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ABSTRACT Over the past few decades, the substantial growth in enterprise-data availability and the
advancements in Artificial Intelligence (AI) have allowed companies to solve real-world problems using
Machine Learning (ML). ML Operations (MLOps) represents an effective strategy for bringing ML models
from academic resources to useful tools for solving problems in the corporate world. The current literature
on MLOps is still mostly disconnected and sporadic. In this work, we review the existing scientific literature
and we propose a taxonomy for clustering research papers onMLOps. In addition, we present methodologies
and operations aimed at defining an ML pipeline to simplify the release of ML applications in the industry.
The pipeline is based on ten steps: business problem understanding, data acquisition, ML methodology,
ML training & testing, continuous integration, continuous delivery, continuous training, continuous moni-
toring, explainability, and sustainability. The scientific and business interest and the impact of MLOps have
grown significantly over the past years: the definition of a clear and standardizedmethodology for conducting
MLOps projects is the main contribution of this paper.

INDEX TERMS MLOps, continuous monitoring, continuous integration, continuous delivery, continuous
training, XAI, sustainability.

I. INTRODUCTION
In the last decades, Machine Learning (ML) has emerged as
a powerful tool to solve complex real-world problems such
as stock prediction [1], biomedical image analysis [2]–[4],
autonomous driving [5], and fraud detection [6]. Since data
availability has reached levels never seen before, businesses
around the world are working to leverage these data and pro-
cess them automatically, exploiting the generalization power
of ML to take actions and decisions [7].

In most real-world applications, data are constantly chang-
ing. This implies that ML models need to be retrained or,
in the worst-case scenario, the entire ML pipeline has to
be rebuilt to tackle feature drift [8], [9]. A more frequent,
faster, and simpler release cycle helps meet any regulatory
or business changes. To achieve industrial growth, standard-
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ized production methods are required [10]–[12]. To indus-
trialize ML models, a good set of production methods must
be applied [13]. One of the key elements in facilitating the
development of industry-leading companies is to improve
communication between Science Technology Engineering
Math (STEM) professionals and industry leaders or industry
professionals by adopting a proven set of steps for industrial-
izing ML solutions [14], [15].

Machine Learning Operations (MLOps) is a candidate
to define these standardized production methods [16], [17].
MLOps can be viewed as the iterative process of pushing
the latest best ML models to production [18], [19]. In fact,
conducting an MLOps project means supporting automa-
tion, integration, and monitoring at all stages of building an
ML system, including training, integration, testing, release,
deployment, and infrastructure management [20], [21].

MLOps was born from different fields: ML, Development
and Operations (DevOps), and data engineering (Fig. 1).
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FIGURE 1. MLOps develops upon Machine Learning, DevOps, and data
engineering.

Of the three fields, DevOps had the biggest impact onMLOps
development. DevOps is a method of thought and practice
that aims to improve and remove as much as possible the
friction between development and operations (implementa-
tion and integration), seeing them as a single process [22].
The goal of DevOps is to study ways to improve service
quality and features to meet customer needs [23], [24]. The
primary links between MLOps and DevOps are the concepts
of continuous integration (CI) and continuous delivery (CD),
which allow software to be produced in short cycles, ensuring
that it can be reliably released at any time.

When we look at how the current literature describes an
ML project life-cycle, a picture like the one illustrated in
Fig. 2 (top) is often shown. In many companies, model devel-
opment and operations are carried out manually and without
implementing MLOps. This slows down the industrialization
of ML methodologies. As ML models have zero Return on
Investment (ROI) until they can be used [25], [26], time to
market should be the first metric to look at and optimize for
any ML project. The only way to improve the release and
continuous use of ML solutions in the industrial environment
is to take great care of the part following the development
of the model, in particular the interface between the ML
solution and the existing Information and Communication
Technologies (ICT) system. In fact, themost time-consuming
step in releasing anML solution into production is Operations
(Fig. 2 (bottom)). It is worth noting that, although MLOps
fosters process automation, its main goal is not to optimize
business [27].

II. OBJECTIVES
The main objective of this paper is to provide a literature
review on MLOps to highlight current challenges in building
and maintaining an ML system in a production environ-
ment [28]. At the same time, we aim at giving an overview
of why MLOps was introduced to translate ML systems into
production [29], [30]. To this end, we selected papers and
projects in the field of MLOps and propose a taxonomy to
understand the work done so far. We identify key concepts

FIGURE 2. Traditional workflow of ML (top) vs. MLOps workflow (bottom).

by analyzing existing literature from 2015 to 2022. Finally,
we propose our operational methodology to approach an
ML project. As far as we know, this is the first effort to
systematize the literature on this topic and provide its opera-
tionalization.

The main difference between the operational methodology
proposed in this paper and the traditional workflow imple-
mented in many ML projects consists in the full integration
of the various project steps to realize an effective, scal-
able, but above all industrializable solution. In fact, in most
ML projects all forces are used for the development of an
accurate ML model, without giving due importance to the
integration and monitoring of the ML solution in the indus-
trial environment.

The main motivation for proposing a methodology is to try
to normalize each step to bring ML models from research to
production. Due to the growing interest, researchers are trying
to figure out each step of MLOps without involving business
partners in defining each step. This results in a misalignment
in the definition of the MLOps issues without having a clear
vision from the transition from research to production up to
the maintenance of the models. By following a clear method-
ology, teams can have a deeper overview of all processes
and organize each part of a project in a better and more
systematic way.

The rest of this paper is structured as follows: Section III
reviews the related literature; Section IV presents the pro-
posed MLOps workflow; Section V concludes the paper and
suggests high-level directions for further research.

III. PROPOSED TAXONOMY
As introduced in Section I, MLOps initiatives aim to estab-
lish resilient and efficient workflows by creating robust
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pipelines [31], established practices [32], and auxiliary
frameworks and tools. Indeed, model development is only a
small part of the overall process, and many other processes,
configurations, and tools need to be integrated into the sys-
tem [33]. Bringing the application of DevOps techniques in
the context of continuous training (CT), CD, CI, and con-
tinuous monitoring (CM) is among the main requirements
of an ML project that aims to provide process automation,
governance, and agility.

In the literature, several projects have tried to tackle var-
ious aspects of the ML production process by expanding
existing libraries or by creating new tools to enhance the
quality and performance of specific processes or make them
more insightful. Up to now, there is no standardized and
common pipeline to follow for an end-to-endMLOps project.
To cluster the different approaches, we propose the following
taxonomy:

1) ML-based software systems, also known as model-
centric frameworks. These systems focus on the archi-
tecture of ML models with a view to (CI/CD) [23],
[34], [35]. The goal of such systems is twofold: on the
one hand, it is to create and automate ML pipelines;
on the other hand, the goal is to increase the level of
automation in the ML software life-cycle [36].

2) ML use case applications where, for example, papers
explain an MLOps workflow to foster collaboration
and negotiation between surgeon and patient [37], [38]
or the ML pipeline on the Cloud for drug
discovery [39].

3) ML automation frameworks such as MLFlow [40],
Kedro [41] or Amazon SageMaker [42], and bench-
marking frameworks such as MLPerf [43], MLMod-
elScope [44] and Deep500 [45]. These are interesting
commercial tools that are already being used in daily
work practice and represent excellent ML framework
automation solutions.

The following subsections review in more detail the works
that fall into the three categories.

A. ML-BASED SOFTWARE SYSTEMS
Machine Learning is becoming the primary approach to
solving real-world problems. Therefore, there are many data
science teams studying how to apply DevOps principles
to industries. The ML life-cycle involves manual steps for
deploying the ML pipeline model. This method can produce
unexpected results due to the dependency on data, prepro-
cessing, model training, validation, and testing. The idea is to
design an automated pipeline using two DevOps principles
which are CI and CD. The functionality of CI is to test and
validate data, data schemes, and models. CD is for an ML
pipeline that should automatically deploy another ML ser-
vice [23]. TheML life-cycle has differentmethodologies to fit
different scenarios and data types. The approachmost used by
data mining experts is CRoss-Industry Standard Process for
DataMining (CRISP-DM) [46], introduced in 1996 byDaim-
ler Chrysler. Experts can borrow the standard CRISP-DM

methodologies and try to apply them to the MLOps pipeline.
The process typically involves two teams: ML scientists
responsible for model training and testing, and ML engineers
responsible for production and deployment. MLOps pipeline
automation with CI/CD routines is as follows:

• Business problem analysis;
• Dataset features and storage;
• ML analytical methodology;
• Pipeline CI components;
• Pipeline CD components;
• Automated ML triggering;
• Model registry storage;
• Monitoring and performance;
• Production ML service.

One of the points of greatest attention after CI and CD
is monitoring, in terms of metrics and Key Performance
Indicators (KPIs), and the continuous deployment of mod-
els. This part includes model performance, data monitoring,
outlier detection, and explanations of historical predictions.
Continuous monitoring is a process that allows understanding
in real-time when validation performance tends to decrease.
Outlier detection is the key to trusting and keeping the model
healthy. Therefore, the most important function of continuous
monitoring is to ensure high model performance and KPIs
used to validate models. There are many metrics to test the
quality of a model, such as precision, recall, F1, and MSE.
However, these metrics evaluate a model in the laboratory,
regardless of the real-world context of how the model will
be used. When evaluating ML models in the context of real
applications, model performance metrics are not enough to
establish the robustness of the models. The most basic step
towards supporting such KPI-based analytics is to ensure that
KPIs andmodel metrics are stored with a common correlation
ID to identify which model operations contributed to transac-
tions with a particular KPI score [36]. Other important KPIs
at the company level for evaluating the performance of the
model can be: time-to-market, infrastructure cost, scalability,
and profitability indices on sales (ROS) [47]. Unfortunately,
ML models often fail to generalize outside the training data
distribution [48].

Finally, the trust in the ML project is the model expla-
nation. Explainability allows users to trust the prediction
and this improves transparency. The user can verify which
factors contributed to certain predictions, introducing a layer
of accountability [35]. The terms ‘‘explainability’’ and ‘‘inter-
pretability’’ are being used interchangeably throughout the
literature; however, in the case of an AI-based system,
explainability is more than interpretability in terms of impor-
tance, completeness, and fidelity of predictions or clas-
sifications [49]. Explainable Artificial Intelligence (XAI)
is a research trend that promotes explainable decision-
making. Many real-world ML applications greatly increase
the efficiency of industrial production from automated equip-
ment and production processes [50]. However, the use of
‘‘black-boxes’’ has not yet been overcome due to the lack of
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explainability and transparency of the models and decisions
still present [51].

B. ML USE CASE APPLICATIONS
One of the most difficult challenges is usingML in real-world
applications where the focus is on system integration and
scaling. The setup of MLOps use cases is continuous train-
ing, continuous integration, and continuous deployment [52],
where new versions of the ML system can be deployed in
running software. In this section, we present a case study to
understand what a workflow looks like in an MLOps project.
The use case concerns Oravizio [38], a software product
that provides data-driven information on patient-level risks
related to hip and knee joint replacement surgery. Oravizio
helps the collaboration and negotiation between the surgeon
and a patient so that the decisions that are taken are informed
and there is consent to the operation.

Oravizio provides three different dedicated prediction
models:
• Risk of infection within one year from surgery;
• Risk of revision within two years from surgery;
• Risk of death within two years from surgery.

In the case of Oravizio, data were collected over the years,
including 30, 000 medical records, from patients who have
undergone surgery. Since the number of cases is so large that
no surgeon can process them manually during the appoint-
ment, these data have been used to create a risk calcula-
tion model that predicts the outcome of the surgery. The
various formats of the data were one of the issues during
pre-processing to create a standard for later analysis [37].
Once the data are standardized, an ML model can be cre-
ated for each risk to enable validation and ensure regula-
tory compliance. The models selected to be trained for this
task were Logistic regression, Random forest, XGBoost, and
Weibull/Cox survival mode. According to the results, gradi-
ent boosting with XGBoost produced the best performance
and can be selected for use in production [38].

As shown in Fig. 3, these models are usually re-trained
during the life-cycle of anML product. We have new data and
this entails continuous training to improve accuracy. We also
have continuous delivery in terms of deploying new mod-
els and continuous monitoring, which has two faces: some
indexes to track accuracy for data science analysis, and some
KPI or different indexes from the business or clinical side
to help understand the model and whether this approach can
improve the business.

Unfortunately, there are no other use cases available in
the literature that have a clear pipeline of MLOps where it
is clearly explained the process from problem understanding
to model deployment and continuous training, delivery, and
monitoring. For example, in the case of the Uffizi Gallery in
Florence [34], one of the most visited museums in Italy with
over 2 million visitors, the project aims to reduce the queue
using ML but we do not have a clear set-up of the MLOps
workflow. In the article in question, the authors talk about
the chosen architecture, the reason why it was decided to use

FIGURE 3. Workflow of Oravizio.

an ML algorithm and the run-time continuous training of the
algorithm to improve performance, but what is missing is a
methodological guideline.

C. ML AUTOMATION FRAMEWORKS
To have a business impact, ML applications need to be
deployed in production, which means deploying a model
in a way that can be used for inference (e.g., REpresenta-
tional state transfer (REST) services) and deploying sched-
uled jobs to update the model regularly. This is especially
challenging when deployment requires collaboration with
another team, such as application engineers who are not ML
experts, or when the ML team uses different libraries or
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TABLE 1. Some popular data labeling tools.

TABLE 2. Pros and cons of some popular data labeling tools.

frameworks [40]. ML projects have created new challenges
that are not present in traditional software development. One
of these includes tracking input data, data versions, tuning
parameters, and so on, to keep production deployment up-
to-date [53]. In this section, we want to summarize these
challenges and describe some of the most popular ML frame-
works like MLflow, Kubeflow, MLPerf, etc. [54].

MLOps frameworks can be divided into three main
areas [55] dealing with:
• Data management;
• Modelling;
• Operationalization.

1) DATA MANAGEMENT
Data labeling tools (Table 1) are used to help the data science
team to label large datasets such as texts, images, etc. [56],
[57]. Labeled data are used to train supervised ML algo-
rithms. We provide an overview of some data labeling tools
and advantages and disadvantages in Table 2.
Data versioning tools (Table 3), on the other hand, are

used by data science and data engineering teams to manage
different versions of models and datasets [58]. This helps
data science teams gain insights, such as identifying how data
changes impact model performance and understanding how
datasets evolve. An overview of some popular data versioning
tools along with pros and cons are shown in Table 4.

TABLE 3. Some popular data versioning tools.

TABLE 4. Pros and cons of some popular data versioning tools.

TABLE 5. Some popular feature engineering tools.

2) MODELLING
In Table 5 and 6, we present feature engineering tools that
allow adding automation to the process of extracting useful
features from raw datasets to create better training data [59].
These tools help speed up the process of feature engineering
and extraction and create better training data for ML models.

Developing ML projects involves running multiple exper-
iments with different models, model parameters, or training
data. Experiment tracking tools save all necessary informa-
tion about different experiments [60]. This allows to track the
versions of experiment components and results and allows for
comparison between different experiments. Some examples
of experiment tracking tools are shown in Table 7. In Table 8,
a summary of their pros and cons is presented.

Hyperparameters are the main part to get better models.
These are the parameters of the ML training algorithms such
as the learning rate, the type of regularization applied, and so
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TABLE 6. Pros and cons of some popular feature engineering tools.

TABLE 7. Some popular experiment tracking tools.

TABLE 8. Pros and cons of some popular experiment tracking tools.

on. Hyperparameter tuning tools help automate the process
of searching and selecting the optimal hyperparameters that
perform better [61], [62]. Popular hyperparameter tuning
tools are shown in Table 9 and 10.

3) OPERATIONALIZATION
ML model deployment tools facilitate the integration and
deployment of ML models into production [63]. Some tools
with advantages and disadvantages for each software are
shown in Table 11 and Table 12.
ML model monitoring is another important part of a suc-

cessful ML project because ML model performance tends to
decay aftermodel deployment due to changes in the input data
stream over time [64], [65]. Model monitoring tools detect

TABLE 9. Some popular hyperparameter tuning tools.

TABLE 10. Pros and cons of some popular hyperparameter tuning tools.

TABLE 11. Some popular model deployment tools.

data drift and anomalies over time and allow to set alerts in
case of performance issues. An overview of some popular
data monitoring tools is provided in Table 13 and in Table 14,
with advantages and disadvantages.

There are also tools that cover the end-to-end ML life-
cycle [66]. Some popular platforms are shown in Table 15
and in Table 16 with advantages and disadvantages.

IV. PROPOSED MACHINE LEARNING OPERATIONS
METHODOLOGIES
In this section, we provide our methodology for an MLOps
project that aims to unify the lessons learned from the liter-
ature review into a single framework. The main difference
from the other frameworks is that we are trying to create a
new standard for ML projects inspired by CRISP-DM that
helps strengthen the link between research and industries.
Below, the different stages of the proposed MLOps process
are described. Figure 4 provides a schematic overview.

A. BUSINESS PROBLEM UNDERSTANDING
Establishing a business understanding and the success criteria
for solving the problem under study is the first step in an
ML project [67]. Business understanding is a non-technical
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TABLE 12. Pros and cons of some popular model deployment tools.

TABLE 13. Some popular model monitoring tools.

phase and, for this reason, communication between data sci-
entists and business experts is the main part of identifying
the business problem. During this phase, it is essential to
map the processes, systems, key data elements, and policy
documentation for the key domains expressed in the business
problem. This information is often created and maintained by
the data governance team with an enterprise data governance.
The initial step is gathering requirements and clearly defin-
ing the objectives and key results (OKR). In this part, data
scientists should discuss with business experts to determine
if ML can really help. For each of the OKRs, it is necessary
to define one or more KPIs [68]. These KPIs need to be
documented for future reference and will be critically useful
in ensuring that the project delivers the expected value. The
KPIs must match the metrics (MSE, accuracy, etc.) used by
the data science team to understand how model improvement
impacts the business. The definition and documentation of
business problems provide a key context for the subsequent
phases, helping to distinguish relevant data, defining how data
maps into the model (both during training and deployment),
and identifying which dimensions of the model performance
should be monitored once the model is in production and
according to what criteria [69].

B. DATA ACQUISITION
During data acquisition, the goal is simply to collect enough
data to train the ML model to get the first solution [70].
The data scientist identifies information in terms of fea-
tures/attributes presented for a specific business problem.
These aspects should be discussed with a field-expert data
engineer to identify potential data sources. Once the dataset

TABLE 14. Pros and cons of some popular model monitoring tools.

TABLE 15. Some popular ML life-cycle tools.

TABLE 16. Pros and cons of some popular ML life-cycle tools.

is identified, the data engineer builds the pipeline that makes
the data available to the data scientist. The data engineer
performs the preliminary cleaning and validation steps so that
there is a sufficient amount of high-quality data to meet the
data scientist’s needs.

The tasks for data acquisition can be summarized as
follows:
• Data Extraction: select and integrate the data relevant to
the ML task.

• Data Analysis: exploratory data analysis to understand
the data schema and the characteristics expected by the
model.

• Data Preparation: identify the data preparation and fea-
ture engineering required for the model. This prepara-
tion involves data cleaning and splitting into training,
validation, and test set. Data transformation and feature
engineering also apply to the model that solves the target
task. The output of this step is data ready in the prepared
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FIGURE 4. Proposed MLOps workflow.

format. For example, NULL values are converted to
zero, or outliers are excluded from the dataset.

When there is not enough data to train the model, two main
methodologies allow to bypass the problem:
• Data Augmentation is a technique that allows increasing
the number of data available by inserting copies of the
data (e.g., in the case of images, we use the same rotated,
enlarged, blurred, etc.).

• Transfer Learning, which allows reusing most of the
weights of a neural network already trained on a similar
problem.

C. ML METHODOLOGY
After data acquisition, selecting the best ML algorithms to
solve the problem is a key part of the ML project. Usually, the
data science team studies the state-of-the-art for the specific
problem and tries a bottom-up approach to solving it. ML is
experimental by nature, trying different features, models,
parameters and hyperparameter configurations to find what
works best. The bottom-up approach typically consists in
trying different models with increasing degrees of complexity
until reaching the best one. This methodology helps data sci-
entists to start with simple models before trying to implement
complex ones.

D. ML TRAINING AND TESTING
The process of training and optimizing a new ML model
is an iterative process in which data scientists test several
algorithms, features, and hyperparameters. Once the best ML
models have been chosen, they are re-trained and tested. The
models are evaluated using different validation methods such
as:

• Holdout validation, this is a type of external validation
in which the dataset is split into two randomly sized
subgroups.

• Cross-validation, in which the original sample is ran-
domly partitioned into k equal-sized subgroups. Of the
k subgroups, one subsample is kept as a testing dataset
and k − 1 as training.

• Bootstrap validation, in which we resample the dataset
with replacement producing new datasets with the same
number of instances as the initial dataset.

The output of this step is a set of metrics for evaluating
the quality of the model. Once this iteration is complete,
the weights of the best models are saved and deployed
using an API infrastructure. Training and testing an ML
system is integration, data validation, trained model qual-
ity evaluation, and model validation. The main goal is to
keep track of all experiments and maintain reproducibility
while maximizing code reusability [71]. We have seen that
there exist different tracking tools which can simplify the
process of storing the data, the features selected, and model
parameters along with performance metrics. These allow to
compare the differences in performance and aid the repro-
ducibility of the experiments. Without reproducibility, data
scientists are unable to deliver the model to DevOps to see if
what was created in the lab can be faithfully reproduced in
production [72].

E. CONTINUOUS INTEGRATION
Continuous integration is a well-established development
practice in the software development industry [52] and
is the first step in starting the continuous delivery jour-
ney. CI enables companies to have frequent releases, and
improve software quality and teams’ productivity [73].
This practice includes automated software building and
testing [74].

In the continuous integration pipeline, we build source
code and run various ML trained models. The outputs of this
stage are components (packages and artifacts) to be deployed
in the pre-production/production environment of continuous
delivery [75]. The ML code is a small portion of a real
ML system because an important component is the infrastruc-
ture, configuration, and data elaboration. Continuous integra-
tion for ML systems relies on having a substantial impact
on the end-to-end pipeline to automate the delivery of the
ML models with minimal effort. The main steps for continu-
ous integration are [22]:

• Source code management (SCM);
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• Push/pull changes to the repository to trigger a continu-
ous delivery build;

• Check the latest code and associated data version from
the data repository storage;

• Running of the unit tests;
• Building/running of the ML model;
• Testing and validation;
• Packaging of the model and building of the container
image;

• Pushing of the container image to the registry.
Several software tools have been used for the deployment

of ML models such as Jenkins [76], Git [77], Docker [78],
Helm [79], and Kubernetes [80]. Then, to summarize, the
pipeline and its components are built, tested, and packaged
when new code is committed or pushed to the source code
repository. CI is testing and validating code, dataset, data
schemas, and models. The validated model is deployed to a
target environment to provide predictions. This deployment
can be one of the following:
• Microservices with a REST API to provide online
predictions;

• A model embedded into an edge or mobile device;
• Part of a batch prediction system.

F. CONTINUOUS DELIVERY
Continuous delivery has the goal to ensure that an appli-
cation is always in a production-ready state after success-
fully passing the automated tests and quality checks [81].
The object of the deployment stage is to enable a seam-
less roll-out of new models, with the lowest possible risk.
Best practices in the continuous delivery of software services
involve the use of safe deployment techniques, such as A/B
tests. CD is an ML pipeline that should automatically deploy
model services. CD employs a set of practices such as CI,
and deployment automation to automatically deliver software
in production [82]. CD is a push-based approach [83] and
this practice has reduced deployment risk, lowered costs, and
gained user feedback faster.

In this phase, the construction of artifacts takes place,
which were produced by previous continuous integration
in the staging/pre-production/production environment. Test
models are obtained from this phase. The components of the
CD pipeline are summarized as follows:
• Staging environment: deploying the trained ML model
first in a staging environment is a standard operation in
ICT. The output of this step is a test model that is pushed
into the model registry archive.

• Model register archiving: necessary to define an
archiving location whereMLmodels in staging state and
ML models in production state are loaded.

• Automatic activation: this step is performed auto-
matically according to a schedule or a response in
the production environment. The output of this phase
is a test model that is pushed into the staging
environment.

G. CONTINUOUS TRAINING
During continuous training, we need to keep storing more
data and setting up the data in the same way we train our
model. This means detecting outliers to understand when
the data distribution diverges from the training data. CT is
concerned with automatically retraining and serving mod-
els [84]. Continuous training is a part of MLOps which auto-
matically and continuously retrains models before they are
redeployed.

To design a continuous training strategy, we should answer
the following questions [85]:
• When should a model be retrained?

– Periodic training.
– Performance-based trigger.
– Trigger based on data changes.
– Retraining on demand.

• How much data is needed for retraining?
– Fixed window.
– Dynamic window.
– Representative subsample selection.

• What should be retrained?
– Continual learning vs. transfer learning.
– Offline (batch) vs. online (incremental) learning.

• When to deploy the model after retraining?
– A/B testing.

H. CONTINUOUS MONITORING
The main objective during the monitoring stage is to man-
age the risks of the in-production models by checking for
performance drift [86] and alerting an operator that model
accuracy has dropped. The model predictive performance is
monitored to potentially invoke a new iteration in the ML
process. Once the model has been deployed to production,
it still needs continuous validation or testing because pat-
terns in the data can change over time. The model may
become less accurate because the data used in training the
model are no longer representative of the new data existing
in production [71]. Performance monitoring not only affects
the quantitative performance metrics. Therefore, during the
continuous monitoring, both metrics and the KPIs from the
technical part to the business part must be taken under control.

I. EXPLAINABLE AI
Deep Learning methods [87] now dominate benchmarks on
different tasks and achieve superhuman results. This improve-
ment has often been achieved through increased model com-
plexity. Once these models have become a real application in
production, the community has started studying the ‘‘explain-
ability’’ of the models to answer business questions. Explain-
ability can be defined as ‘‘the degree to which a human can
understand the cause of a decision’’ [88]. Explainability is
mostly connected with the intuition behind the outputs of a
model [89]; therefore, an ML system is explainable when it
is easier to identify cause-and-effect relationships within the
system inputs and outputs. For example, in image recognition
tasks, part of the reason that led a system to decide that a
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specific object is part of an image (output) could be certain
dominant patterns in the image (input). The more explainable
a model is, the greater the understanding practitioners get in
terms of internal business procedures that take place while
the model is making decisions. An explainable model does
not necessarily translate into one that humans can understand
(internal logic or underlying processes) [90]. The explainabil-
ity of themodel allows the user to build trust in the predictions
made by the deployed system and improve transparency. The
user can verify which factors contributed to certain predic-
tions, introducing a layer of accountability [15].

J. SUSTAINABILITY: CARBON FOOTPRINT
The increasingly common use of Deep Learning models in
real-world projects, as the other side of the medal, corre-
sponded to immense growth in the computation and energy
required [91]. If this growing trend continues, Deep Learning
could become a significant contributor to climate change.
This trend can be mitigated by exploring how to improve
energy efficiency in the DL models [92]. Hence, data scien-
tists need to know their energy and carbon footprint, so that
they can actively take steps to reduce themwhenever possible.
Carbon footprint is a measure of the total exclusive amount
of carbon dioxide emissions that are directly and indirectly
caused by an activity or accumulated during the life stages of
a product [93].

Strubell et al. selectively focused on carbon footprint anal-
ysis on AI models for natural language processing [94]. For
example, the training of an NLP Transformer model was esti-
mated to be equivalent to that of a commercial flight between
San Francisco and New York. The publication of these esti-
mates has had a significant effect in the scientific world.
Following the publication of these data, the 2020 White
Paper on AI released by the European Commission has
called for actions that go beyond the collection of impressive
but admittedly anecdotal data about the training of selected
AI systems [95]. For this reason, it is necessary to calculate
the carbon footprint of each individual AI system and the
AI sector [96].

It is important to emphasize that, during the MLOps life-
cycle, carbon footprint should be taken into account when
choosing models. It should be better to take a bottom-up
approach trying the first simple models without jumping to
the state-of-the-art with complex and expensive models. The
same approach is to calculate the carbon footprint during
training and testing, but also during continuous integration,
continuous delivery, and continuous training.

V. CONCLUSION
In this paper, we have provided an overview of approaches
in the literature using MLOps: we have provided a taxon-
omy of the current literature and proposed a methodology
for addressing MLOps projects. The application of DevOps
principles to ML and the use of MLOps in the industrial
environment are still little discussed topics at the academic
level. Current literature is mostly disconnected and sporadic.

This paper is intended as a literature review to systematize
and add clarity to the definition and methods of MLOps.
The paper aims to define a high-level strategy for dealing
with MLOps projects; the goal of future work is to apply
our proposed methodology to use cases such as biomedical
imaging and finance. Experimental work will be required to
test the pipeline defined in this manuscript.

Traditionally, data preparation, model training and testing,
and performance comparison are key points of traditional
pipelines. In this work, we have stressed the importance of
many other, no less important aspects, such as continuous
monitoring, sustainability issues, etc. Following well-defined
guidelines is the only way to allow the traceability and repro-
ducibility of the results obtained in an Open Science context.
For this reason, it is crucial to use systematic procedures for
greater cohesion in the scientific community to follow clear
and clean pipelines in MLOps. The remaining challenge for
the community is to try to apply an ML methodology to
an end-to-end use case trying to go through each point of
this methodology and show what happens if some phases
are not used. Specific areas, such as biomedicine, finance,
cyber-security, manufacturing [97], can greatly benefit from
adopting MLOps, and we believe the pipeline defined in this
paper can bring advantages over traditional practices.

According to Fortune Business Insights, the global
Machine Learning market is expected to grow from
$15.50 billion in 2021 to $152.24 billion in 2028 with
a compound annual growth rate of 38.6% over the fore-
cast period. MLOps aims to create long-term ML solutions,
reducing maintenance costs, and monitoring and optimizing
workflows. Understanding and intercepting new challenges
and trends such as the emerging MLOps will provide a
strong competitive advantage to companies adopting this
solution [98]

ABBREVIATION TERMS
ML Machine Learning.
MLOps Machine Learning Operations.
AI Artificial Intelligence.
XAI eXplainable AI.
STEM Science, Technology, Engineering

and Mathematics.
DevOps Development Operations.
DL Deep Learning.
ROI Return on Investments.
CI Continuos Integration.
CD Continuos Delivery.
CT Continuos Training.
CRISP-DM CRoss-Industry Standard

Process for Data Mining.
KPI Key Performance Indicator.
MSE Mean Squared Error.
ROS Return on Sales.
REST REpresentational State Transfer.
OKR Objective and Key Result.
API Application Programming Interface.
NLP Natural Language Processing.
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