for myoelectric prostheses 

in commercially available systems as well as in clinical application. In order to 

overcome these issues invasive solutions has been investigated (e.g. TMR) but the 

high cost and risk associated to the surgical re-innerving limit the applicability of 

these techniques to all the kinds of amputations. On the other hand, the development 

of PR techniques on sEMG signals aims to increase the number of controllable 

DoFs (and consequently the number of feasible functions) through a physiological 

control without a significant increase in cost and risk. Indeed, the first prostheses 
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control device based on PR and surface electrodes (COAPT) is commercially 

available since January 2015. The main issue related to control based on PR 

algorithms on sEMG signals is the robustness and reliability hence, the way for a 

physiological, robust and reliable PR based controls is still an open challenge. 
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Chapter 3  

 

Comparative Analysis of Pattern 

Recognition Algorithms for Hand 

Myoelectric Control 

 

3.1 Introduction 

 

For the purposes of this thesis, after a careful study of the literature concerning 

pattern recognition algorithms applied to prosthetics, the search for the most 

suitable algorithm for the application in the clinical practise on amputated patients 

is followed. Furthermore, in the recent work [2] it has been shown that every 

classifier can be potentially employed in the control of multi- DoFs if properly 

optimized. Hence, the choice of the most suitable classifier for the embedded use 

in prosthetic control has to be taken on a statistical basis. Performance, complexity 

and computational time usually increase together. Indeed, the choice of a 

classification algorithm should not be entirely relied upon performance, but rather 

on a trade-off between computational burden and performance, especially in 

embedded systems. To this purpose, a comparative analysis among NLR, MLP, 

SVM with Radial Basis Function (RBF) kernel, and LDA with time domain feature 

extraction, considered as benchmark classifier, on sEMG data from 30 people with 

trans-radial amputation is carried out, in terms of performance and computational 

burden. The use of LDA with time domain feature extraction in on-line control of 

prosthetic devices has been demonstrated by several studies [51]- [52]; this method 

is now commercially available in the US by COAPT [50]. 

The following contents are taken from the paper that the candidate has published 

on Journal of NeuroEngineering and Rehabilitation [20]. 
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3.2 Material and Methods 

 

3.2.1 sEMG Data Acquisition Protocol 

The same acquisition protocol as in [53] was used to collect the sEMG data from 

the subjects participating in the experiments. Thirty people with trans-radial 

amputation, aged between 18 and 65, free of known muscular and/or neurological 

diseases, participated in the experiments. Each subject gave informed consent 

before performing the experiments, which were approved by local scientific and 

ethical committees, and were already experienced in myoelectric control of 

prosthetic hands. Six commercial active sEMG sensors (Ottobock 13E200=50, 27 

mm x 18 mm x 9.5 mm), representing the state of art about myoelectric sensor, were 

equidistantly placed on a silicone adjustable bracelet (Fig. 13a) and were fastened 

on subject’s stump (Fig. 13b). The number of the sensors to be used was chosen 

because it was considered the highest number, which on average is possible to place 

into the socket without compromising the structural integrity of the prosthesis. 

These sensors operate in the range 0-5 V with a bandwidth of 90-450 Hz and a 

common rejection ratio higher than 100 dB. The first sensor was located on the 

flexor carpi-radialis muscle, while the sixth sensor on the brachio-radialis muscle. 

These two muscles were identified by manual inspection of the stump; then, sEMG 

sensors were equally spaced each other on the silicone bracelet. The bracelet was 

located about 5cm below the subject’s elbow, in line with the positioning of the 

electrodes, commonly used to control the myoelectric prosthesis. The data was 

collected using a purpose-built software on LabView platform by means of a NI 

DAQ USB 6002 device in order to sample the six sEMG signals at 1 kHz frequency 

and with 12 bits resolution.  Each subject was sitting in a comfortable chair in front 

of a PC monitor (Fig. 13b), where one of five hand gestures was randomly shown. 

The subjects were instructed to reproduce steady state the displayed gesture with 

their phantom limb. Once the signals became stable the sampling session started 

and continued for 2 s obtaining for each sensor 2000 samples. The gestures to 

reproduce were selected among the eight canonical hand postures [7] and were 

“Rest” (relaxed hand), “Spherical” (hand with all fingers closed), “Tip” (hand with 

thumb and finger touching to pick up a small object), “Platform” (hand completely 
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open and stretched), and “Point” (hand with all fingers closed, except for the index 

finger that is pointing). 

  

 

Figure 13. Experimental Setup a) sEMG bracelet and NI DAQ USB 6002; b) Subject positioning and 

acquisition Software. 

 

Each acquisition started from “Rest” position; after two seconds of acquisition, the 

subjects were asked to return to the Rest posture. Moreover, the subjects were 

instructed to accomplish the task with the minimum muscular contraction and focus 

on the main phantom fingers related to the gesture. The selected gesture was shown 

as in Fig. 14. Ten repetitions of each gesture were accomplished in a single 

acquisition session with an inter-stimulus interval of about 5 s. Figure 14 also shows 

a case of the raw recording from the six sEMG sensors for all the imagined 

movements. The plot is related to a single acquisition session from one of the 

subjects who took part to the experiment. 

a)

b)
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Figure 14. Graphic display of the selected gestures and of the raw recording for the six different channels at the same time for all the imagined 

movements of a single acquisition session from one of the subjects who took part to the experiment. 
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3.2.2 NLR, MLP, and SVM Classification Algorithms 

In order to obtain a fast response real-time classification no feature extraction was 

performed from the recorded signals, hence the sEMG signal are used directly as 

input for the classification algorithms. The unique operation done on sEMG signals 

is the scaling. It consists of subtracting the mean value to each signal and dividing 

the result by the range. Hence, for each time step (i) we obtain a six-element vector 

𝑥(𝑖)  of scaled sEMG signals, which is used as input for the classifiers to compare, 

i.e.: NLR, MLP, LDA, and SVM with RBF kernel. Supervised machine learning 

techniques are commonly adopted in problems where there is no functional 

relationship  𝑦 = 𝑓(𝑥) that binds the inputs 𝑥(𝑖)  with the corresponding class (𝑦). 

There are two different approaches to classification: the first one returns a 

distribution 𝑃(𝑦|𝑥); the second one returns a result without any probability of class 

membership [54]. 

LR [55], or Perceptron, is a linear and binary supervised classification algorithm 

that calculates the class membership, probability using the following logistic 

function 
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where 𝜃 and 𝜃0 are the classification parameters vector and the bias term, 

respectively, and g(∙) is the logistic, or sigmoid, function. In order to achieve a NLR 

the creation of additional input features (interaction terms) is needed. For this study, 

additional polynomial features were used, which were obtained as a combination 

product of the starting input features (e.g. 𝑥1; 𝑥2; 𝑥1 ⋅ 𝑥2; 𝑥1
2; 𝑥2

2; …). The 

prediction of class labels (ℎ𝜃) for LR or NLR algorithm is then achieved by 

comparing the distribution 𝑃(𝑦|𝑥) with a decision threshold (𝑇𝐻) as 
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MLP [54]- [55] is a particular case of supervised Artificial Neural Network (ANN) 

where each node, or neuron, of the architecture implements a logistic function. The 

network architecture has an input layer, one or more hidden layers (with the same 

number of neurons), and an output layer with one neuron for each class to be 

classified. The output vector of the l-th layer (𝑎(𝑙)) of this particular classifier is 

obtained through forward propagation as 
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Where Θ(l), Θ0
(l) are the classification parameters matrix and the bias vector 

associated with the l-th layer, respectively, and L indicates the output layer. Hence, 

the output of the network is a vector 𝑃𝑣(𝑦|𝑥) whose elements represent the class 

membership probability expressed as 
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Also, for MLP it is possible to achieve the prediction of class labels (ℎΘ) by 

comparing each value of the distribution vector 𝑃𝑣(𝑦|𝑥) with 𝑇𝐻 and assigning to 

ℎΘ the index of the element of 𝑃𝑣(𝑦|𝑥) that represents the maximum among all 

those resulted above the decision threshold. 

SVM [54]- [55] is a linear and binary supervised classification algorithm that 

considers only dichotomous distinction between two classes, and assigns class label 

0 or 1 to unknown data item [21] as follows 
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In order to obtain a nonlinear classifier, a kernel function needs to be included into 

the model. A kernel function is a similarity function (𝑓), satisfying the Mercer’s 

Theorem, that expresses the similarity between the generic input vector 𝑥 and a 
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landmark (𝑠), representing the two classes. Typically, a selection of all the 𝑥 vectors 

recorded for training the SVM algorithm are set as landmarks and the j-th element 

of 𝑓 for a RBF kernel becomes 
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where 𝑛 is the number of landmarks chosen as representative vector of classes 0 

and 1, and 𝛾 is the internal RBF parameter. Then the input features vector becomes 

𝑓 and the class labels for a SVM with RBF kernel 1 are assigned as 
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Classification parameters 𝜃, 𝜃0, Θ(l), and Θ0
(l) are obtained from the minimization 

of a particular cost function J(∙) associated with each classifier. 

 

3.2.3 NLR, MLP, SVM Classifiers and Optimization Algorithm 

Implementation 

NLR, MLP and SVM classification algorithms were implemented in MATLAB. 

For NLR and MLP the code was ad-hoc developed, while for SVM the open source 

library libsm3.20 [23] was used. The developed function that implements NLR 

allows the user to choose the maximum value of the variable D, which encodes a 

structure of polynomial features as reported in Table 1. 

As polynomial features are intended the starting features high till the indicated 

degree and all the multiplications that arise from the possible permutations without 

repetitions of a maximum number of elements corresponding to the indicated 

degree.  

 

                                                 

1 note that in the following SVM will be used to indicate SVM with RBF kernel 
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ENCODING THE VARIABLE D 

   

Max D Value Description Example 

1 Linear case (LR) x1, x2, x3, x4, x5, x6 

2 max 2nd degree x1, …, x6, …, x1x2, …, x5x6, …, x1
2 , …, x6

2 

3 max 3rd degree x1, …, x6
2, …, x4x5x6, …, x6

3 

4 max 4th degree x1, …, x6
3, …, x3x4x5x6, …, x6

4 

5 max 5th degree x1, …, x6
4, …, x2x3x4x5x6, …, x6

5 

6 max 6th degree x1, …, x6
5, …, x1x2x3x4x5x6, …, x6

6 

7 max 7th degree x1, …, x6
6, x1

7, x2
7, x3

7, x4
7, x5

7, x6
7 

Table 1. Encoding the variable D. 

 

A cross-entropy error cost function has been associated to the NLR algorithm and 

is expressed  a 
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where 𝑚 is the number of samples used to train the algorithm and 𝑦(𝑖) is the known 

class membership of the i-th sample. Being NLR a binary classification algorithm, 

a one vs. all approach was implemented to address the multi-class classification 

problem.  

The developed function that implements MLP allows the user to decide the 

maximum number of hidden layers and the maximum number of neurons for each 

of them. A mean square error cost function has been associated to the MLP 

algorithm, as 
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where 𝐾 is the number of classes to be recognized, 𝑦𝑘
(𝑖)

 is the known k-th element 

of the class membership vector of the i-th sample, and 𝑎𝑘
(𝑖)

 is the k-th element of the 

evaluated membership probability vector of the i-th sample. 

As previously mentioned, the SVM classifier with RBF kernel has been developed 

exploiting the open source library libsvm3.20 that is widely used for multiclass 

machine learning problems. More detailed information can be found in [23]-[24]-
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[25]. Anyway, the cost function J(∙) associated to the SVM algorithm can be 

expressed as 
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The developed function allows the user to set the value regularization parameters C 

that appear into the cost function implemented in libsvm3.20 and the value of the 

internal RBF parameter γ. In this case, to address the multiclass classification 

problem it has been chosen to rely on a one vs. one method as recommended by the 

developers for practical usage of the library [56]- [57]. 

Since each of the aforementioned classifiers requires to set internal parameters, in 

addition to classification parameters 𝜃, 𝜃0, Θ(l), and Θ0
(l), it is coupled with an 

iterative optimization algorithm. The optimization strategy relies on a three ways 

data split approach [58]. Hence, the initial data set is divided into three subsets: 

“Training Set” (TR) containing 60% of the data, “Cross Validation Set” (CV) 

containing 20% of the data, and “Test Set” (TS) containing the remaining 20% of 

the data. These subsets are iteratively filled through a random shuffle until a 

configuration with a proportionated class number is reached. The TR is used to train 

the supervised classification algorithms by minimizing the specific cost function. 

As minimization algorithm, Resilient Backpropagation (RProp) [59] has been 

chosen for NLR and MLP and Limited memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) [60] for SVM. Each single classifier is iteratively trained with 

all the possible configurations of its internal parameters, varying each of these 

within an appropriate range of values. The CV is then used to evaluate performance 

of each configuration (i.e. model), in order to avoid overfitting and find out the best 

model. 

The F1Score [61] was used in this study to assess performance, in lieu of accuracy, 

being more robust also for classes that do not have a perfect symmetrical 

cardinality. Considering this simple confusion matrix  
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where nP is the number of true positive, nN the number of true negative, nFP the 

number of false positive and nFN the number of false negative, F1Score can be 

evaluated as 
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where PR is called Precision and RE is called Recall. 

After determining the optimal classifier model, the TS is used to achieve an 

estimation of the performance that the classifier is expected to show when new 

features are provided as input. 

 

3.2.4 NLR, MLP, SVM Downsampling and Creation of Generalization Set 

For each subject involved in the experiment, the data sampled at 1 kHz were 

organized in a matrix; each column of the matrix was coupled with an EMG sensor. 

Hence, the choice of avoiding features extraction based on time windowing of 

sEMG generated 105 × 6 data (large-scale datasets) and, consequently, a very long 

time (more than 4 hours per subject) is required to complete training and 

optimization for each classification algorithm. Therefore, downsampling has been 

applied to speed up the whole process. The discarded data were used to compose a 

new set of data called “Generalization Set” (GS) which has been used as second 

test set in order to obtain an estimation of the generalization ability of each 

classification algorithm. In particular, for a downsampling step equals to 10 (one in 

ten), the GS will contain 90% of the data, the TR 6%, the CV 2%, and the TS the 

remaining 2% of the data. In other terms, the results evaluated on TS represent an 
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estimation of the classification ability when the signal to classify is sampled at the 

same frequency of the training data (a downsampling step equals to 10 produce a 

100 Hz dataset) while results evaluated on GS represents an estimation of the 

classification ability when classifying a signal sampled up to 1 kHz. 

 

3.2.5 LDA Classifier 

LDA is a linear and binary supervised classification algorithm that considers a 

dichotomous distinction between two classes, and assigns class label 1 or 2 to 

unknown data item relying on the following decision function 
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where 𝛽 and 𝛽0  are the classification parameters vector and the bias term, 

respectively. Classification parameters can be evaluated as 
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where Σ is the pooled covariance matrix, 𝜇1, 𝜇2 and Π1, Π2 are the mean vectors 

and the prior probabilities of class 1 and class 2, respectively. Since this classifier 

does not require setting internal parameters, training and test rely on a two ways 

data split approach [58]. Hence, the initial dataset is divided into training set and 

test set. The training set contains 70% of the data (TR70%), and the test set contains 

the remaining 30% of the data (TS30%). The subsets are iteratively filled through a 

random shuffle until a configuration with proportionated class number is reached. 

The TR70% is used to train the classifier evaluating classification parameters 𝛽 and 

𝛽0; on the other hand, the TS30% is used to estimate the classifier performance when 

new features are provided as input. Being LDA a binary classification algorithm, a 

one vs. all approach was implemented to address the multi-class classification 

problem. The class label (𝑐) is predicted as 
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where 𝛽𝑐
  and 𝛽𝑐

 
0 are the classification parameters vector and the bias term of 𝑐 

class, respectively. For building our LDA benchmark classifier five commonly used 

time domain features were considered2: Mean Absolute Value (MAV), Root Mean 

Square (RMS), Slope Sign Change (SSC), Waveform Length (WL) and Variance 

(𝜎2). They were extracted in windows of 250 ms with an overlap of 200 ms 

[52].Since the training of the LDA classifier is performed by means of Eq. (9) and 

the feature extraction avoids the generation of large-scale-dataset, a short time is 

required to complete the training of the classifier and there is no need to perform 

down sampling. The classification algorithm was implemented in MATLAB with 

an ad hoc developed software code. 

 

3.2.6 Data Analysis 

The study was divided into three parts: the first one investigated the optimal range 

of D (initial guess 1-7) for NLR, and the range of maximum number of layers (initial 

guess 1-10) and neurons (initial guess 1-30) for MLP, while the second part is 

focused on the comparison among the NLR, MLP and SVM classification 

algorithms. The third part is focused on the comparison with our ground truth, the 

LDA classifier. The first part can be seen as a preliminary investigation in order to 

reduce the evaluation time of the comparison among the three classifiers. A 

downsampling step equal to 10 (and corresponding to a 100Hz sampling frequency) 

has been applied to data collected from 30 people with trans-radial amputation. 

Performance of each algorithm has been measured by means of the F1Score (12) 

value and a statistical analysis has been based on the Wilcoxon Signed-Rank test, 

which has been shown to be appropriate for comparing different classifiers in 

common datasets [2]- [62]. Statistical significance was considered at p < 0.05. The 

maximum value of D, of the number of layers, and of the number of neurons have 

                                                 

2 note that in the following LDA will be used to indicate LDA with 5-time domain features 
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been obtained by means of a sequential statistical analysis, starting from the 

simplest case and then sequentially comparing all the others until a high significant 

difference of performance is found. This is taken as the new benchmark for all the 

subsequent comparisons. The process ends when it is found the last case in which 

the differences are not statistically significant compared to all subsequent cases.  

The second part, the core of our work, resorted to the results obtained in the first 

part to compare NLR, MLP, and SVM considering both performance and run-time 

computational burden on EMG data collected from 30 people with trans-radial 

amputation. As regards the SVM, the range of variation of the regularization 

parameter C belongs to 0-104, with variable steps starting from 0.01 and doubling 

each time, while γ belongs to 0-50 (with a pitch equals to 0.1); both have been 

empirically determined in previous tests. The computational burden was evaluated 

through the number of parameters (n), expressing the cardinality of classification 

vector  (1) (7) or matrices Θ (4) that identify the particular classification algorithm. 

In detail, the number of matrix elements created by the libsvm training function, 

which are necessary to run the evaluated SVM model, were used for evaluating the 

cardinality of SVM parameters. Particularly they were: rho, sv_coef, and SVs [57]. 

The values of sample rate were: 5 Hz, 10 Hz, 20 Hz, 40 Hz, and 100 Hz 

(corresponding to 200, 100, 50, 25 and 10 downsampling step). Again, the statistical 

analysis has been performed through a Wilcoxon Signed-Rank test with 

significance threshold set to 0.05. Lastly a combined index, called EOF 

(Embedding Optimization Factor), that takes into account both performance and 

computational burden has been calculated. It is defined as 
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where NΘ is the maximum acceptable number of parameters. This index plays a 

paramount role in the implementation of these algorithms in embedded systems, 

where memory storage and program memory are limited. To this purpose, as 
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representative example, NΘ has been chosen as equal to the maximum number of 

parameters storable into a 256 KB memory, which is typically used for high 

performance embedded microcontrollers applied to prosthetic hands (e.g. Touch 

Bionics I-Limb, Ultra and Robo-Limb). As each parameter is coded as a float which 

4 memory bytes are needed to just store one of them, hence, for our example, the 

maximum number of storable parameters is 64 ∙ 103 classification parameters. This 

is an application example of how that index and NΘ can be evaluated, but the same 

method can be applied taking into account different size of memory and/or other 

constraints, such as the available RAM memory or the evaluation time for a single 

classification (which is related to the microcontroller clock frequency).  

In the third part a comparative analysis among the three non-linear classifiers and 

the LDA was carried out. Since LDA was trained and tested with data sampled at 1 

kHz (without downsampling), NLR, MLP and SVM models with the highest EOF 

values on GS were taken for the comparison. Again, the analysis was performed 

taking into account classification performance, computational burden and EOF 

index. The statistical analysis was performed through a Wilcoxon Signed-Rank test 

with significance threshold set to 0.05. 

 

 

3.3 Results 

 

The results are presented in boxplots where the central line represents the median 

value; the edges of the box are the 25th and the 75th percentiles; the whiskers give 

the range of the data without outliers; solid markers represent the mean value. 

 

3.3.1 Max Degree of Polynomial Features for NLR 

Figure 15 shows the values of F1Score of TS and GS over the max degree of 

polynomial features (indicated with D) applied as input to NLR. Table 2 

summarizes the F1Scores averaged over 30 people with trans-radial amputation and 

the corresponding obtained standard deviation (s).  
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Figure 15. F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes over the 

maximum value of variable D calculated from 30 people with trans-radial amputation. The figure also shows 

the trend of the mean value for both Sets. Statistical non-significance over value 5 is shown by “ns”. 

 

In both cases, the maximum is reached by setting 7 as maximum D value, but the 

Wilcoxon Signed-Rank test applied to the F1Score values points out no statistically 

significant difference for polynomial features over the value 5 for both GS and TS. 

The result seems to indicate that, for people with trans-radial amputation, the 

system performance saturates setting the maximum D value of the polynomial 

features over value 5 as showed in Fig. 15 by the trend lines of the mean values. 

 

CLASSIFICATION PERFORMANCE FOR NLR 

 F1Score (%)  

Max D value TS GS 

1 82.4 (8.4 s) 87.0 (9.4s) 

2 89.3 (7.1s) 90.6 (7.1s) 

3 90.1 (6.9s) 91.5 (6.4s) 

4 90.4 (6.7s) 91.8 (6.2s) 

5 90.6 (6.6s) 91.9 (6.2s) 

6 90.8 (6.4s) 92.2 (5.9s) 
7 90.8 (6.6s) 92.1 (6.2s) 

Table 2. Mean values and standard deviation of F1Score of Test Set and Generalization Set of 5 classes over 

the maximum value of variable D calculated from 30 people with trans-radial amputation. The highest values 

per Set are highlighted in bold. See Fig. 15 for a graphic display and statistical significance. 
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3.3.2 Max Number of Hidden Layers for MLP 

Figure 16 shows the values of F1Score of TS and GS over the max number of 

hidden layers. Each hidden layer has maximum 30 neurons for MLP. Table 3 

summarizes the F1scores averaged over 30 people with trans-radial amputation and 

the corresponding standard deviation (s).  

 

 

Figure 16. F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes 

over the maximum number of layers having fixed at 30 the maximum number of neurons for each 

hidden layer calculated from 30 people with trans-radial amputation. The figure also shows the 

trend of the mean value for both Sets. Statistical non-significance over value 5 is shown by “ns”. 

 

In both cases, the best performance is obtained for a maximum number of layers 

equal to 8, but the Wilcoxon Signed-Rank test applied to the values of achieved 

F1Score values points out no statistically significant difference over 5 hidden layers 

for both GS and TS. This probably means that for people with trans-radial 

amputation the system performance saturates for a maximum number of hidden 

layers over the value 5. 

 

 

 

CLASSIFICATION PERFORMANCE VARYING THE MAXIMUM NUMBER OF MLP HIDDEN LAYERS WITH 

MAXIMUM 30 NEURONS FOR EACH ONE. 
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 F1Score (%)  
Max Number of Layers TS GS 

1 84.7 (10.1s) 84.6 (9.9s) 

2 91.3 (6.8s) 91.7 (6.5s) 

3 92.1 (6.4s) 92.4 (6.1s) 

4 92.0 (6.1s) 92.4 (6.1s) 

5 92.2 (6.2s) 92.7 (5.8s) 

6 92.1 (6.0s) 92.7 (5.7s) 

7 92. (5.9s) 92.7 (5.8s) 

8 92.3 (5.7s) 92.8 (5.6s) 
9 92.2 (6.0s) 92.7 (5.8s) 

10 92.2 (5.9s) 92.7 (5.6s) 

Table 3. Mean values and standard deviation of F1Score of Test Set and Generalization Set of 5 classes over 

the maximum number of layers having fixed at 30 the maximum number of neurons for each hidden layer 

calculated from 30 people with trans-radial amputation. The highest values per Set are highlighted in bold. 

See Fig.  16 for a graphic display and statistical significance. 

 

3.3.3 Max Number of Neurons for MLP 

Figure 17 summarizes the values of F1Score of TS and GS with respect to the max 

number of neurons for a MLP with maximum 5 hidden layers varying by 5 the 

number of neurons until the value 23, for compactness.  

 

 

Figure 17. F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes over the 

maximum number of neurons for each layer. The maximum number of hidden layers calculated from 30 

people with trans-radial amputation has been fixed at 5. The figure also shows the trend of the mean value 

for both Sets. Statistical non-significances over value 23 for and overvalue 28 for GS are shown by “ns”. 
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Table 4 shows all the F1Scores averaged over 30 people with trans-radial 

amputation and the corresponding standard deviation (s). The Wilcoxon Signed-

Rank test applied to the achieved values of F1Score points out no highly statistically 

significant difference over 23 for TS and over 28 for GS. This probably means that 

for people with trans-radial amputation the system performance saturates for a 

maximum number of neurons between 23 and 28 depending on the frequency of the 

signals to classify. 

 

CLASSIFICATION PERFORMANCE VARYING THE MAXIMUM NUMBER OF NEURONS FOR A MAXIMUM 3 

HIDDEN LAYERS MLP 

 F1Score (%)  F1Score (%) 

Max Number  

of Neurons 
TS GS 

Max Number  

of Neurons 
TS GS 

1 84.4 (9.9s) 84.4 (9.9s) 16 91.3 (6.6s) 91.6 (6.5s) 

2 84.0 (10.7s) 84.1 (10.7s) 17 91.4 (6.4s) 91.9 (6.2s) 

3 86.5 (9.9s) 86.6 (9.8s) 18 91.5 (6.4s) 92.0 (6.0s) 

4 88.1 (9.0s) 88.3 (8.9s) 19 91.6 (6.3s) 92.0 (6.0s) 

5 88.7 (9.0s) 88.7 (8.8s) 20 91.6 (6.6s) 92.0 (6.2s) 

6 89.2 (8.1s) 89.4 (8.1s) 21 91.8 (6.5s) 92.2 (6.2s) 

7 89.7 (7.0s) 90.0 (7.5s) 22 91.6 (6.4s) 92.1 (6.1s) 

8 89.9 (7.s) 90.2 (7.2s) 23 92.0 (5.9s) 92.4 (5.9s) 

9 90.1 (7.4s) 90.4 (7.3s) 24 92.0 (6.1s) 92.3 (6.1s) 

10 90.4 (7.0s) 90.7 (7.1s) 25 91.9 (6.3s) 92.4 (6.1s) 

11 90.8 (6.9s) 91.1 (6.7s) 26 92.2 (6.2s) 92.5 (6.0s) 

12 90.8 (7.2s) 91.0 (7.0s) 27 92.2 (6.1s) 92.6 (5.8s) 

13 90.8 (6.8s) 91.4 (6.5s) 28 92.1 (6.0s) 92.5 (6.0s) 

14 91.1 (6.7s) 91.4 (6.6s) 29 92.2 (6.0s) 92.7 (5.7s) 
15 91.2 (6.5s) 91.6 (6.2s) 30 92.1 (5.9s) 92.6 (5.9s) 

Table 4. Mean values and standard deviation of F1Score of Test Set and Generalization Set of 5 classes over 

the maximum number of neuron having fixed at 5 the maximum number of layers calculated from 30 people 

with trans-radial amputation. The highest values per Set are highlighted in bold. See Fig. 17  for a graphic 

display and statistical significance. 

 

3.3.4 NLR, MLP, SVM Comparison Based on TR Sampling Rate 

Figure 18 shows the values of F1Score of TS and GS, obtained training the 

classifiers on TR sampled at increasing sampling rate (or at decreasing 

downsampling step) for NLR, MLP, and SVM. As mentioned in Sect. II, NLR and 

MLP has been optimized by using the results previously obtained by limiting to 5 

the maximum D value, for NLR and to 5 and 28 the maximum number of layers 

and neurons, respectively, for MLP.  
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Figure 18 F1Score values from 30 people with trans-radial amputation increasing the sampling frequency of 

the dataset used to train and cross validate the NLR, MLP, and SVM algorithms and 5 classes. Statistical 

significance is shown by “ * ”. a) F1Score values for Test Set; b) F1Score values for Generalization Set. 

 

Table 5 shows the F1Scores averaged over 30 people with trans-radial amputation 

and the corresponding standard deviation (s) for the three algorithms and both 

datasets TS and GS. Afterwards, performance of NLR, MLP, and SVM were 

compared, at different sampling frequencies of the dataset used to train the 
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algorithms, through a Wilcoxon Signed-Rank test. For both TS and GS, the analysis 

reports no statistically difference between the three classifiers when training the 

algorithms with a 5 Hz sampled dataset, and that NLR achieved significant lower 

value than MLP and SVM with the others sampling frequencies. Conversely, MLP 

achieved statistically significant lower performance than SVM only using a 100Hz 

frequency. 

 

F1SCORE FOR EACH ALGORITHM OVER THE INCREASING 

 THE SAMPLING RATE OF THE TRAINING SET  

 F1Score (%) TS  

Sampling Frequency NLR MLP SVM 

5 Hz 85.3 (9.2s) 85.6 (11.0s) 86.8 (7.5s) 

10 Hz 87.1 (8.1s) 88.2 (8.0s) 88.4 (8.1s) 

20 Hz 88.4 (7.8s) 89.9 (7.2s) 90.4 (6.8s) 

40 Hz 89.7 (6.8s) 91.2 (6.5s) 91.6 (6.2s) 

100 Hz 90.5 (6.6s) 92.0 (6.2s) 93.0 (5.4s) 

 F1Score (%) GS  

5 Hz 89.0 (80s) 88.0 (8.2s) 88.5 (7.4s) 

10 Hz 89.7 (7.7s) 89.5 (7.3s) 90.2 (6.7s) 

20 Hz 90.6 (7.1s) 90.5 (6.8s) 91.5 (6.1s) 

40 Hz 91.5 (6.4s) 91.6 (6.3s) 92.9 (5.5s) 

100 Hz 92.0 (6.1s) 92.5 (5.9s) 94.3 (4.4s) 

Table 5. Mean values and standard deviation of F1Score of Test Set and Generalization Set of 5 classes from 

30 people with trans-radial amputation varying the frequency of the dataset used to train and cross validate 

the NLR, MLP and SVM classifier. The highest values per classifier are highlighted in bold. See Fig. 18  for a 

graphic display and statistical significance. 

 

3.3.5 NLR, MLP, SVM Comparison Based on Computational Burden 

Figure 19 shows the number of classification parameters (nθ), obtained training the 

classifiers on datasets sampled at increasing sampling rate (or at decreasing 

downsampling step) for NLR, MLP, and SVM.  Variable nθ is regarded as an index 

quantifying the algorithm computational burden. Again NLR and MLP has been 

optimized thanks to the previously obtained results. As the model of the classifier 

adopted for TS and GS is the same, also the complexity in the two cases is the same. 

Table 6 shows nθ averaged over 30 people with trans-radial amputation and the 

corresponding standard deviation (s) for the three algorithms. 
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Figure 19. Number of classification parameters from 30 people with trans-radial amputation increasing the 

sampling frequency of the dataset used to train and cross validate the NLR, MLP, and SVM algorithms and 5 

classes. The y axis in logarithmic scale. Statistical non-significance is shown by “ns”. 

 

By comparing the algorithms at different sampling rates for the dataset used to train 

the three algorithms, it can be observed that SVM is always characherized by the 

highest computational cost, while NLR by the lowest one.  While NLR and MLP 

remain statistically different they retained values of nθ that always belong to the 

same order of magnitude (102 for NLR and 103 for MLP), SVM initially scores 

values statistically equals to MLP (5 Hz) and then diverged with respect to the 

sampling rate.   

 

COMPUTATIONAL BURDEN INCREASING THE SAMPLING RATE  

 Number of Parameters (𝜃) 

Sampling Frequency NLR MLP SVM 

5 Hz 269 (65s) 1082 (662s) 1196 (515s) 

10 Hz 279 (53s) 1361 (648s) 2127 (1086s) 

20 Hz 296 (52s) 1356 (629s) 3576 (1699s) 

40 Hz 334 (40s) 1362 (627s) 6304 (3378s) 

100 Hz 362 (41s) 1654 (605s) 12393 (7760s) 

Table 6. Mean values and standard deviation of classification parameters from 30 people with trans-radial 

amputation varying the frequency of the dataset used to train and cross validate the NLR, MLP and SVM 

classifier and 5 classes. The highest values per classifier are highlighted in bold. See Fig. 19 for a graphic 

display and statistical significance. 
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This difference in behavior of the SVM classifier is due to its unique achitecture 

that generates a number of landmarks (6), which are strictly related to the number 

of the classification parameters, depending on the numerosity of the dataset used to 

train the algorithm. Therefore, the higher the sampling frequency the more 

numerous the TR will be and, consequently, a high number of landmarks to 

represent the data is needed. All the others comparisons proved to be statistically 

different among them.  

 

3.3.6 NLR, MLP, SVM Comparison Based on EOF 

As previously mentioned in this section it was reported a result of an applicative 

example comparing NLR, MLP and SVM classifiers using EOF as comparison 

index. The only constraint adopted in this analysis is the burden on a 256 KB 

memory that the classification parameters to be stored produce. Figure 20 shows 

values of EOF for TS and GS, obtained training the classifiers on datasets sampled 

at increasing sampling rate (or at decreasing downsampling step) for NLR, MLP, 

and SVM. Again, NLR and MLP were optimized using the results previously 

obtained.   

CLASSIFICATION EOF PERFORMANCE INCREASING THE SAMPLING RATE  

 EOF (%) TS  

Sampling Frequency NLR MLP SVM 

5 Hz 91.6 (5.5s) 91.1 (6.7s) 92.0 (4.6s) 

10 Hz 92.7 (4.8s) 92.6 (4.8s) 92.2 (5.2s) 

20 Hz 93.4 (4.6s) 93.6 (4.2s) 92.3 (4.8s) 
40 Hz 94.2 (3.8s) 94.3 (3.7s) 90.8 (5.6s) 

100 Hz 94.6 (3.7s) 94.5 (3.4s) 86.2 (9.4s) 

 EOF (%) G s  

5 Hz 93.8 (4.6s) 92.7 (4.8s) 92.9 (4.5s) 

10 Hz 94.2 (4.5s) 93.4 (4.2s) 93.3 (4.4s) 
20 Hz 94.7 (4.1s) 93.9 (4.0s) 92.9 (4.4s) 

40 Hz 95.2 (3.5s) 94.5 (3.5s) 91.5 (5.2s) 

100 Hz 95.5 (3.4s) 94.8 (3.2s) 86.7 (9.1s) 

Table 7. Mean values and standard deviation of EOF of Test Set and Generalization Set of 5 classes from 30 

people with trans-radial amputation varying the frequency of the dataset used to train and cross validate the 

NLR, MLP and SVM classifier. The highest values per classifier are highlighted in bold. See Fig. 20 for a 

graphic display and statistical significance. 

 

Table 7 shows the EOF averaged over 30 people with trans-radial amputation and 

the corresponding standard deviation (s) for the three algorithms. Hence, a 

comparative analysis among NLR, MLP, and SVM was carried out (first for TS, 

then for GS).  
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Figure 20. EOF values from 30 people with trans-radial amputation increasing the sampling 

frequency of the dataset with 5 classes used to train and cross validate the NLR, MLP, and SVM 

algorithms. Statistical significance is shown by “ * ”. a) EOF values for Test Set; b) EOF values 

for Generalization Set. 

 

Except that for TS at 5Hz sampling frequency (where SVM has obtained the 

maximum value of EOF) among the three classifiers NLR attained the maximum 

EOF value for both TS and GS and perhaps, the result means that for people with 
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trans-radial amputation NLR and MLP classifiers represent the best compromise 

between classification performance and computational burden. The result is even 

more valuable considering the trend of the value of EOF increasing the sampling 

rate. In fact, for the NLR and the MLP classifier the value of this index tends to 

slightly increase, while for the SVM classifier it decreases more and more. 

 

3.3.7 NLR, MLP, SVM and LDA Comparison 

In this section the results of the comparative analysis of LDA withNLR, MLP, and 

SVM classifiers are reported. For comparative purposes, NLR, MLP, and SVM 

models that obtained the highest EOF values on GS were used. The LDA classifier 

was considered as ground truth, in terms of performance, number of parameters and 

EOF index. Figure 21 shows the values of F1Score of GS for NLR, and MLP  on 

TR sampled at 100 Hz and SVM, on TR sampled at 25 Hz, and of TS30% for LDA 

on TR70% sampled at 1 kHz.  

 

 

Figure 21. F1Score values from 30 people with trans-radial amputation for MLP, NLR, SVM, tested on GS, 

and LDA with 5 time domain features, on a 5 classes dataset. NLR and MLP where trained using data sampled 

at 100Hz, while SVM using data sampled at 10Hz. Statistical non-significance is shown by “ ns ”. 

 

By exploiting the previously obtained optimization results, D value was limited to 

5 for NLR, while the maximum number of layers and neurons was limited to5 and 
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28 for MLP. Table 8 shows the numeric values of F1Scores averaged over 30 

subjects with trans-radial amputation and the corresponding standard deviation (s) 

for all the four algorithms. A Wilcoxon Signed-Rank test was adopted for the 

statistica analysis of comparison between NLR, MLP, and SVM and LDA.. The 

analysis reports no statistically significant difference between LDA and both NLR 

and MLP classifiers, while SVM achieved significantly lower value than the others. 

Figure 22 displays the number of classification parameters (nθ and n nβ). Table 8 

shows the number of classification parameters averaged over 30 subjects with trans-

radial amputation and the corresponding standard deviation (σ) for the four 

algorithms. The analysis showed that LDA obtained the minimum number of 

parameters, and no statistically significant difference was observed only between  

MLP and SVM. 

 

 

Figure 22. Number of classification parameters from 30 people with trans-radial amputation for MLP, NLR, 

SVM, and LDA with 5 time domain features, on a 5 classes dataset. NLR and MLP where trained using data 

sampled at 100Hz, while SVM using data sampled at 10Hz. The y axis in logarithmic scale. Statistical non-

significance is shown by “ns”. 

 

Finally, the EOF index for LDA was evaluated and compared with NLR, MLP and 

SVM, as showed in Fig. 23 and Table 8. While SVM achieved significantly lower 

value than the other classifiers, MLP, NLR and LDA showed similar EOF score. 
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The Wilcoxon Signed-Rank showed no statistically significant difference only 

between the NLR and LDA classifier. 

 

 

Figure 23. EOF values from 30 people with trans-radial amputation for MLP, NLR, SVM, tested on GS, and 

LDA with 5 time domain features, on a 5 classes dataset. NLR and MLP where trained using data sampled at 

100Hz, while SVM using data sampled at 10Hz. Statistical non-significance is shown by “ ns ”. 

 

CLASSIFICATION PERFORMANCE AND COMPUTATIONAL BURDEN FOR NLR, MLP AND SVM MODELS 

WITH HIGHEST EOF VALUE ON GS AND LDA SAMPLED AT 1 KHZ WITH FEATURES 

  

Classification Algorithm F1Score 
Number of Classification 

 Parameters 
EOF 

NLR (100Hz) 92.0 (6.1s) 362 (41s) 95.5 (3.4s) 

MLP(100Hz) 92.5 (5.9s) 1654 (605s) 94.8 (3.2s) 

SVM (10Hz) 89.5 (7.3s) 1361 (648s) 93.3 (4.4s) 

LDA (1kHz with features) 91.9 (6.5s) 155 95.5 (3.7s) 

Table 8. Mean values and standard deviation of F1Score values, classification parameters and EOF values 

from 30 people with trans-radial amputation for each classifier involved in this study on a 5 classes dataset. 

The EOF and F1Score highest values and the lowest number of parameters are highlighted in bold. See Fig.  

21-22-23 for a graphic display and statistical significance. 
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3.4 Discussion 

 

In this study an in-depth analysis has been carried out of three of the most adopted 

classifiers for sEMG signals, i.e. NLR, MLP, and SVM using LDA with time 

domain feature extraction as ground truth for the final validation of the performed 

analysis. The choice fell on these because of the extensive discussion in the 

literature and because of the high performance notwithstanding the extremely 

different number of classification parameters. In particular, an intensive analysis on 

data acquired from 30 people with trans-radial amputation was conducted and 

performance were assessed, with special attention to the problem of developing 

embedded classifier solutions. Although the type and number of recruited subjects 

was not sufficient to generalize the results to all kinds of trans-radial amputations, 

this study wants to provide a solid basis for reflecting upon the trade-off between 

performance and computational burden of these classifiers.  

Six commercial sEMG sensors produced analog signals that were sampled at 1kHz 

and used as “raw” input features of the classifiers. In order to speed up the training 

and the cross validation of NLR, MLP and SVM classification algorithms, 

downsampling was applied to the data creating one downsampled dataset (TR, CV, 

and TS) and one dataset containing all the remaining data (GS). While the TR and 

CV were used to train and cross validate, TS and GS have been used to test the 

performance of the classifiers. 

The performance of NLR and MLP algorithms were firstly evaluated and then 

analysed with the Wilcoxon Signed-Rank test for both TS and GS. The results 

showed that for NLR no significant improvement of performance can be obtained 

for a degree of polynomial features greater than 5 and that for MLP no significant 

improvements can be achieved by increasing the complexity of the network up to 5 

layers and 23 neurons for TS and 28 neurons for GS, respectively (Fig.17, Table 4). 

This result is very important because sets a boundary on the complexity of the 

classifier, allowing to reduce the training and cross-validating times when applying 

these algorithms on raw sEMG data recorded from people with trans-radial 

amputation. Furthermore, it is also relevant to observe that NLR in the linear case 

analysis (polynomial features of grade 1) obtained the lowest F1Score value with 

respect of the other higher grade of polynomial features, suggesting the use of a 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



58 

 

non-linear classifier when as input features the raw outputs of the Ottobock sEMG 

sensors are used. 

After this preliminary investigation, a comparative analysis among the NLR, MLP, 

and SVM algorithms was performed using data at different frequencies (5 Hz, 10 

Hz, 20 Hz, 40 Hz, and 100 Hz) as TR, CV and TS. The comparison pointed out that 

the sampling rate and the classification performance increased at the same time 

(Fig. 18, Table 5). In fact, for all the algorithms the maximum performance was 

obtained with 100 Hz sampling rate, however, increasing the sampling rate also 

tends to elevate the number of classification parameters, used as index of 

computational burden of the classifier. The analysis showed that, for both 

classification performance and number of classification parameters (Fig. 19, Table 

6), SVM attains the highest values followed by MLP, and then by NLR. Although 

downsampling causes a loss of information, classification performance was still 

high (ranging from 91.1% to 94.5%) meaning that the signals kept the main content 

related to the gesture. The reason is that, for constructing a decision boundary, it is 

not necessary to use high frequency sampled data during the classifier training 

phase; data with similar range, dispersion and redundancy are required. This also 

explains why GS systematically reports higher performance value than TS. GS 

contains a larger number of data than TS and, consequently, leads to higher 

performance scores. Hence, the results carried out from it might better represents 

the real behaviour of the classifiers when data sampled up to 1 kHz are provided as 

input. 

Although when implementing these algorithms on PC systems it is reasonable to 

choose the one with the highest classification performance, when moving to 

embedded systems for prosthetic devices, the computational burden is no longer 

negligible. Hence, in order to investigate the best compromise between 

performance and computational burden, the EOF index was presented. Using as 

unique constraint the memory usage the EOF has been evaluated referring to a 

standard microcontroller 256 KB memory at different frequencies of TR, CV and 

TS. As previously reported, this is just an application example but the same method 

can be applied taking into account different memory values and/or other constraints, 

such as the available RAM memory and/or the evaluation time for a single 

classification for any microcontroller. The analysis performed showed that, for 

people with trans-radial amputation and using sampled sEMG signals to more than 
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5 Hz as input, the algorithm that produces the best compromise is NLR, with the 

highest values of EOF (95.5 %), closely followed by MLP (94.8 %). Conversely, 

SVM algorithm, which obtained the highest classification performance, presents 

considerably lower values of EOF (93.3 %) than the other two algorithms (Fig. 20, 

Table 7); this means that high performance is achieved at the expenses of a sharp 

increase of the computational burden and memory usage. Hence, it is possible to 

summarize that in order to choose the most suitable classifier in a real application 

with data sampled at the same frequency used for train and cross validate the 

algorithm, there is no difference between NLR, MLP, and SVM up to 10 Hz, while 

from 10 to 100Hz SVM becomes significantly disadvantageous with respect to the 

other two classifiers, which did not show significant difference. On the other hand, 

for use in a real application with data sampled at higher frequency (up to 1kHz) 

than the ones used to train and cross validate the algorithms, NLR resulted to be the 

most suitable clearly representing the best compromise between classification 

performance and computational burden. Furthermore, the analysis suggests, among 

the tested cases, a downsampling step equal to 10 (100Hz) for the training and the 

cross validation of NLR and MLP algorithms, and equal to 100 (10 Hz) for SVM.   

Finally, a comparison between each of the three non-linear classifiers and LDA was 

carried out. Since LDA was trained and tested with data sampled at 1 kHz (without 

downsampling), NLR, MLP and SVM models with the highest EOF values on GS 

for performance, number of parameters and EOF index were used for the 

comparative analysis. This analysis pointed out no statistically significant 

difference between NLR and LDA in terms of performance and EOF index (Fig. 

19-20-21, Table 8) by confirming the results of the previously showed comparisons 

(Fig. 16-17-18, Table 5-7) despite LDA reported the minimum computational 

burden. Therefore, this result is also more appreciable if we consider that NLR was 

trained and tested using raw sEMG data. So, this study shows that it is possible to 

use non-linear classification algorithms on raw sEMG signals recorded from people 

with trans-radial amputation also for embedded applications. Furthermore, since 

LDA and NLR retained statistically similar value for both performance and 

computational burden, it is possible to speculate that the features extraction step 

linearizes the classification problem at the expense of a delay on the class evaluation 

time and on the readiness of the system during the transition between two different 

gestures. Indeed, using raw sEMG signals as input features the class evaluation time 
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and system readiness approximate the sampling time; on the other hand, using 

features based on time windowing, the class evaluation time equals the window 

shift and the readiness delay is around the half of the time window length.  

It is worth noticing that, when transient sEMG signals are included in classifier 

training, system controllability and performance are shown to improve [63]; 

conversely, offline classification accuracy degrades. This comparative study was 

grounded on steady state sEMG signals, however, this does not affect our 

comparative analysis, since the experimental data were the same for all the analysed 

classifiers. 

 

 

3.5 Conclusions 

 

In this study the NLR, MLP and SVM classification algorithms were developed, 

tested and optimized on a dataset of 5 hand gestures classes composed of the data 

recorded from 30 people with trans-radial amputation, using 6 commercial sEMG 

sensors. After evaluating the maximum complexity of the NLR and MLP 

algorithms needed to apply PR on this population, the comparative analysis among 

the three algorithms was carried out. It pointed out that, for both classification 

performance and number of classification parameters, SVM attains the highest 

values followed by MLP, and then by NLR. Hence, in order to investigate the best 

compromise between performance and computational burden, the EOF index was 

presented. The analysis performed showed that, for people with trans-radial 

amputation and using sampled sEMG signals to more than 5 Hz as input, the 

algorithm that reached the best compromise is NLR (with the highest value of EOF) 

closely followed by MLP. This result was also confirmed by the comparative 

analysis with LDA with time domain features, which showed no statistically 

significant difference with NLR. The proposed analysis would provide innovative 

engineering tools and indications on how to choose the most suitable classifier, and 

its specific internal settings, based on the application and the desired results for 

prostheses control. As the research has reached an advanced grade of accuracy, 

these algorithms were proved and the embedding is necessary for the realization of 

prosthetic devices. 
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Chapter 4  

 

 

Embedded Control of Prosthetic 

Hands via Pattern Recognition 

 

 

4.1 Introduction 

 

Based on the results showed in chapter 3 NLR without feature extraction has been 

identified as the most suitable classifier for the embedded control of multi-fingered 

prosthetic hands. Avoiding the features extraction step enables an extreme 

reduction of the classification time response time of the system without significant 

loss of system performance [9]- [10]- [11]- [20]. The saved time is used to improve 

the stability of the classification by means of post processing techniques as voting 

and voting acceptance threshold [12]- [13]. The gestures to reproduce were selected 

among the eight canonical hand postures [7] and were “Rest” (relaxed hand), 

“Spherical” (hand with all fingers closed), “Tip” (hand with thumb and finger 

touching to pick up a small object), “Platform” (hand completely open and 

stretched), and “Point” (hand with all fingers closed, except for the index finger that 

is pointing). 

As afore mentioned, the main issue related to PR algorithms is the robustness and 

reliability of the classification and it is unlikely to use directly the classification 

outputs for the online control of the prosthetic device. Hence, a control strategy able 

to combine robustness, reliability and less cognitive effort has to be included 

between the classification algorithm and the internal control of the hand as showed 

in Fig. 24.  
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Figure 24. Schematization of the control flow. The signal processing is necessary just to filter and amplify the 

sEMG signal when the used sensor cannot provide it themselves. 

 

In the following, an embedded control system (hardware, firmware, and software) 

and a new control strategy for hand prostheses capable to handle up to five different 

grasping movements via PR algorithms are presented. The functions have been 

allocated as schematized in Fig. 25. 

 

 

Figure 25. Schematization of the system functions allocation. Based on the results obtained in chapter 3 the 

features extraction step has been skipped in lieu of a post-processing applied to the output of the 

classification. The control strategy interacts with the pattern recognition block (fig. 24) changing internal 

settings of the classifier block. 

 

This Chapter is structured as follows:  

• Section 4.1 presents in details the new PR control strategy and the designed 

hardware, software, and firmware of the prosthetic control system; 

• Section 4.2 shows the device made and the preliminary results on one 

subject with trans-radial amputation. 

Unfortunately, it is not possible to show the detailed results of 3 months of testing 

of the entire system on one amputee with neural interfaces, being the study still 

unpublished. 
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4.2 Design and Development 

 

4.2.1 The Proposed Myoelectric Control Strategy for Hands Prostheses 

As reported in Sect. 2.2, the most clinically adopted control strategy relies on a 

cyclic selection (Fig. 10) and the switch among the states of the cycle is achievable 

by means of a trigger command (e.g. co.-contraction). This serial operation, despite 

being extremely robust, is slow and unnatural; in addition, it requires considerable 

training and cognitive effort on behalf of the user [2]. On the other hand, control 

based on PR algorithms can overcome these issues but it is unlikely to use directly 

the classification outputs for the online control of the prosthetic device (Fig. 26). 

 

 

Figure 26. Direct pattern recognition control strategy. Once a class output is available the prosthetic hands 

moves to the corresponding gesture. 

 

Because of the deficiency in robustness and reliability of the classification the 

application of this strategy can result in snappy movements and instability of the 

control, making difficult to perform grasp operations. Hence, a new control strategy  

able to combine robustness, reliability and less cognitive effort has been proposed 

(Fig. 27). 
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Figure 27. Finite state machine control strategy for 5 different gestures. It is possible to observe that this strategy is a hybrid between the cyclic 

control strategy (Fig. 10) and the direct pattern recognition one (Fig.24). 
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According to this control strategy, there are 5 different states (one for each gesture 

to reproduce) each one is flanked by a specific optimized classifier. The structure 

presents a central state called “equilibrium” associated to the rest gesture 

representing the starting point of the finite state machine (FSM), and 4 satellite 

states dedicated to the grasp execution. As it will be seen below, the classifier is 

closely linked to the control strategy. Indeed, the classifier generates the input class 

(hand posture to be reproduced) for the strategy; on the other hand, the classifier to 

be used depends on the present state of the control strategy. In fact, the classifier 

block in Fig. 25 is actually composed of several classifiers, one for each state of the 

control strategy as shown in Fig. 28. 

 

 

Figure 28. Structure of the Classifier Block. 

 

Depending on the present state of the control strategy, both the classification 

algorithm of the sEMG signal and the output generated by the classifier block vary. 

The switch between the satellites states can only come through the equilibrium state 

and the transitions are dedicated to the preshaping of the prosthetic hand. This lead, 

to a clear simplification of the classification by restricting the issues related to direct 

PR control strategy to the equilibrium state only. Indeed, for the satellite states we 

move from a 5 to a 3 classes classification problem thus yielding an increase of 

robustness and reliability of the system.  Each classifier associated with each one 

of the satellite states is trained with a dataset obtained by grouping the 

electromyographic signals into 3 sets: a set for the poses that express a closure (e.g. 

fist and tip), one for the poses that express an opening (e.g. open and point) and one 

for the rest. For a detailed explanation of this strategy, consider to be in the 

equilibrium state. In this state the “equilibrium state classifier” (Fig. 28) is able to 

recognize all the considered gestures (FIST, TIP, POINT, OPEN and REST). If the 

REST class is classified the hand remains stationary, while in case of the 

classification of one of the other four classes (e.g. FIST) the prosthetic hand starts 

   CLASSIFIER

    SELECTION

  FIST CLASSIFIER

      TIP CLASSIFIER

   POINT CLASSIFIER

     PLATFORM CLASSIFIER

     EQUILIBRIUM STATE

           CLASSIFIER

PRESENT STATE OFTHE

CONTROL STRATEGY

OPENING, CLOSING, STOP

OPENING, CLOSING, STOP

OPENING, CLOSING, STOP

OPENING, CLOSING, STOP

FIST, PINCH, POINT, REST, STOP

OUTPUT CLASS OFTHE

DIFFERENT CLASSIFIERS

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



68 

 

to preshape. During the preshaping state the classifier associated with the 

corresponding status is active, for example during the "preshape fist" state the "fist 

classifier", which will no longer recognize 5 classes but only 3 (Fig. 28). Once the 

preshaping has been completed, the hand is ready to perform a grasping task (in this 

case a power grasp) and the satellite fist state has been reached. Here, the "fist 

classifier" remains active and it will be possible to control the prosthesis for 

grabbing or realising an object. Again, if the REST class is classified the stop 

command is performed. This feature in behaviour is very important because allows 

the user to relax his/her forearm muscles when holding an object as in clinically 

available myoelectric controls (Section 2.2). Once, the task has been completed it 

is possible to move back to the equilibrium states keeping the opening contraction 

pattern.  

 

4.2.2 Control Strategy Variant for Force Management 

The control strategy presented in section 4.2.1 can be modified in order to control 

of the force exerted when holding an object during a grasping task. This can be 

achieved by means of a 3 -level (High, Medium and Low) force classifier cascading 

the classifiers associated to the Fist and Tip gestures (Fig. 28) as showed in Fig. 30. 

 

 

Figure 29. Variant of the Classifier Block. The trigger can be achieved by means of touch sensors placed on 

the prosthetic hand. 

In order to avoid instability of the classification this classifier has been designed to 

be active only when holding an object thus enabling manipulation functionality.  

The information of taken object (trigger) can be achieved by means of touch sensor 

placed on the fingers of the prosthetic device. The force classifier, based on the 

NLR algorithm (Section 3.2.2), is trained new on sEMG data expressing different 

muscular contraction levels for the closing action and the pre-existent data for the 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



69 

 

opening and stop movements. Table 9 reports an example on how to subdivide the 

sEMG data in for the training of the Force Classifier. 

SUBDIVIDING THE SEMG DATA FOR THE TRAINING OF THE FORCE CLASSIFIER 

1 2 3 4 5 

Closing H Closing M Closing L Opening Stop 

5 FIST H 5 FIST M 5 FIST L 
10 OPEN 10 REST 

5 TIP H 5 TIP M 5 TIP L 

Table 9. Subdividing the sEMG data for the training of the force classifier. 

 

Depending on user ability it is also possible modulate the exerted force in a 

proportional way as presented in section 2.2. In this case, a threshold can be used 

to identify the STOP command, and a binary classifier specialized in recognizing 

the Opening action.  The closing proportionality can be thus achieved by 

considering the sum (ore the mean) of the amplitudes recorded from the sEMG 

sensors. Figure 30 shows an example in evaluating the overall intensity (IEMG) of 

the sEMG signal exploiting a star diagram. 
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Figure 30. Example of a 6 sEMG signal star diagram and the formula to evaluate the overall intensity (IEMG) 

of the sEMG signal. 

 

Figure 31 shows the schematization of the variant of the proposed control strategy 

enabling also manipulation functionality.
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Figure 31. Finite state machine control strategy for 5 different gestures and force management. 
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4.2.3 Hardware 

The hardware system, object of study, must guarantee the execution of the 

algorithms and the proper functioning of sEMG sensors, prosthetic hand and PC 

software interfaces representing the classic case in which a microcontroller system 

is implemented. Based on the results obtained in chapter 3 and having available the 

Robo-Limb [25] prosthetic hand an ARM4 32bit NXP [64] microcontroller with a 

128Kb flash memory and 100MHz clock frequency has been chosen as core 

element of the hardware. Also, in this case six commercial active sEMG sensors 

(Ottobock 13E200=50), representing the state of art about myoelectric sensors for 

prostheses are used to measure the intensity of the sEMG signal. Figure 32 reports 

the hierarchical electronic schematic of the hardware. The hardware has been 

designed for the use in a complete prosthetic device, hence as power supply requires 

an 8.1V Li-ion battery as commonly used in clinics for trans-radial myoelectric 

prostheses. 

 

 

Figure 32. Electronic hierarchical schematic of the hardware. 
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The prosthetic hand is controlled via high speed CANbus communication protocol 

(ISO 11898-2) and the hardware is able to connect to the software part dedicated to 

the training of the PR algorithm (Fig.25) by a wireless bluetooth communication. 

The PCB counts 234 SMD components and has been designed as a 4-routing layer 

layout (Fig. 33) in order to keep the overall dimensions reduces.  

 

 

Figure 33. PCB layout. 
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Despite integrating electrostatic discharge protections, high frequency filters and 

all the components to achieve the desired functions, it was possible to obtain PCB 

of 50x35x1.6mm and a no-load consumption of 13mA, perfectly in line with the 

control units commonly used in clinics. 

Figure 34 show a detailed picture of the result after the manufacturing stage. 

 

 

Figure 34. Pattern recognition control unit PCB; a) Top view; b) Bottom view; c) Overall sizing placing the 

PCB near a 0.5€ coin. 

 

4.2.4 Software 

As show in Fig. 25 as mid-layer interface, between the user layer and the hardware 

layer, an on-purpose built software on LabView platform was developed. The 

software, called EMG-Data Acquisition Software (EDATS) communicates with the 

hardware through a wireless Bluetooth (BT) connection and with the user by 

different graphic user interfaces (GUI). The main purpose of this software is to 

implement an off-line training of the NLR classification algorithm. When launched, 

EDATS starts with a main menu, which offers 3 different but intuitive choices: 

a)

b)

c)
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TRAINING & SIMULATION & UPLOAD; SIMULATION & UPLOAD; 

UPLOAD MODEL. Figure 35 shows the GUI sequence for the selection of the first 

button. Once the user’s ID is entered and adjusted all the settings about number of 

sEMG sensor to use, number of classes to identify, sampling frequency and 

recording time window, a new GUI dedicated to the data acquisition appears. Then, 

once a desired number of acquisition for each class is reached clicking on the button 

“TRAIN THE CLASSIFIER” the training of the algorithm presented in chapter 3 

begins. In order to test the on-line performance of the trained classifier another new 

window appears with which is possible to test different combinations of voting 

number and decision threshold (TH) values for each one of the classifier describe 

in section 4.1.1. Once the classifiers meet the expectations is possible to proceed to 

the final GUI for the upload of the settings and the classification parameters (model) 

into the embedded system. 

 

 

Figure 35. EDATS, TRAINING & SIMULATION & UPLOAD flow chart: in this example has been decided to 

classify 5 hand gestures (Rest, Fist, Tip, Open and Point). 

 

Furthermore, the software offers also online-test functionality of the system thanks 

to an interface called “FIRMWARE TEST” (Fig. 36). The software allows the user 

to control a virtual reality limb using the output class provided by the FW-HW parts 

displaying meanwhile the cycle time, the current settings of the classifiers and 

eventually errors detected by the FW diagnostic system. 
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Figure 36. FIRMWARE TEST software Interface. 

 

4.2.5 Firmware 

The firmware is the software that is installed on the microcontroller and that, 

through a loop system, manages all the operations that the electronics of the control 

unit must perform in response to electrical input signals, such as electromyographic 

data. The firmware was developed in C language exploiting the Kinetis Design 

Studio IDE; as showed in Fig.25 this part performs: the NLR classification 

algorithm; the post processing classification policies; the communication with the 

PC software interface; and the control strategy described in section 4.1.1. 

Figure 37 reports a simplified version of the firmware flowchart. When the circuit 

is powered an initialization procedure is firstly executed. Then, if there is no model 

of the classifier saved on flash memory, a BT streaming session of all the sEMG 

signals is started, otherwise the settings and the classification parameters on flash 

memory are used to classify the sEMG signal and send actuation commands to a 

Robotic Hand through the wired UART connector. Anytime, when a specific BT 

command is received, an interrupt routine is launched in order to download a model 

from the EDATS. The last instruction of this interrupt is a firmware reset. The 

developed firmware has proved to be very performant obtaining an 800 μs cycle 

time in EMG streaming mode and employing less than 2 ms for a single sEMG 

classification (without voting). 
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Figure 37. Simplified firmware flowchart. 

 

Figure 38 presents a detailed description of the Firmware via sequence diagram. 

The Firmware presents main loop flanked by several interrupt routines grouped by 

priority ID. In system programming, an interrupt is a signal to the processor emitted 

by hardware or software indicating an event that needs immediate attention. The 

processor responds by suspending its current activities, saving its state, and 

executing a function called an interrupt handler (or an interrupt service routine, ISR) 

to deal with the event. This interruption is temporary, and, after the interrupt handler 

finishes, the processor resumes normal activities. In this case, the code has been 

designed with 3 level of priority: 

1. High-Priority: occurs every 100μs and it checks if any fatal error is occurred 

and eventually responds by suspending all the activities and turning on a 

bright red led; 

2. Medium-Priority: Occurring every 1ms this interrupt handles the AD 

converter, the UART and the CAN peripheral (see table 10 for the settings); 

3. Low-Priority: Every 60 seconds this interrupt checks the status of the 

battery. 

Each function created for the realization of the firmware presents a self-diagnostic 

instruction able to recognize both the most frequents errors (e.g. low battery) and 

the most serious ones (e.g. overcurrent, or system failure). 
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Figure 38. Firmware Sequence Diagram 

 

 

CAN AND UART PERIPHERAL SETTINGS 

UART 

PROPERTIES SETTINGS 

Data Width 8 bits 

Parity None 

Baud Rate 115200 bps 

Stop Bits 1 

CAN 

PROPERTIES SETTINGS 

Bit Rate 1 Mbps 

Time quanta per bit 10 

Propagation Segment 1 

Time Segment 1 6 

Time Segment 2 2 

Resync Jump Width 1 

Table 10. CAN and UART Peripheral Settings. 

InitError()

InitPeripherals()

IsModelOnFlash()

LoadNLRfromFlash()

InitControlStrategy()
ReadEMG()

SendEMGviaBluetooth()

CheckStatusBattery()

ReadEMG()

GetAllEMG()

UART_TX()

UART_RX()

CAN_TX()

CAN_RX()

GetBatteryValue()

MAIN

100us

HIGH PRIORITY

INTERRUPTS

1ms

MEDIUM

PRIORITY

INTERRUPTS

60s

LOW PRIORITY

INTERRUPTS

UpdateControlStrategy()

SelectClasffier()

Clasffy()

MoveProstheticHand()

IsFatalError()

UpdateErrorList()

RED_Light()

GreenLightStationary() GreenLightBlinking()

YES

YES

NO

YES

IsCommandMode()

DownloadModel()

EraseFlash()

SendErrorList()

ResetCPU()

ChangeMode()

1

2

1

2 streaming Mode

Classification Mode

IsFirmwareTestActive()

CheckStatusBattery()

YES

?

?

?

?

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



78 

 

4.3 Results and Conclusion 

 

Once all the parts described in section 4.1 have been completed, the prosthetic 

device has been assembled in the Prosthesis Centre in Vigorso Budrio for a male 

subject with a right trans-radial amputation (Fig. 39), and already experienced in 

myoelectric control of prosthetic hands. 

 

 

Figure 39. Building the socket from the stump of the subject who took part to the experiment. 

  

The six-commercial active sEMG sensors (Ottobock 13E200=50), were 

equidistantly positioned in appropriate locations created on the socket (Fig. 40)  

 

 

Figure 40. Inside view of the socket of the prosthesis. 
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Battery, cables and the control unit reside in the space between the socket and the 

outer shell of the prosthetic device (Fig. 41) 

 

 

Figure 41. The Complete Prosthetic device. a) Detail of the components placed inside the Prosthesis. b) 

Lateral view of the Prosthesis. 

 

Using an on-purpose built software developed in LabView environment the 

maximum frequency of the sEMG signal that is available when the system is in 

streaming mode resulted 850Hz. Furthermore, exploiting the measure functions on 

an oscilloscope emerged that 1.2ms is the minimum time required for a single 

classification (no post-processing applied). Regarding the power consumption: 

45mA is the average current through the control board in classification mode (with 

bluetooth and CAN transceiver active) when only the prosthetic hand is powered 

with a different supply. On the other hand, turning off the bluetooth module the 

average current trough the control board in classification mode settles on 27mA. 

Finally, 25mA is the average current trough the control board in streaming mode 

when the CAN transceiver is turned off. Table 11 summarizes all these results. 

 

ELECTRONIC PERFORMANCE TEST RESULTS 

RESULTS 

Maximum sEMG frequency in streaming mode 850Hz 

Minimum cycle time for a classification (no post-processing applied) 1.2ms 

Maximum depth of the buffer for real-time applications 250 

Current consumption in streaming mode (CAN transceiver off) 25mA 

Current consumption in classification mode (Bluetooth module off) 27mA 

Current consumption in classification mode 45mA 

Table 11.Results of the electronic performance tests. 

 

On April 2017, the first training session of the complete system was carried out on 

the aforementioned volunteer subject. 
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The subject gave informed consent before performing the experiments, which were 

approved by local scientific and ethical committees. Again, the gestures to 

reproduce were “Rest” (relaxed hand), “Fist” (hand with all fingers closed), “Tip” 

(hand with thumb and finger touching to pick up a small object), “Platform” (hand 

completely open and stretched), and “Point” (hand with all fingers closed, except 

for the index finger that is pointing). Using an 80-deep voting buffer and a 70% 

voting acceptance threshold (which were evaluated by means of the optimization 

algorithm described in section 3.1.2) as settings of the post-processing stage (Fig. 

25) the system was able to achieve an astonishing 99.3% for both off-line accuracy 

and F1Score, proving the subject’s capability to use the developed myoelectric 

control. Figure 42 shows the confusion matrix associated to the training session and 

table 12 summarizes the obtained results reporting the F1Score achieved for each 

single class. 

 

 

Figure 42. Confusion matrix associated to the April 25 training session 

 

APRIL 25 2017 RESULTS TABLE 

Gesture F1Score Average F1Score Average Accuracy 

Rest 100 % 

99.3% 99.3% 
Fist 100 % 

Tip 99.1 % 

Open 99.2 % 

Point 100 % 

Table 12. April 25 2017trainig session  reults table 
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After uploading the model inside the control unit, the subject was immediately able 

to control all the gestures of the prosthesis and the system appeared sufficiently 

reliable even on-line (Fig. 43) allowing to perform ADL tasks as grasping a bottle 

of water and drink. 

 

 

Figure 43. Subject performing a complex task. 

 

 Using an 80-deep buffer voting the time between two subsequent classifications is 

about 100ms. Indeed, the subject was not able to perceive any delay in the actuation 

of the prosthesis. The only instability of the system was observed when the arm was 

raised beyond the subject's head. After the test session, the prosthesis was put away 

and a second meeting with the subject was set after 2 weeks in order to check the 

stability of the system over time. Despite a slight but noticeable reduction in the 

stability of the system, after 2 weeks the subject was still able to control all the 

gesture suggesting that the combination of sensors and socket, rather than a silicone 

belt (Fig. 13a), greatly limits the electrode shift issue. Furthermore, the stability 

drop could be related to the long-time of system inactivity, which caused the subject 

a difficulty in remembering the specific muscular contractions used to train the 

system during the first experimental session, rather than to a modification of the 

experimental setup. 

Even though preliminary, these results are encouraging and provided the 

foundations for a 3-months experimentation on one amputee subject for the 

bidirectional control of a prosthetic hand by means of neural interfaces and 

myoelectric control. However, the results of such an experimental study cannot be 

reported here being still unpublished.  
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Chapter 5  

 

 

sEMG and eENG pattern 

recognition for Prosthetic Hand 

Control 

 

 

5.1 Introduction 

 

As just told in the previous chapters, the hand loss has enormous repercussions at 

both anatomical and psychological level and causes great interest in the field of 

upper-limb prosthetics. Since they allow decoding motion intentions in a more 

intuitive way than proportional sEMG control, pattern recognition techniques have 

gained growing interest in the field of upper limb prostheses. However, although 

solutions based on patter recognition on sEMG signals are promising, they suffer 

from the limitation that the subject cannot be provided with a natural sensory 

feedback. On the other hand, it has been shown that invasive solutions based on 

neural electrodes allow directly stimulating the Peripheral Nervous Systems (PNS) 

and eliciting in the patients close-to-natural tactile feedback [16]- [17]- [18]- [19]. 

This kind of interfaces can be used with the twofold purpose of stimulating the PNS 

and recording the neural information coming from the brain to drive the residual 

muscles. Hence, assuming that it is possible to de-code human motion intention 

from the neural signals, i.e. the electroneurogram (ENG), neural interfaces offer the 

huge advantage that they can both record from and stimulate the PNS in a more 

natural way than the other interfacing systems. To date, only a few studies have 
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provided evidence of the feasibility to use the ENG recorded from peripheral nerves 

to control a prosthetic device [16]- [65]- [66]. In Figure 44, a functional scheme of 

the neural control of a prosthesis is shown. Indeed, this control approach is difficult 

to be pursued for a number of reasons. 

 

 

Figure 44. Block scheme of a neural-controlled prostheses approach. 

 

First, the recorded ENG signal is very noisy because of different noise sources, e.g. 

the muscular activity, the devices and the wires used for recording. Furthermore, 

the ENG signal processing for identifying specific neural patterns is highly 

demanding in terms of both complexity and computational burden. Spike Sorting 

Algorithms (SSA) are typically adopted to recognize action potentials that are 

supposed to be the depolarization of a particular neuron. SSA consists in in three 

main steps: Spike detection, Feature Extraction and PR. The high number of 

neurons that can be involved in muscle activation can notably rise up the 

computational burden of the algorithm: correspondingly, SSA performance could 

not improve and, in some cases decrease. Moreover, the algorithm can hardly be 

implemented on-line if high accuracy of the system is demanded. This paper wants 

to propose a new method for processing ENG signals specifically aimed at 

controlling hand prostheses. The proposed method intends to overcome limitations 

of traditionally adopted techniques of ENG processing by (i) computing the ENG 

envelope (eENG), starting from the recorded neural signals; (ii) resorting to sEMG 

PR techniques applied to the eENG. The main advantages of the proposed approach 

are related to the reduced computational burden and the on-line processing (which 

are paramount for closed loop interfaces). The authors recently proposed a 

mathematical formulation to compute the ENG envelope (eENG) and showed that 
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it is possible to relate concurrently recorded ENG and sEMG signals [67]. Here, the 

author wants to show that pattern recognition algorithms applied to the ENG 

envelope can be used for gesture decoding. To this purpose, neural and muscular 

signals simultaneously recorded from one human amputee are used in this analysis. 

They are acquired respectively with intraneural and sEMG electrodes and are 

related to two gestures, i.e. little finger extension and open hand. The envelope of 

the ENG signals is computed and a SVM algorithm is adopted to decode user’s 

intention. SVM was chosen to be consistent with the pattern recognition algorithm 

adopted in the literature on neural signals on hand control [68]- [66]. For 

comparison purpose, the same neural signal was processed with a standard SSA. 

Finally, PR algorithm based on SVM was also applied to the simultaneously 

recorded sEMG signals for comparison purpose. Furthermore, performance decay 

of SSA with the increase of gestures was studied by means of synthetic data. 

In section 5.1, signal recording, algorithm formulations and data analysis 

techniques are described. Results are presented in section 5.2 and discussed in 

section 5.3. Conclusions are finally reported in section 5.4. 

The following contents are taken from the paper that the candidate has submitted 

on Journal of Neuroscience Methods [21]. 

 

 

5.2 Methods 

 

5.2.1 Simultaneous ENG and sEMG recordings from Amputee Subject 

Simultaneous ENG and sEMG signals were acquired during a human 

experimentation on one amputee [66]. Intraneural tf-LIFE4 electrodes were 

implanted in the median and ulnar nerves of a male amputee and were used to record 

the user intention on the efferent pathway and to stimulate the peripheral nerves on 

the afferent pathway in the attempt to restore tactile feedback. The study was 

approved by the local Ethics Committee and by the assigned office of Italian 

Ministry of Health and an informed consent was signed by the patient in the 

presence of a witness from his family. The amputee was seated on a chair during 

the trials and 6 repetitions for each gesture were performed. An example of 
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simultaneous recording is shown in Fig. 45. We will refer as reference the sEMG 

signals recorded when the subject was asked to perform a particular movement. 

ENG and sEMG signals were recorded with a sampling frequency of 48 kHz. The 

ENG signals were filtered between 700 Hz and 5000 Hz by means of a 4th-orded 

Butterworth filter. Because of the quality of the recorded signals, only two gestures 

were analysed, i.e. the open hand and the little finger movement. All the subsequent 

processing on these data were performed off-line. 

 

 

Figure 45. Neural (in red) and muscular (in blue) recordings during little finger extension. 

 

5.2.2 Synthetic neural Data 

Synthetic data offer a number of advantages: it is known which action potentials lay 

in the recording, how many spikes can be detected and their exact positioning on 

the temporal axis. The database adopted is created in order to accurately replicate a 

neural recording both for the features of the background noise and for the shapes of 

the action potentials. The complete description can be found in [69]. Synthetic 

signals were sampled at 96 kHz and, later, downsampled at 24 kHz. They were 

filtered between 300 Hz and 6000 Hz. The database is composed of 95 simulations 

and the number of different spikes recognizable inside the recording ranges from 2 

to 20. 
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5.2.3 The proposed ENG classification Method 

The proposed method wants to ensure on-line classification of ENG signals for 

identifying different hand gestures, without resorting to traditional methods based 

on SSA. Peripheral neural data convey the information on a desired task to the 

muscles; the neural signal can be regarded as the driving force that makes the 

muscles contract accordingly. Hence, it is reasonable to assume the existence of a 

relationship between ENG and sEMG. The authors recently proposed a 

mathematical model relating envelopes of surface sEMG and ENG signals [67]. It 

accounts for the amplitude and the relative positioning of the action potentials fired 

during a motion task and extracts the eENG that is related to the sEMG envelope. 

In order to compute the eENG, a spike detection algorithm, is applied to the neural 

recording. The detection of the spikes is achieved by means of two steps. During 

the first one, the energy E of the neural recording is computed by means of a 

Moving Average Algorithm (MMA) [70], then the envelope is finally computed as 
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   (18) 

 

where the weight factors α and β are 0 < 𝛼, 𝛽 < 1 and Ai and 𝑂𝑖 are the amplitude 

and the occurrence of the i-th spike, respectively. The weight factors are chosen so 

that the ratio between the areas under the two curves is as close as possible to 1. For 

α and β set to 0.5 and 0.4 respectively the muscular and the neural signals were 

highly correlated [67] as illustrated in Fig. 46.  

 

 

Figure 46. sEMG envelope (in blue) and ENG envelope (in yellow) computed with 
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The obtained eENG was classified by means of the SVM algorithm (5)(6)(7) 

(Dreiseitl and Ohno-Machado, 2002) [55] without feature extraction as describe in 

Section 3.1.2. The same algorithm was also applied to classify the muscular 

recordings. 

 

5.2.4 Spike Sorting 

Spike sorting is performed by means of three main steps, namely spike detection, 

feature extraction and pattern recognition. Spike sorting is typically adopted for 

identifying the activity of different neurons inside a neural recording and is 

described in the following subsections. This approach was also used in [68] and 

[66] to analyse neural recordings respectively from animals and from an amputee 

subject. In this paper, the standard classification method (i.e. the SSA) will be 

applied to the recorded ENG signals for comparing the results with the proposed 

method, based on eENG and SVM. SSA will also be applied to synthetic recordings 

in the database [69] available at [71] for studying classification performance over 

the number of classes. 

Spike detection algorithm has the purpose of identifying the presence of neural 

activity in-side a recording. Since it is paramount to increase the performance of 

the SSA, it is necessary to increase the number of detected Real Positive (RP) and 

reduce the number of False Positive (FP). Amplitude thresholding can be an easy 

and computational efficient method to discriminate spikes from the noise. The 

threshold is generally calculated by the SD of the background noise multiplied by 

a factor N in the range between 3 and 5 [72]. Whenever a sample of the recording 

overtakes the threshold, a window extracts the action potential and stores this 

information for the subsequent steps of the SSA. Based on the quality of the 

recording, a simple amplitude threshold cannot be sufficient. Increasing the value 

of N can be useful for noisy recordings, because it reduces the number of FPs but 

it also reduces the number of RPs. Conversely, decreasing N allows increasing the 

number of RPs at the cost of higher FPs. It is possible to increase the performance 

of the detector by means of specific algorithms that enhance the presence of the 

spikes by reducing the noise in the recording. They include, for example, the Non-

Linear Energy Operator [73] that takes into account the instantaneous amplitude 
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and frequency of the signal, the MMA [70], wavelet denoising [68] that filters the 

signals by means of scaled mother wavelet and matched filters [74]. By analogy 

with our choice for eENG, the MMA has been used for the spike detection 

algorithm with the same parameters adopted in Section 5.3.1. 

Feature extractions aims at separating the activity of different neurons by means of 

the traits of the detected action potentials, thus reducing the data dimensionality and 

algorithm complexity. Defined as S the number of samples of a detected spike, a 

set of M representative feature are found and used to discriminate between the 

different action potentials. It has been heavily demonstrated that a few repertoires 

of unique features are necessary to reach high levels of classification accuracy both 

for muscular and neural recordings [30]- [72]. Two set of features have been derived 

from the action potentials, temporal and wavelet ones. The temporal features 

descend from the first and second derivative of the action potentials, calculated as 

 

( ) ( ) ( 1)

( ) ( ) ( 1) ,

FD i s i s i

SD i FD i FD i

  


   

 (19) 

 

where s is the action potential and FD and SD are, respectively, its first and second 

derivative. The maximum of FD and the maximum and the minimum of SD have 

been selected as features [75]. We opted for this set of features for the 

straightforward computation and for their use in implantable device for peripheral 

neural recordings [76]. Wavelet decomposition was performed to calculate the 

wavelet coefficients of the action potentials. The mother wavelet Symlet was chosen 

due to its similarity with the shape of the action potentials [77]. The action 

potentials were decomposed into 3 levels in order to obtain one subset of 

approximation coefficient and 3 subsets of detail coefficients. The coefficients that 

could allow a better discrimination are selected by means of the Lilliefors 

modification of the Kolmogorov-Smirnov test [78]. It is calculated as 

 

( ) max ( ) ( ) ,L i F i G i   (20) 

 

where F(i) is the cumulative distribution of the i-th wavelet coefficient and G(i) is 

the Gaussian distribution with the mean and variance of the i-th data. The three 
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coefficients with the highest value of L(i) were selected as features for the 

classification algorithm. 

Regarding the PR step, for comparison purposes, SVM has been chosen and used 

to classify ENG signals processed with the SSA. The algorithm is described in 

section 3.1.2. 

 

5.2.5 Data Analysis 

The ultimate goal of this study is to demonstrate that is possible to decode user 

intention by means of pattern recognition algorithms applied to the eENG and, 

consequently, pave the way to closed-loop hand prosthesis control grounded on 

ENG signals. To do that, neural recordings from the amputee subject were analysed 

in two ways. Firstly, the eENG was extracted from the recorded signals as described 

in section 5.1.3 and the SVM was applied to classify the gestures. Afterwards, the 

SSA explained in section 5.1.4 was applied to the same recorded neural signals. A 

comparison with the eENG patter recognition was then carried out. To be sure that 

the recorded information from the nerves actually represented the two different 

gestures little finger and open hand, the simultaneously acquired muscular signals 

were processed and classified by means of the SVM [20]. In this way, we set the 

accuracy reference for the neural recordings. Moreover, since the sEMG pattern 

recognition is a well-established procedure, an accuracy very close to 100% is 

expected for the two-gesture classification. Feature extraction was avoided both for 

sEMG and for eENG data. The choice to avoid feature extraction generates large 

datasets, therefore a 200 Hz downsampling was applied to all sEMG and eENG 

datasets. Although we may experience some loss of information, 200 Hz was 

empirically determined representing a good trade-off between evaluation time to 

train the algorithm and the classification performance. The optimization strategy 

used to train the SVM algorithm is the same described in section 3.1.3. sEMG data 

were thresholded using an amplitude of 0.05 mV in order to discard all the samples 

that are note related of a muscle activation. eENG, instead, was not thresholded 

since the computation of the envelope already removed all the samples not involved 

in the electrical activity risen from the movement intention. The accuracy of the PR 

based on eENG and SSA was measured and compared with the defined muscular 

reference. The accuracy is intended as the correct classification ratio. Recordings 
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of neural data were limited to one subject and two gestures. Therefore, a further 

analysis was performed in order to evaluate the classifier performance evolution 

with the increase of the number of gestures. For SSA, simulated neural recordings 

were used and performance up to 10 classes were evaluated. We assume that each 

class is representative of a gesture similarly to what was presented in [66]. The 

signals were segmented in order to have the same number of action potentials for 

each synthetic recording (i.e. 4000). The detected action potentials were randomly 

divided into a Training and a Testing Set with the same number of action potentials. 

Data were processed following the steps described in Section 5.1.4. In order to 

evaluate also the effect of the feature extraction on the algorithm performance, both 

temporal and wavelet features were used for this analysis. The SVM one-vs-one 

was coded in Matlab. The computation of the accuracy of the algorithm was 

repeated 20 times for each simulation. Classifier performance evolution with the 

increase of gestures was described through a decay curve fitted by a polynomial 

function of 2nd degree. The fitting constraint are defined as 
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where D(n) is the accuracy decay and n is the number of classes of the datasets. 

 

 

5.3 Results 

 

5.3.1 Algorithm performance for simultaneous ENG and sEMG recordings 

Figure 47-48 report the results of algorithm accuracy for the real simultaneous ENG 

and sEMG recordings. As expected, the accuracy of the SVM applied to sEMG 

signal was very close to 100% (99.98% ± 0.08%); consequently, the assumption of 
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using SMV with sEMG signals as reference for the two gestures was confirmed. 

The algorithm was also tested with the data in the GS. Again, a classification of 

100% ± 0.02% was reached, as shown in Fig. 47 and confirmed by the confusion 

matrix in Fig. 48a.  

 

 

Figure 47. Performance of the algorithms applied to real data. Columns on the left indicates the results 

obtained with the data downsampled at 200 Hz. On the right, when all the information was used. 

 

The SVM algorithm applied to eENG reached an accuracy of 98.26% ± 0.88%. 

When the SVM was tested with the GS, the accuracy slightly decreased to 98.25% 

± 0.24%. This result is shown in Fig. 47. In this case, conversely to what we have 

found for the sEMG data, the number of FPs and False Negatives (FNs) are not 0 

(respectively 1200 and 4080 in Fig. 48b).  

This number is however very low with respect to the number of RPs, thus a high 

classification accuracy is obtained. Finally, SSA was applied to the neural recorded 

data from the amputee. The classification was repeated 50 times and the accuracy 

was recalculated each time with new TRs and TSs. Although the classes to 

discriminate were only 2, the overall performance of the algorithm was 69.97% ± 

2.62%. These results are reported in Fig. 47 where it is clearly visible the high 
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discrepancy between the standard SSA accuracy (red bar) and the accuracy of the 

eENG (white bar). 

 

 

 

Figure 48. a) Confusion matrix for the sEMG recordings. On the main diagonal is reported the cardinality of 

the correct classifications; in the top left dial is reported the cardinality of the misclassified data as little 

finger extension (class 1) and in the bottom right dial the cardinality of the misclassified data as open hand 

(class 2); b) Confusion matrix for the ENG recordings. On the main diagonal is reported the cardinality of 

the correct classifications; in the top left dial is reported the cardinality of the misclassified data as little 

finger extension (class 1) and in the bottom right dial the cardinality of the misclassified data as open hand 

(class 2). 

 

5.3.2 Performance decay with the number of classes 

In order to study SSA, performance decay with the increase of classes, synthetic 

data were used. Figures 49 show the decay curves when temporal features and 

wavelet features are used. Again, the starting point of the curve is for 2 classes, 

where the ∆Accuracy is 0. For temporal features the decay is slower than for the 

wavelet ones. The blue line is the average accuracy decay while the red dotted lines 

represent the percentiles. The green boxes show the standard deviation of the data. 

The big dots are the mean value obtained for each class, while the dark green line 

inside the boxes stands for the median. In particular, for 10 classes, SSA with 

temporal features lost 2.85% in accuracy whereas SSA with wavelet features lost 

15.95%. Moreover, in case of temporal features accuracy variability is lower than 

the case of wavelet features; this probably due to the chose features that are more 

robust to the shape of the action potentials. 

 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



94 

 

 

Figure 49. a) Decay of the accuracy of the SSA with temporal features. The data used to evaluate the decay 

curves in blue and red are presented in boxplots where the central line represents the median value; the 

edges of the box are the 25th and the 75th percentiles; the whiskers give the range of the data without 

outliers; solid markers represent the mean value; b) Decay of the accuracy of the SSA with wavelet features. 

The data used to evaluate the decay curves in blue and red are presented in boxplots where the central line 

represents the median value; the edges of the box are the 25th and the 75th percentiles; the whiskers give the 

range of the data without outliers; solid markers represent the mean value. 
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5.4 Discussion 

 

In this chapter is presented a new approach for decoding user intention from neural 

recordings, with the specific purpose of controlling a prosthetic hand. Hence, online 

processing and low computational burden are fundamental constraints to address in 

addition to classification accuracy. To pursue this objective, the study was 

organized in three parts: (i) A muscular reference was identified in order to measure 

the classification accuracy of the proposed algorithm. It consisted of a SVM 

classifier applied to sEMG data for discriminating two classes. As shown in Fig. 

47, the SVM classifier had an accuracy of 100%. (ii) A neural classifier based on 

eENG and SVM was developed and experimentally validated on two classes and 

performed offline due to the nature of the data. A comparative analysis with a SSA 

on the same recorded data and 2 classes was carried out. (iii) The decay of 

classification performance with the increase of motion classes was investigated for 

both the SVM and the SSA (up to 10 classes) by means of synthetic neural data. To 

date, neural recordings are processed by means of the SSA. The use of this 

algorithm to classify gestures suggests implicitly that one movement is driven by 

one or two neurons at most. The SSA was used in this very study to discriminate 

two gestures in a real context of neural prosthesis hand control. The accuracy 

obtained was quite low (69.97%). This because muscle activation involves a 

remarkable number of neurons with action potentials very different between each 

other. Moreover, it is likely that some neurons can be active in both the gestures; 

therefore, classification through SSA increases the computation burden without 

providing an increase in the performance. Additionally, SSA in conceived to 

recognize different neurons that have different spike shapes by identifying the set 

of features that best characterize the action potentials. This approach is hardly 

compatible with online application of SSA (as in the case of closed loop prosthesis 

control, where the features may not be well optimized) resulting in low performance 

of the classification algorithm. The dependence of the algorithm performance with 

respect to the chosen features is shown in Fig. 49. The level of decay of 

classification performance, for the same number of classes is different for temporal 

features (accuracy decay is 2.85%) and wavelet features (accuracy decay is 

15.95%). As an alternative, matched filters can be used. Unfortunately, this 
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approach requires a great computational burden, again unsuitable for online 

applications. Moreover, a great variability emerges from the plots. This can be 

explained as follows. Each outcome was obtained by 5 different synthetic 

recordings for each number of classes. Since the SSA is strictly dependent on the 

shape on the shape of the action potentials in the recording, it may happen that, even 

increasing the number of the classes, the chosen set of features is more performing 

in that particular case than in one another. It is also worth considering that both 

temporal and wavelet features are not optimized for the specific recording. On the 

other hand, the computation of the ENG envelope allows considering the neural 

activation as a whole, by overcoming the specificity of the shape of the action 

potentials that is accounted for in the choice of the features. Additionally, the 

computational burden is much reduced with respect of SSA. What is really needed 

for decoding a gesture and driving a prosthetic hand is the amplitude of the action 

potential and the firing rate of neurons, as they are connected to the elicited 

muscular contraction. Having this in mind, in [67] the authors identified a 

mathematical relationship between the envelope of ENG and sEMG signals. 

Consequently, it is expected that the pattern recognition techniques applied to 

sEMG can also be successfully applied to ENG. This paper was built on this 

assumption and wanted to verify the feasibility of using the envelope of the neural 

signals and the pattern recognition algorithm typically adopted in the sEMG studies. 

The results on neural and muscular signals simultaneously acquired on one amputee 

subject were encouraging (Fig. 47). In fact, even though the number of classes was 

low, classification accuracy highly depended on the type of classification. The SVM 

applied on the eENG reaches an accuracy of 98.26% whereas with the SSA it was 

obtained only 69.97%. Moreover, it is worth noticing that content of information 

from nerve and muscle could not be always the same because of variations in 

available muscle or the type and location of neural electrodes. This variability can 

be managed by acting on the parametric relationship in (17). Parameters α and b 

can be optimized in order to maximize the correlation between the ENG and the 

sEMG envelopes. It is plausible that this relationship should be further optimized 

through more data, possibly taken from more subjects. Because of the bad quality 

of the neural recordings, the analysis on real neural signals could not be extended 

to a number of classes higher than 2. Consequently, the analysis of the decay of 

classification performance with the increase of the number of the classes was 
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carried out on synthetic neural signals [69]. The analysis for SSA applied on 

synthetic signals showed that accuracy decay depends on the type of features. In 

this analysis, the wavelet features behave worse than the temporal features. Hence, 

for 10 classes, the classification accuracy decreases by 2.85% for the temporal 

features and by 15.95% for the wavelet features from the starting reference point (2 

classes). The choice of the features, then, becomes a not trivial task to perform and 

a wrong selection could lead to very low performance in terms of accuracy. Finally, 

the computational burden of the algorithms was calculated in terms of 

computational time. In hand prosthesis control, online classification is mandatory 

for the patient to perceive no delays between the motion intention and the actuation 

of the prosthesis. This aspect, along with sensory feedback, is compulsory for the 

complete acceptability of the device and for the naturalness of the control. A 

promising approach to achieve naturalness would involve TMR. In this procedure, 

the nerves of the stump are connected to different anatomical muscle, e.g. chest or 

dorsal, and use them as a biological amplifier. This way, it is possible to classify a 

great number of classes allowing the patient to control simultaneously different 

Degrees of Freedom (DoF) of a prosthetic device recording the signals from the 

reinnervated muscles [79]. As regards sEMG and ENG signals, it was found that 

the pattern recognition algorithm is able to classify an input every 1.32 µs and 32.6 

µs respectively. Conversely, with temporal features, SSA needs 3.37 ms to classify 

each spike. These tests were performed in Matlab 2015b under Windows 10 OS on 

an Intel(R) Core(TM) i7 − 4710HQ CPU @ 2.5GHz with 16 GB GHz. These values 

are suitable for online application in neural control of a hand prosthesis, since the 

delay between the intention and the actuation of a movement should not exceed 150 

ms [80]. 

 

 

5.5 Conclusion 

 

In this chapter, a new method for classifying hand gestures by means of neural 

signals was pro-posed. It relies on the computation of the envelope of neural signals 

and the application of pattern recognition algorithms typically adopted for sEMG. 

The proposed method was applied to neural signals recorded from a male amputee 
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during an experiment of prosthetic hand control and com-pared to standard spike 

sorting algorithm. In the classification of two gestures, the comparative analysis 

showed that SSA reached lower classification accuracy (69.97%) than SVM applied 

to eENG (98.26%). Moreover, it was verified that the eENG method can be used 

for an online application. In fact, the pattern recognition algorithm is able to classy 

the inputs every 32.6 µs. The analysis performed on 10 classes showed that 

classification performance of neural recordings can reach a decay of 2.85% from 

the reference point of 2 classes with the SSA performed with temporal features. 

This one was obtained by means of simulated data, arranged ad hoc to test the 

performance of the SSA. It is expected that the achieved results can only get worst 

in the case of real neural recordings. Hence, these results strongly encourage to 

further investigate solutions of pattern recognition applied to neural signals 

(without resorting on SSA) and possibly apply them to prosthesis control where 

gesture classification accuracy and reduced computational burden are demanding. 
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Chapter 6  

 

 

Conclusions 

 

 

This thesis aims to provide useful insights into the choice of the suitable classifier 

(and its specific internal settings) for the embedded control of multi-fingered hand 

prostheses and to use them for designing a fully embedded control unit able to 

recognize the user will, via PR algorithms and to control a multi-fingered prosthetic 

hand exploiting a new control strategy. 

The analysis performed on sEMG data recorded from 30 people with trans-radial 

amputation showed that the algorithm representing the best compromise between 

performance and computational burden is NLR (with the highest value of EOF) and 

showing no statistically significant difference with LDA with time domain features 

(Chapter 3). Therefore, this result is also more appreciable if we consider that NLR 

was trained and tested using raw sEMG data, demonstrating that it is possible to 

use non-linear classification algorithms for embedded applications. As just 

mentioned before, the main issue related to PR algorithms in clinical application is 

the robustness and reliability of the classification. Hence, a new control strategy 

trying to combine robustness, reliability and less cognitive effort has been proposed 

and included between the classification algorithm and the internal control of the 

prosthetic hand (section 4.2.2). Then, a complete system FW-HW-SW for the 

control of multi-fingered prosthetic hand has been designed, evaluated and 

integrated into a prosthetic device (section 4.1). Unfortunately, it is not possible to 

show the results of 3 months of on-line testing of the entire system carried out 

during the PPR2 experimentation as part of an article in preparation. Nevertheless, 

these first preliminary and qualitative results are encouraging. The device was 

tested on a male subject with a right trans-radial amputation already experienced in 

myoelectric control of prosthetic hands. Since the first use, the system appears 
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sufficiently reliable allowing to perform ADL tasks as grasping a bottle of water 

and drink, and even after 2 weeks the subject was still able to control all the gesture. 

In conclusion, the device designed and built meets the specifications, the constraints 

and fully functional so the objectives set can be said achieved. 

Future development will regard a power consumption review of the HW FW parts 

by implementing energy save policies and will exploit the full system in order to 

perform long-term test on a pool set of trans-radial amputation. In the case of a 

positive outcome, the system will be re-engineered to comply with the normative 

concerning medical devices and will be subjected to clinical validation trials.  

Long is the way but hopefully this work encourages to prosecute the studies in this 

field. Indeed, if the expectations are confirmed, there could be considerable 

repercussions regarding not only technological advances but also the limb 

amputation surgery, and the rehabilitation path of people with amputations. 

On the other hand, Solutions based on patter recognition on sEMG suffer from the 

limitation that the subject cannot be provided with a natural sensory feedback. 

However, it has been shown that invasive solutions based on neural electrodes allow 

directly stimulating PNS and can be used with the twofold purpose of stimulating 

and recording the neural information coming from the brain to drive the residual 

muscles. Hence, as complementary activity, a new method for processing ENG 

signals specifically aimed at controlling hand prostheses has been proposed in order 

to overcome the limitations of traditionally adopted techniques of ENG processing 

resorting to sEMG PR techniques applied to the eENG. The main advantages of the 

proposed approach are related to the reduced computational burden and the on-line 

processing (which are paramount for closed loop interfaces). The obtained results 

strongly encourage to further investigate solutions of pattern recognition applied to 

neural signals (without resorting on SSA) and possibly apply them to prosthesis 

control. Indeed, future work will be addressed to collect additional neural data form 

amputees in order to more in depth analyse the performance decay of the proposed 

classification algorithms over the number of classes and further validate the 

proposed method in the online neural closed-loop control of a hand prosthesis by 

means of brand new human experimentation.  
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Appendix 

 

 

 

 

 

Figure 50. Power Supply and CAN bus Protocol specifications from robo-limb 

datasheet. 
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Figure 51. CAN bus settings and instruction list from robo-limb datasheet. 
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Figure 52. Battery recharger and prosthesis connection specifications from robo-limb datasheet. 
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Figure 53.Maintenance specifications from robo-limb datasheet. 
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Figure 54. Maintenance specifications from robo-limb datasheet.

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



112 

 

 

this page is intentionally left blank 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



113 

 

Bibliography 

 

[1]  A. L. Ciancio, et al, “Control of prosthetic hands via the peripheral nervous 

system,” Frontiers in neuroscience. 2016, vol. 10, p. 116, 2016.  

[2]  M. Ortiz Catalan, B. Håkansson and R. Brånemark, “Real-time and 

simultaneous control of artificial limbs based on pattern recognition 

algorithms,” IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 22, pp. 756-764., 2014.  

[3]  P. Parker, K. Englehart and B. Hudgins, “Myoelectric signal processing for 

control of powered limb prostheses,” Journal of electromyography and 

kinesiology, vol. 16, pp. 541-548, 2006.  

[4]  D. Farina and O. Aszmann, “Bionic limbs: clinical reality and academic 

promises,” Science translational medicine, vol. 12, pp. 257-272, 2014.  

[5]  A. Roche, et al, “Prosthetic myoelectric control strategies: a clinical 

perspective,” Current Surgery Reports, vol. 2, pp. 1-11, 2014.  

[6]  C. Castellini, et al, “Fine detection of grasp force and posture by amputees 

via surface electromyography,” Journal of Physiology-Paris, vol. 103, pp. 

255-262, 2009.  

[7]  M. Zecca, S. Micera, et al, “Control of multifunctional prosthetic hands by 

processing the electromyographic signal,” Critical Reviews™ in Biomedical 

Engineering, vol. 30, pp. 4-6, 2002.  

[8]  L. H. Smith, B. A. Lock and L. Hargrove, “Effects of window length and 

classification accuracy on the real-time controllability of pattern recognition 

myoelectric control,” Proceedings of the 18th Congress of the International 

Society for Electrophysiology and Kinesiology, 2010.  

[9]  S. Benatti, et al, “Analysis of Robust Implementation of an EMG Pattern 

Recognition based Control,” Biosignals, 2014.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



114 

 

[10]  K. Nazarpour, “Surface EMG signals pattern recognition utilizing an 

adaptive crosstalk suppression preprocessor,” ICSC Congress on ma pc 

Computational Intelligence Methods and Applications, 2005.  

[11]  P. Dohnalek, “Human activity recognition on raw sensors data via sparse 

approximation,” International Conference on Telecommunications and 

Signal, 2013.  

[12]  A. D. C. Chan and K. Englehart, “Continuous classification of myoelectric 

signals for powered prostheses using Gaussian mixture models,” 

Engineering in Medicine and Biology Society, 2003.  

[13]  L. Zhijun, et al, “Boosting-based EMG patterns classification scheme for 

robustness enhancement,” IEEE Journal of Biomedical and Health 

Informatics, vol. 17, pp. 545-552, 2013.  

[14]  A. Cloutier and J. Yang, “Design, control, and sensory feedback of externally 

powered hand prostheses: a literature review,” Critical Reviews™ in 

Biomedical Engineering, vol. 2, no. 2, pp. 161-181, 2013.  

[15]  E. Scheme and K. Englehart, “Electromyogram pattern recognition for 

control of powered upper-limb prostheses: State of the art and challenges for 

clinical use,” Journal of rehabilitation research and development, pp. 643-

659, 2011.  

[16]  G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson and K. W. Horch, “Residual 

function in peripheral nerve stumps ofamputees: implications for neural 

control of artificial limbs,” The Journal of hand surgery, vol. 29, no. 4, pp. 

605-615, 2004.  

[17]  Raspopovic, M. Bonizzato, J. Rigosa, et al, “Restoring natural sensory 

feedback in real-time bidirectional hand prostheses,” Science translational 

medicine, vol. 6, 2014.  

[18]  D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, D. J. Tyler 

and et al, “A neural interface provides long-term stable natural touch 

perception,” Science translational medicine, vol. 6, pp. 257-265, 2014.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



115 

 

[19]  C. M. Oddo, S. Raspopovic, F. Artoni, et al, “Intraneural stimulation elicits 

discrimination of textural features by artificial fingertip in intact and amputee 

humans,” Elife.  

[20]  A. Dellacasa Bellingegni, E. Gruppioni, et al, “NLR, MLP, SVM, and LDA 

a Comparative Analysis on EMG Data from People with Trans-Radial 

Amputation,” Journal of NeuroEngineer and Rehabiliation, 2017.  

[21]  E. Noce, A. Dellacasa Bellingegni, A. Ciancio, A. Davalli, R. Sacchetti, E. 

Guglielmelli and L. Zollo, “Pattern Recognition of Nerve Singal for 

Prosthetic Hand Control,” Journal of Neuroscience Methods, 2017 

(submitted).  

[22]  M. Troncossi, “A procedure for the synthesis of upper limb prostheses. A 

case study: prototype manufacturing of a Novel Two–DoF Myoelectric 

Shoulder,” in Diss. PhD Thesis, University of Bologna, 2006.  

[23]  Ottobock, “Ottobock upper-limbprosthetics,” [Online]. Available: 

http://www.ottobockus.com/prosthetics/upper-limbprosthetics/. [Accessed 

27 Dicembre 2017]. 

[24]  RLS Steeper, “bebionic hand,” RLS Steeper, [Online]. Available: 

http://www.bebionic.com. [Accessed 27 Dicembre 2017]. 

[25]  Touch Bionics, “Touch Bionics Ultra-Limb,” [Online]. Available: 

http://www.touchbionics.com/products/active-prostheses/i-limb-ultra. 

[Accessed 27 Dicembre 2017]. 

[26]  N. Jiang and D. Farina, “Myoelectric control of upper limb prosthesis: 

current status,challenges and recent advances.,” Front. Neuroeng. 

Conference, 2014.  

[27]  J. Hijjawi, T. A. Kuiken, R. Lipschutz, L. Miller and K. Stubblefield, 

“Improved myoelectric prosthesis control accomplished using multiple nerve 

transfers.,” Plast.Reconstr.Surg, vol. 118, pp. 1573-1578, 2006.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



116 

 

[28]  O. C. Aszmann, A. Roche, S. Salminger, T. Paternostro-Sluga, M. Herceg, 

et al, “Bionic reconstruction to restore hand function after brachial plexus 

injury: a case series of three patients,” Lancet, vol. 385, pp. 2183-2189, 205.  

[29]  L. Miller, K. Stubblefield, R. Lipschutz, B. Lock and T. Kuiken, “Improved 

myoelectric prosthesis control using targeted reinnervation surgery: a case 

series,” IEEE Trans. Neural Syst. Rehabil. Eng, vol. 16, pp. 45-50, 2008.  

[30]  B. Hudgins, P. Parker and R. Scott, “A new strategy for multifunctioning 

control,” IEEE Trans. Biomed. Eng, vol. 40, pp. 82-94, 1993.  

[31]  M. Zardoshti-Kermani, B. Wheeler, K. Badie and R. N. Hashemi, “EMG 

feature evaluation for movement control of upper extremity prostheses,” 

IEEE Trans. Rehab. Eng., vol. 3, pp. 324-333, 1995.  

[32]  S. Park and S. Lee, “EMG pattern recognition based on artificial intelligence 

techniques,” IEEE Transac. Rehabil. Eng., vol. 6, pp. 400-405, 1998.  

[33]  K. Farry, I. D. Walker and R. Baraniuk, “Myoelectric teleoperation of a 

complex roboitic hand,” IEEE Trans. Rob. Autom., vol. 12, pp. 775-788, 

1996.  

[34]  D. Graupe and W. Cline, “Functional separation of EMG signals via ARMA 

identification methods for prosthesis control purposes,” IEEE Trans. Syst. 

Man Cybernet., vol. 2, pp. 252-258, 1975.  

[35]  M. Vetterli and J. Kovacevic, “Wavelets and Subband Coding,” Englewood 

Cliffs NJ: Prentice Hall PTR, 1995.  

[36]  M. Akay, “Wavelet Application in Medicine,” IEEE Spectr., vol. 34, pp. 50-

56, 1997.  

[37]  K. Englehart, “Signal Rapresentation for Classification of the Transient 

Myoelectric Signal,” Ph.D thesis, UniversityofNewBrunswick(Canada), 

1998.  

[38]  C. S. Pattichis and M. Pattichis, “Time-scale analysys for motor unit action 

potential,” IEEE. Trans. Biomed. Eng., vol. 46, pp. 1320-1329, 1999.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



117 

 

[39]  S. Karlsson, J. Yu and M. Akay, “Time–frequency analysis of myoelectric 

signals during dynamic contractions: a comparative study,” IEEE Trans. 

Biomed. Eng., vol. 47, pp. 228-238, 2000.  

[40]  P. Sparto, M. Parnianpour, E. Barria and J. Jagadeesh, “Wavelet and short-

time fourier transform analysis of electromyography for detection 

ofbackmusclefatigue,” IEEE Trans. Rehab. Eng., vol. 8, pp. 433-436, 2000.  

[41]  R. Coifman and M. Wickerhauser, “Entropy-based algorithms for best basis 

selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713-718, 1992.  

[42]  L. Hargrove, L. Guanglin, K. Englehart and B. Hudgins, “Principal 

components analysis processing for improved classification accuracies in 

pattern recognition-based myoelectric control,” IEEE Transac. Biomed. 

Eng., vol. 56, pp. 1407-1414, 2009.  

[43]  A. Chan and G. Green, “Myoelectric control development toolbox,” 

Proceedings of 30th Conference of the Canadian Medical and Biological 

Engineering Society, 2007.  

[44]  C. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 

2006.  

[45]  S. Kotsiantis, I. Zaharakis and P. Pintelas, “Supervised machine learning: a 

review of classification techniques,” Emerging Artificial 

IntelligenceApplications,inComputerEngineering, pp. 3-24, 2007.  

[46]  L. J. Hargrove, K. Englehart and B. Hudgins, “Acomparison of surface and 

intramuscular myoelectric signal classification,” IEEE Trans. Biomed. Eng., 

vol. 54, pp. 847-853, 2007.  

[47]  B. Lock, K. Englehart and B. Hudgins, “Real-time myoelectric control in a 

virtual environment to relate usability vs. accuracy,” Proceedings of 

MyElectric Controls/Powered Prosthetics Symposium Fredericton.  

[48]  F. Finley and R. Wirta, “Myocode studies for multiple myopotential 

response,” Arch.Phys.Med.Rehabil, vol. 48, pp. 598-601, 1967.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



118 

 

[49]  J. Lyman, A. Freedy and P. Prior, “Fundamental and applied research related 

to the design and development of upper limb externally powered prostheses,” 

Bull. Prosthet., vol. 13, pp. 184-195, 1976.  

[50]  COAPT Engineering, “COAPT Complete Control,” COAPT Engineering, 

[Online]. Available: https://www.coaptengineering.com/. [Accessed 28 

Dicembre 2017]. 

[51]  A. Simon, L. Hargrove, B. Lock and T. Kuiken, “The Target Achievement 

Control Test: Evaluating real-time myoelectric pattern recognition control of 

a multifunctional upper-limb prosthesis,” Journal of rehabilitation research 

and development. 2011; 48(, vol. 48, 2011.  

[52]  A. Young, L. Smith, E. Rouse and L. Hargrove, “A comparison of the real-

time controllability of pattern recognition to conventional myoelectric 

control for discrete and simultaneous movements,” Journal of 

neuroengineering and rehabilitation, vol. 11, no. 1, pp. 1-5, 2014.  

[53]  F. Riillo and e. al, “Optimization of EMG-based hand gesture 

recognitionOptimization of EMG-based hand gesture recognition: 

Supervised vs. unsupervised data preprocessing on healthy subjects and 

transradial amputees,” Biomedical Signal Processing and Control, vol. 14, 

pp. 117-125, 2014.  

[54]  S. Dreiseitl and L. Ohno Machado, “Logistic regression and artificial neural 

network classification models: a methodology review,” Journal of 

biomedical informatics, vol. 35, pp. 352-360, 2002.  

[55]  N. Chaiyaratana, A. Zalzala and D. Datta, “Myoelectric signals pattern 

recognition for intelligent functional operation of upper-limb prosthesis,” 

Department of Automatic Control and Systems Engineering, 1996.  

[56]  C. Hsu and C. Lin, “A comparison of methods for multi-class support vector 

machine,” IEEE Transactions on 680 Neural Networks, vol. 13, pp. 412-425, 

2002.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



119 

 

[57]  LIBSVM, “LIBSVM FAQ,” [Online]. Available: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#/Q04:_Training_and_pr

ediction. [Accessed 29 Dicembre 2017]. 

[58]  B. Ripley, Pattern recognition and neural networks, Cambridge university 

press, 2007.  

[59]  N. Baykal and A. Erkmen, “Resilient backpropagation for RBF networks,” 

Knowledge-Based Intelligent Engineering-Systems and Allied Technologies, 

2000.  

[60]  Y. Ding, E. Lushi and Q. Li, “Investigation of quasi-Newton method for 

unconstrained optimization,” Simon Fraser - University, 2004..  

[61]  D. Powers and D. Martin, “Evaluation from Precision, Recall and F-measure 

to ROC, informedness, markedness 689 and correlation,” Journal of 

Machine Learning Technologies, vol. 2, pp. 37-63, 2011.  

[62]  J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” 

Journal of Machine learning research, vol. 1, p. 30, 2006.  

[63]  L. Hargrove, et al, “A real-time pattern recognition based myoelectric control 

usability study implemented in a virtual environment,” Engineering in 

Medicine and Biology Society EMBS 29th Annual International Conference 

of the IEEE, 2009.  

[64]  NXP, “NXP mk20dx256vll10,” [Online]. Available: 

https://www.nxp.com/part/MK20DX256VLL10. [Accessed 2 Gennaio 

2018]. 

[65]  X. Jia, M. A. Koenig, X. Zhang, J. Zhang, T. Chen and Z. Chen, “Residual 

motor signal in long-term human severed peripheral nerves and feasibility of 

neural signal-controlled artificial limb,” The Journal of hand surgery , vol. 

5, no. 32, pp. 657-666, 2007.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



120 

 

[66]  P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, et al, “Double nerve 

intraneural interface implant on a human amputee for robotic hand control,” 

Clinical neurophysiology, vol. 5, no. 121, pp. 777-783, 2010.  

[67]  E. Noce, L. Zollo, A. Davalli, R. Sacchetti and E. Guglielmelli, 

“Experimental analysis of the relationship between neural and muscular 

recordings during hand control,” Biomedical Robotics and Biomechatronics 

(BioRob), 2016.  

[68]  L. Citi, J. Carpaneto, K. Yoshida, K. Hoffmann, K. P. Koch, P. Dario and S. 

Micera, “On the use of wavelet denoising and spike sorting techniques to 

process electroneurographic signals recorded using intraneural electrodes,” 

Journal of neuroscience methods , vol. 2, no. 172, pp. 294-302, 2008.  

[69]  J. Martinez, C. Pedreira, M. J. Ison and R. Q. Quiroga, “Realistic simulation 

of extracellular recordings,” Journal of neuroscience methods, vol. 2, no. 

184, pp. 285-293, 2009.  

[70]  U. Rutishauser, E. M. Schuman and A. N. Mamelak, “Online detection and 

sorting of extracellularly recorded action otentials in human medial temporal 

lobe recordings, in vivo,” Journal of neuroscience methods, vol. 1, no. 154, 

pp. 204-224, 2006.  

[71]  Martinez, “Database for ENG study,” [Online]. Available: 

http://www135.lamp.le.ac.uk/hgr3/. [Accessed 15 Gennaio 2018]. 

[72]  H. G. Rey, C. Pedreira and R. Q. Quiroga, “Past, present and future of spike 

sorting techniques,” Brain research bulletin, vol. 119, pp. 106-117, 2015.  

[73]  K. Kim and S. J. Kim, “Neural spike sorting under nearly 0-db signal-to-

noise ratio using nonlinear energy operator and artificial neural-network 

classifier,” IEEE Transactions on Biomedical Engineering, vol. 10, no. 47, 

pp. 1406-1411, 2000.  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



121 

 

[74]  D. Farina, O. F. Do Nascimento, M. F. Lucas and C. Doncarli, “Optimization 

of wavelets for classification of movement-related cortical potentials 

generated by variation of force-related parameters,” ournal of neuroscience 

methods, vol. 1, no. 162, pp. 357-363, 2007.  

[75]  S. E. Paraskevopoulou, D. Y. Barsakcioglu, M. R. Saberi, A. Eftekhar and 

T. G. Constandinou, “Feature extracion using first and second derivative 

extrema (fsde) for real-time and hardware-efficient spike sorting,” Journal of 

Neuroscience methods, vol. 1, no. 215, pp. 29-37, 2013.  

[76]  M. Zamani and A. Demosthenous, “Feature extraction using extrema 

sampling of discrete derivatives for spike sorting n implantable upper-limb 

neural prostheses,” IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 4, no. 22, pp. 716-726, 2014.  

[77]  A. Diedrich, W. Charoensuk, R. J. Brychta, A. C. Ertl and R. Shiavi, 

“Analysis of raw microneurographic recordings based on wavelet de-noising 

technique and classification algorithm: wavelet analysis in 

microneurography,” IEEE Transactions on Biomedical Engineering, vol. 1, 

no. 50, pp. 41-50, 2004.  

[78]  R. Quiroga, Z. Nadasdy and Y. Ben-Shaul, “Unsupervised spike detection 

and sorting with wavelets and superparamagnetic clustering,” Neural 

computation, vol. 8, no. 16, pp. 1661-1687, 2004.  

[79]  D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, et al, “an/machine interface 

based on the discharge timings of spinal motor neurons after targeted muscle 

reinnervation,” Nature Biomedical Engineering, vol. 1, 2017.  

[80]  T. R. Farrell and R. F. Weir, “The optimal controller delay for myoelectric 

prostheses,” IEEE Transactions on neural , vol. 1, no. 15, pp. 111-118, 

systems and rehabilitation engineering.  

[81]  The Southampton Hand Assessment Procedure, “SHAP,” [Online]. 

Available: http://www.shap.ecs.soton.ac.uk/index.php. [Accessed 4 

Gennaio 2018]. 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



122 

 

[82]  P. Agnew, “Functional effectiveness of a myo-electric prosthesis compared 

with a functional split-hook prosthesis: A single subject experiment,” 

Prosthetics and Orthoctis International, vol. 5, pp. 92-96, 1981.  

 

 

 

 

 

 

 

  

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



123 

 

Figure Captions 

 

Figure 1. Block diagram of a generic pattern recognition system based on sEMG 

signals. 

Figure 2. Cosmetic Prosthesis. 

Figure 3. Kinematic elbow Prosthesis. 

Figure 4. Myoelectric Prosthesis. 

Figure 5. Single degree of freedom hands. a) Ottobock myoelectric speed hand 

without external cover. b) Ottobock myoelectric speed hand with extern cover. c) 

Ottobock electric Greifer terminal device. 

Figure 6. Michelangelo hand prosthesis by Ottobock. 

Figure 7. a) Bebionic3S prosthetic hand by RLS Steeper. b) Ultra-Limb prosthetic 

hand by Touch Bionics 

Figure 8. a) Single Threshold control trend. b) Double Threshold control trend. 

Figure 9. Proportional control trend. 

Figure 10. Cyclic Selection Control Strategy representation for the selection of the 

desired grasp from a predefined set. 

Figure 11. TMR prosthetic setup. 

Figure 12. COAPT-Engineering prosthetic Setup. 

Figure 13. Experimental Setup a) sEMG bracelet and NI DAQ USB 6002; b) 

Subject positioning and acquisition Software. 
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Figure 14. Graphic display of the selected gestures and of the raw recording for 

the six different channels at the same time for all the imagined movements of a 

single acquisition session from one of the subjects who took part to the experiment. 

Figure 15. F1Score of Test Set (smaller boxes) and Generalization Set (bigger 

boxes) of 5 classes over the maximum value of variable D calculated from 30 people 

with trans-radial amputation. The figure also shows the trend of the mean value for 

both Sets. Statistical non-significance over value 5 is shown by “ns”. 

Figure 16. F1Score of Test Set (smaller boxes) and Generalization Set (bigger 

boxes) of 5 classes over the maximum number of layers having fixed at 30 the 

maximum number of neurons for each hidden layer calculated from 30 people with 

trans-radial amputation. The figure also shows the trend of the mean value for both 

Sets. Statistical non-significance over value 5 is shown by “ns”. 

Figure 17. F1Score of Test Set (smaller boxes) and Generalization Set (bigger 

boxes) of 5 classes over the maximum number of neurons for each layer. The 

maximum number of hidden layers calculated from 30 people with trans-radial 

amputation has been fixed at 5. The figure also shows the trend of the mean value 

for both Sets. Statistical non-significances over value 23 for and overvalue 28 for 

GS are shown by “ns”. 

Figure 18 F1Score values from 30 people with trans-radial amputation increasing 

the sampling frequency of the dataset used to train and cross validate the NLR, 

MLP, and SVM algorithms and 5 classes. Statistical significance is shown by “ * 

”. a) F1Score values for Test Set; b) F1Score values for Generalization Set. 

Figure 19. Number of classification parameters from 30 people with trans-radial 

amputation increasing the sampling frequency of the dataset used to train and cross 

validate the NLR, MLP, and SVM algorithms and 5 classes. The y axis in 

logarithmic scale. Statistical non-significance is shown by “ns”. 
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Figure 20. EOF values from 30 people with trans-radial amputation increasing the 

sampling frequency of the dataset with 5 classes used to train and cross validate 

the NLR, MLP, and SVM algorithms. Statistical significance is shown by “ * ”. a) 

EOF values for Test Set; b) EOF values for Generalization Set. 

Figure 21. F1Score values from 30 people with trans-radial amputation for MLP, 

NLR, SVM, tested on GS, and LDA with 5 time domain features, on a 5 classes 

dataset. NLR and MLP where trained using data sampled at 100Hz, while SVM 

using data sampled at 10Hz. Statistical non-significance is shown by “ ns ”. 

Figure 22. Number of classification parameters from 30 people with trans-radial 

amputation for MLP, NLR, SVM, and LDA with 5 time domain features, on a 5 

classes dataset. NLR and MLP where trained using data sampled at 100Hz, while 

SVM using data sampled at 10Hz. The y axis in logarithmic scale. Statistical non-

significance is shown by “ns”. 

Figure 23. EOF values from 30 people with trans-radial amputation for MLP, NLR, 

SVM, tested on GS, and LDA with 5 time domain features, on a 5 classes dataset. 

NLR and MLP where trained using data sampled at 100Hz, while SVM using data 

sampled at 10Hz. Statistical non-significance is shown by “ ns ”. 

Figure 24. Schematization of the control flow. The signal processing is necessary 

just to filter and amplify the sEMG signal when the used sensor cannot provide it 

themselves. 

Figure 25. Schematization of the system functions allocation. Based on the results 

obtained in chapter 3 the features extraction step has been skipped in lieu of a post-

processing applied to the output of the classification. The control strategy interacts 

with the pattern recognition block (fig. 24) changing internal settings of the 

classifier block. 

Figure 26. Direct pattern recognition control strategy. Once a class output is 

available the prosthetic hands moves to the corresponding gesture. 
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Figure 27. Finite state machine control strategy for 5 different gestures. It is 

possible to observe that this strategy is a hybrid between the cyclic control strategy 

(Fig. 10) and the direct pattern recognition one (Fig.24). 

Figure 28. Structure of the Classifier Block. 

Figure 30. Variant of the Classifier Block. The trigger can be achieved by means 

of touch sensors placed on the prosthetic hand. 

Figure 30. Example of a 6 sEMG signal star diagram and the formula to evaluate 

the overall intensity (IEMG) of the sEMG signal. 

Figure 31. Finite state machine control strategy for 5 different gestures and force 

management. 

Figure 32. Electronic hierarchical schematic of the hardware. 

Figure 33. PCB layout. 

Figure 34. Pattern recognition control unit PCB; a) Top view; b) Bottom view; c) 

Overall sizing placing the PCB near a 0.5€ coin. 

Figure 35. EDATS, TRAINING & SIMULATION & UPLOAD flow chart: in this 

example has been decided to classify 5 hand gestures (Rest, Fist, Tip, Open and 

Point). 

Figure 36. FIRMWARE TEST software Interface. 

Figure 37. Simplified firmware flowchart. 

Figure 38. Firmware Sequence Diagram 

Figure 39. Building the socket from the stump of the subject who took part to the 

experiment. 

Figure 40. Inside view of the socket of the prosthesis. 

Tesi di dottorato in Bioingegneria e bioscienze, di Alberto Dellacasa Bellingegni, 
discussa presso l’Università Campus Bio-Medico di Roma in data 08/05/2018. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



127 

 

Figure 41. The Complete Prosthetic device. a) Detail of the components placed 

inside the Prosthesis. b) Lateral view of the Prosthesis. 

Figure 42. Confusion matrix associated to the April 25 training session 

Figure 43. Subject performing a complex task. 

Figure 44. Block scheme of a neural-controlled prostheses approach. 

Figure 45. Neural (in red) and muscular (in blue) recordings during little finger 

extension. 

Figure 46. sEMG envelope (in blue) and ENG envelope (in yellow) computed with 

Figure 47. Performance of the algorithms applied to real data. Columns on the left 

indicates the results obtained with the data downsampled at 200 Hz. On the right, 

when all the information was used. 

Figure 48. a) Confusion matrix for the sEMG recordings. On the main diagonal is 

reported the cardinality of the correct classifications; in the top left dial is reported 

the cardinality of the misclassified data as little finger extension (class 1) and in 

the bottom right dial the cardinality of the misclassified data as open hand (class 

2); b) Confusion matrix for the ENG recordings. On the main diagonal is reported 

the cardinality of the correct classifications; in the top left dial is reported the 

cardinality of the misclassified data as little finger extension (class 1) and in the 

bottom right dial the cardinality of the misclassified data as open hand (class 2). 
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Figure 49. a) Decay of the accuracy of the SSA with temporal features. The data 

used to evaluate the decay curves in blue and red are presented in boxplots where 

the central line represents the median value; the edges of the box are the 25th and 

the 75th percentiles; the whiskers give the range of the data without outliers; solid 

markers represent the mean value; b) Decay of the accuracy of the SSA with wavelet 

features. The data used to evaluate the decay curves in blue and red are presented 

in boxplots where the central line represents the median value; the edges of the box 

are the 25th and the 75th percentiles; the whiskers give the range of the data 

without outliers; solid markers represent the mean value. 

Figure 50. Power Supply and CAN bus Protocol specifications from robo-limb 

datasheet. 

Figure 51. CAN bus settings and instruction list from robo-limb datasheet. 

Figure 52. Battery recharger and prosthesis connection specifications from robo-

limb datasheet. 

Figure 53.Maintenance specifications from robo-limb datasheet. 

Figure 54. Maintenance specifications from robo-limb datasheet. 
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Table Captions 

 

Table 1. Encoding the variable D. 

Table 2. Mean values and standard deviation of F1Score of Test Set and 

Generalization Set of 5 classes over the maximum value of variable D calculated 

from 30 people with trans-radial amputation. The highest values per Set are 

highlighted in bold. See Fig. 15 for a graphic display and statistical significance. 

Table 3. Mean values and standard deviation of F1Score of Test Set and 

Generalization Set of 5 classes over the maximum number of layers having fixed at 

30 the maximum number of neurons for each hidden layer calculated from 30 

people with trans-radial amputation. The highest values per Set are highlighted in 

bold. See Fig.  16 for a graphic display and statistical significance. 

Table 4. Mean values and standard deviation of F1Score of Test Set and 

Generalization Set of 5 classes over the maximum number of neuron having fixed 

at 5 the maximum number of layers calculated from 30 people with trans-radial 

amputation. The highest values per Set are highlighted in bold. See Fig. 17  for a 

graphic display and statistical significance. 

Table 5. Mean values and standard deviation of F1Score of Test Set and 

Generalization Set of 5 classes from 30 people with trans-radial amputation 

varying the frequency of the dataset used to train and cross validate the NLR, MLP 

and SVM classifier. The highest values per classifier are highlighted in bold. See 

Fig. 18  for a graphic display and statistical significance. 

Table 6. Mean values and standard deviation of classification parameters from 30 

people with trans-radial amputation varying the frequency of the dataset used to 

train and cross validate the NLR, MLP and SVM classifier and 5 classes. The 

highest values per classifier are highlighted in bold. See Fig. 19 for a graphic 

display and statistical significance. 
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Table 7. Mean values and standard deviation of EOF of Test Set and Generalization 

Set of 5 classes from 30 people with trans-radial amputation varying the frequency 

of the dataset used to train and cross validate the NLR, MLP and SVM classifier. 

The highest values per classifier are highlighted in bold. See Fig. 20 for a graphic 

display and statistical significance. 

Table 8. Mean values and standard deviation of F1Score values, classification 

parameters and EOF values from 30 people with trans-radial amputation for each 

classifier involved in this study on a 5 classes dataset. The EOF and F1Score 

highest values and the lowest number of parameters are highlighted in bold. See 

Fig.  21-22-23 for a graphic display and statistical significance. 

Table 9. Subdividing the sEMG data for the training of the force classifier. 

Table 10. CAN and UART Peripheral Settings. 

Table 11.Results of the electronic performance tests. 

Table 12. April 25 2017trainig session  reults table 
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