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Simple Summary: Radiation-induced pneumonitis and severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) interstitial pneumonia show overlapping clinical features. As we are facing
the COVID-19 pandemic, the discrimination between these two entities is of paramount importance.
In fact, lung cancer patients are at higher risk of complications from SARS-CoV-2. In this study,
we aimed to investigate if a deep learning algorithm was able to discriminate between COVID-19
and radiation therapy-related pneumonitis (RP). The algorithm showed high sensitivity but low
specificity in the detection of RP against COVID-19 pneumonia (sensitivity = 97.0%, specificity = 2%,
area under the curve (AUC = 0.72). The specificity increased when an estimated COVID-19 risk
probability cut-off of 30% was applied (sensitivity 76%, specificity 63%, AUC = 0.84).

Abstract: (1) Aim: To test the performance of a deep learning algorithm in discriminating radiation
therapy-related pneumonitis (RP) from COVID-19 pneumonia. (2) Methods: In this retrospective
study, we enrolled three groups of subjects: pneumonia-free (control group), COVID-19 pneumonia
and RP patients. CT images were analyzed by mean of an artificial intelligence (AI) algorithm based
on a novel deep convolutional neural network structure. The cut-off value of risk probability of
COVID-19 was 30%; values higher than 30% were classified as COVID-19 High Risk, and values
below 30% as COVID-19 Low Risk. The statistical analysis included the Mann–Whitney U test
(significance threshold at p < 0.05) and receiver operating characteristic (ROC) curve, with fitting
performed using the maximum likelihood fit of a binormal model. (3) Results: Most patients
presenting RP (66.7%) were classified by the algorithm as COVID-19 Low Risk. The algorithm
showed high sensitivity but low specificity in the detection of RP against COVID-19 pneumonia
(sensitivity = 97.0%, specificity = 2%, area under the curve (AUC = 0.72). The specificity increased
when an estimated COVID-19 risk probability cut-off of 30% was applied (sensitivity 76%, specificity
63%, AUC = 0.84). (4) Conclusions: The deep learning algorithm was able to discriminate RP from
COVID-19 pneumonia, classifying most RP cases as COVID-19 Low Risk.
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1. Introduction

Radiotherapy plays a key role in the treatment of lung cancer, both as a radical
treatment in inoperable patients as well as induction therapy or adjuvant treatment for
resectable disease [1–3].

The mechanism of radiation-induced lung injury (RILI) depends on direct DNA
damage and production of reactive oxygen species. The latter causes cell loss, edema of the
alveolar walls and enhanced vascular permeability, leading to the apoptosis of alveolar
type-1 pneumocytes. After apoptosis, cells start recruiting immune effector cells that
activate tissue remodeling [4]. The clinical picture of RILI is radiation pneumonitis (RP).
Symptomatic RP occurs in about 30% of patients receiving concurrent chemoradiation
(CCRT) for non-small cell lung cancer (NSCLC) [5]. The incidence of RP is multifactorial,
including treatment-related and patient-related conditions, particularly older age and
larger volume of lungs receiving higher doses; some chemotherapy regimens are also
associated with increased risk of RP [5].

In 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was
identified in Wuhan, China. As the epidemic rapidly spread around the world, in March
2020, the World Health Organization (WHO) declared a global public health emergency,
describing the situation as a pandemic [6]. The respiratory syndrome associated with
SARS-CoV-2 includes variable degrees of severity. The most serious clinical entity is a
severe interstitial pneumonia that can lead to acute respiratory distress [7].

RP and SARS-CoV-2 interstitial pneumonia show overlapping clinical features. In
fact, the most common RP symptoms are dyspnea, dry non-productive cough and fever. In
addition, most patients show a high erythrocyte sedimentation rate or C-reactive protein
with normal serum procalcitonin and high serum ferritin and D-Dimer as expressions of
cancer disease. Moreover, lymphopenia is frequently observed, as lymphocytes are more
radiosensitive than other white blood cells. Finally, chest CT findings are also very similar,
as the radiological characteristics of RP are ground-glass opacity (GGO) in the initial phase,
patchy areas of consolidation in the peak phase and fibrotic changes in the dissipative
phase [8].

As we are moving from the peak of the pandemic to the longer mitigation phase, the
discrimination between these two entities is of paramount importance [9]. In fact, lung
cancer patients are more fragile and are at higher risk of complications from SARS-CoV-2
due to their being immunocompromised and reduced lung function [10].

Various radiological techniques may be used for the detection and quantification of lung
involvement in COVID-19 [11,12], but CT proved to be valuable for both purposes [13–16].

Deep learning (DL), a form of artificial intelligence (AI), is becoming a promising
support for medical imaging due to its capability of feature extraction and analysis [17–20].
It has been successfully applied to chest CT imaging to distinguish COVID-19 pneumo-
nia cases from community-acquired infections [21] as well as to provide qualitative and
quantitative analyses for disease burden estimation, facilitating and expediting imaging
interpretation [22,23].

Based on the above considerations, the aim of the present study was to test the
performance of a deep learning algorithm in discriminating RP from COVID-19 pneumonia.

2. Materials and Methods

We designed a retrospective observational study, performed in accordance with the
Declaration of Helsinki. The local Ethical Committee approved the study (the ethic code
is Prot.: 88/20 OSS.NOT ComEt CBM, 06 October 2020) and waived the need for written
informed consent from participants.

2.1. Participants

All of the subjects underwent chest CT scan and were consecutively sampled from
our electronic database. In this study, three groups of patients were included and classified
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according to both medical history and CT imaging findings (i.e., radiological reports). The
patients were grouped as follows.

Group 1 (control group): A group of consecutive symptomatic (fever > 37.5 ◦C,
dyspnea and/or cough and/or fatigue) patients with negative chest CT scan acquired
between 15 March 2020 and 30 April 2020.

Group 2: A group of consecutive symptomatic (fever > 37.5 ◦C, dyspnea and/or
cough and/or fatigue) patients with confirmed COVID-19 pneumonia by positive RT-
PCR (RealTiMe SARS-CoV-2 Assay, Abbott Laboratories. Abbott Park, IL, USA) on a
nasopharyngeal (or oropharyngeal) specimen using the swab technique and positive chest
CT scan acquired between 15 March 2020 and 30 April 2020.

Group 3: A group of consecutive patients with lung cancer treated with chemora-
diation or radiotherapy alone and a positive history of RP confirmed by chest CT scan
acquired from 2015 up to September 2019, before the occurrence of any known case of
COVID-19 in Italy.

Exclusion criteria were patients with history of previous radiation therapy on the
thoracic region for other pathologies (such as breast cancer) and poor quality of CT images
as well as insufficient chest expansion or movement artefacts.

In Group 1 and Group 2, lung CT scans were indicated to explore indeterminate
findings on chest X-ray and/or to quantify lung involvement in symptomatic patients. In
Group 3, CT images were taken from oncological follow-up whole-body CT scans and
retrospectively analyzed.

2.2. Chest CT Imaging Protocol

All chest CT acquisitions were obtained by maintaining the patients in a supine posi-
tion during end-inspiration, with or without contrast medium injection. Chest CT images
were acquired using either a Dual Source 384-slice (2 × 192) CT (Siemens SOMATOM
Force, Erlangen, Germany; tube real-time voltage modulation, 70–150 kV; tube real-time
dose modulation (CARE Dose4D™), 80–250 mAs; spiral pitch factor, 1.8; collimation width,
0.6 mm), a 128-slice CT (Siemens SOMATOM Definition AS, Erlangen, Germany; tube
voltage, 120 kV; tube real-time dose modulation (CARE Dose4D™), 80–250 mAs; spiral
pitch factor, 1.2; collimation width, 0.6 mm) or a 40-slice CT (Philips Brilliance CT; tube
voltage, 120 kV; 80–150 mAs; spiral pitch factor, 1.0; collimation width, 0.625 mm).

Every patient’s temperature was taken before entering the hospital, and dedicated
paths were established for oncologic patients. Moreover, all patients and medical staff wore
the proper personal protective equipment (PPE) during hospital stay and during CT scan
acquisition, and a meticulous decontamination of the CT room and passive air exchange
was carried out after every scan performed on patients with clinical or imaging suspicion
of COVID-19.

2.3. Deep Learning Algorithm Analysis

The deep learning algorithm analysis was performed using InferReadTM CT Lung
(COVID-19) (Infervision, Europe GmbH, Wiesbaden, Germany), an AI solution specifically
developed for diagnosis and management support of COVID-19 pneumonia. Among its
features, the algorithm module includes automated segmentation of the core features of
COVID-19 lung lesions and the segmentation of the lung lobes (right upper lobe, middle
lobe, right lower lobe, left upper lobe and left lower lobe). The output also includes the
estimated risk probability for the diagnosis of COVID-19 pneumonia. The core algorithm
is based on a novel deep convolutional neural network structure and uses the U-net
network structure as the core segmentation network [24]. The model training process
is presented elsewhere [25]. The cleaned and labeled data were trained through the
designated network structure. Continuous testing and parameter adjustments resulted
in a final model that meets all the requirements. The model was developed initially after
training on a population of patients diagnosed in Wuhan, China, and was later further
developed through training on a larger population. Specifically, for the trained AI model,
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patients’ characteristics (n = 2191 adult patients; Wuhan Chinese COVID-19) were mixed,
including all stages and clinical presentations of the disease (e.g., symptoms could have
been mild, moderate or severe) [24]. Based on a preliminary analysis of the deep learning
algorithm, evaluated in our hospital with the first 100 patients undergoing RT-PCR test, the
cut-off value of the estimated risk probability of COVID-19 was set at levels higher than
30% (“COVID-19 High Risk”), as the percentage of patients confirmed to have COVID-19
above this cut-off value was higher than 95%. Values of estimated risk probability below
30% were classified as “COVID-19 Low Risk” [26], as the definite diagnosis requires a
positive RT-PCR test.

The deep learning processing time for one CT exam is around 10–20 s in a dedicated
server with the following configuration characteristics: 16GB RAM, 3TB Drive, graphics
processing unit (GPU)-powered Linux server system. The chest CT studies are automat-
ically forwarded to the AI server located on the premises. Once the server receives a
study, the AI application starts processing, and the results are stored until a physician
assesses them. Two series can be analyzed in parallel given the number of GPU instances
available. The vendor agnostic AI system is capable of analyzing CT images generated by
different CT machine vendors. The system is able to accept CT images generated by CT
machines in different reconstruction protocols with a reconstruction slice thickness lower
than 1.5 mm [24]. The result can be also accessed through a URL to the case worklist. An
instant alert is received on the case worklist page once the chest CT arrives in the AI server
and is deemed as COVID-19 suspicious by the AI application. Figure 1 shows exemplary
screenshots of the AI viewer after the assessment of a patient with a confirmed diagnosis
of COVID-19 and another with a clinical diagnosis of RP.

Figure 1. InferReadTM CT Lung (COVID-19) system interface example; comparison between a patient
with COVID-19 pneumonia (A) and a patient with RP (B). COVID-19 = coronavirus disease 2019;
RP = radiation-therapy related pneumonitis.

2.4. Statistical Analysis

Descriptive statistics, including means, medians, ranges and percentiles, were calcu-
lated to understand the core tendencies of the enrolled cohorts. Data distribution normality
was checked by means of the Kolmogorov–Smirnov test. The Kruskal–Wallis and chi
square tests were used to compare age and sex distribution among the groups, respectively.

The primary objective was to assess if the AI quantitative imaging analysis resulted in
a statistically significant difference between COVID-19 pneumonia and RP. To investigate
this primary outcome, disease risk as well as affected lobes percentages and volumes were
compared between Group 2 and Group 3 by using the Mann–Whitney U test. We compared
the groups using the chi square test, with a disease risk cut-off value of 30%.

Statistical Package for the Social Sciences (SPSS) software version 26.0 (IBM, Segrate,
Milan, Italy) was applied for all aforementioned statistical computations. Additionally, we
performed receiver operating characteristic (ROC) curve fitting by using the maximum
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likelihood fit of a binormal model and calculated the area under the curve (AUC) with
the 95% confidence interval (95% CI). Sensitivity, specificity, positive predictive value and
negative predictive value are presented as point estimates (95% CI).

3. Results
3.1. Study Population Characteristics

Table 1 shows the study population characteristics and the three independent datasets
testing the AI model. Patients with COVID-19 and RP were older than pneumonia-free
patients (p = 0.001). The number of males was higher than that of females across all
patient groups. A positive SARS-CoV-2 RT-PCR test was available for all patients with
COVID-19 and a negative RT-PCR test was available for 14/30 (47%) pneumonia-free
patients. In Group 2, chest CT scans showed the known features of COVID-19 pneumonia,
including peripheral, bilateral and multi-lobar ground-glass opacity, with or without crazy
paving pattern and, in some cases, with consolidations. These features were automatically
detected and segmented by the AI software. In Group 3, despite similar CT findings,
although mostly unilateral, the diagnosis of RT-related pneumonitis in patients occurred as
a complication during the course of and within the first 3 months after radiation treatment.
Non-small cell lung cancer (NSCLC) was the most prevalent primary tumor (32/4; 89%)
within Group 3. Most patients presenting RP (66.7%) were classified by the algorithm as
“COVID-19 Low Risk”. All RP cases classified as “COVID-19 High Risk” were ≥G3 (CTC
AE vers. 4.0).

Table 1. Characteristics of the recruited samples.

Variable Pneumonia-Free COVID-19 RP

Patients (n) 30 34 36
Female/Male (n) 13/17 15/19 22/14

Age (Years) 59 (32–88) 67 (38–87) 72 (49–87)
SARS-CoV-2 RT-PCR
(Positive/Negative/n.a.) 0/14/16 34/0/0 0/0/21

NSCLC/SCLC 0/0 0/0 32/4
Radiation Dose (Gy) n.a. n.a. 54 ± 6.7 Gy

AI Class: No
COVID-19 30/30 1/34 1/36

AI Class: COVID-19
Low Risk 0/30 7/34 24/36

AI Class: COVID-19
High Risk 0/30 26/34 11/36

Age reported as median value (minimum and maximum). COVID-19 = coronavirus disease 2019; RP = radiation
pneumonitis; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; RT-PCR = reverse transcriptase
polymerase chain reaction; AI = artificial intelligence; NSCLC = non-small cell lung cancer; n.a. = not applicable.

3.2. Deep Learning Algorithm Performance

Table 2 shows the performance of the deep learning algorithm on the risk estimation
of COVID-19 pneumonia on chest CT images. The sensitivity for discriminating COVID-19
pneumonia from RP was 97% (true positive = 33/34), with 95% CI (0.94–0.99); however,
the specificity was very low (2%; 95% CI = 0.0–0.05%) without a COVID-19 risk cut-off
value. Indeed, the specificity increased to 63% (95% CI = 0.51–0.74) when the risk cut-off
value was set at 30%. The deep learning algorithm’s performance in detecting COVID-19
pneumonia compared with pneumonia-free patients had high sensitivity and specificity
(97% and 47%, respectively).
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Table 2. Diagnostic performance of the deep learning algorithm across the different group comparisons.

Comparison Sensitivity Specificity VPP VPN Accuracy AUC

COVID-19 vs.
pneumonia-free

97.1
(88.6–97.1)

100
(90.4–100)

100
(91.2, 100)

96.8(87.5,
96.8) 98.4% 0.99

COVID-19 vs. others 97%
(0.85–0.99)

47%
(0.4–0.48)

48%
(0.42–0.49)

97%
(0.84–0.99) 64% 0.85

COVID-19 vs. RP 97%
(0.94–0.99)

2%
(0–0.05)

48%
(0.47–0.49)

50%
(0.02–0.97) 48% 0.72

COVID-19 vs. RP
(cut-off 30%)

76%
(0.63–0.87)

63%
(0.51–0.74)

67%
(0.55–0.76)

96%
(0.83–0.99) 70% 0.84

Values in parentheses are 95% CI. PPV = positive predictive value; NPV = negative predictive value; AUC = area under the receiver
operating characteristic (ROC) curve; COVID-19 = coronavirus disease 2019; RP = radiation therapy-related pneumonitis.

The ROC curves for the AI risk prediction of COVID-19 pneumonia are shown in
Figure 2. The corresponding AUC value for COVID-19 and RP independent of the 30% cut-
off value was 0.72 (95%CI: 0.66–0.78) but increased to 0.84 (95% CI: 0.78–0.90) when applying
the 30% risk cut-off value. The AUC values were 0.99 (95% CI: 0.98–1.00) for COVID-19 and
pneumonia-free and 0.85 (95% CI: 0.82–0.88) for COVID-19 and non-COVID-19.

Figure 2. Receiver operating characteristic (ROC) curves of the diagnostic performance of the artificial
intelligence (AI) prediction risk of COVID-19 pneumonia. Each plot shows the ROC curve obtained
from the testing after including the following pairs: COVID-19 and pneumonia-free patients (A); RP
and COVID-19 (B); COVID-19 and non-COVID-19 patients (C); RP and COVID-19 with 30% threshold
(D); COVID-19 and RP total lung volume involvement (E); COVID-19 and RP RUL involvement (F);
COVID-19 and RP RLL involvement (G); COVID-19 and RP LLL involvement (H). Gray lines plot
95% confidence intervals. COVID-19 = coronavirus disease 2019; RP = radiation therapy-related
pneumonitis; RUL = right upper lobe; ML = middle lobe; RLL = right lower lobe; LUL = left upper
lobe; LLL = left lower lobe; AUC = area under the ROC curve; Std. Error = standard error.

Table 3 summarizes the results of the comparison between COVID-19 pneumonia and
RP in terms of total and lobar involvement. The total lung volume (p = 0.001) and both
of the lower lobes’ volumes (p < 0.001) were significantly more affected in the COVID-19
group compared to the RP group.
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Table 3. Comparison between COVID-19 pneumonia and radiation therapy-related pneumonitis (RP), based on total and
lobar involvement.

COVID-19 RP p-Value

Total
(%) 2.95 (1.22–8.89) 0.51 (0.16–1.99) 0.001

(cm3) 105.54 (44.68–257.07) 29.14 (5.59–69.20) 0.001

RUL
(%) 0.78 (0.15–5.12) 0.29 (0–1.59) 0.12

(cm3) 7.3 (1.21–31.42) 2.05 (0.04–11.65) 0.052

ML
(%) 0.24 (0–3.89) 0 (0–0.59) 0.033

(cm3) 1.01 (0–7.92) 0 (0–2.46) 0.045

RLL
(%) 3.54 (1.19–11.06) 0.15 (0–0.9) <0.001

(cm3) 27.14 (8.20–83.30) 1.3 (0–5.77) <0.001

LUL
(%) 0.73 (0.05–5.70) 0.29 (0–1.59) 0.042

(cm3) 7.22 (0.84–54.28) 0.98 (0–28.28) 0.032

LLL
(%) 3.99 (0.46–17.56) 0.005 (0–2.32) <0.001

(cm3) 16.35 (3.66–85.61) 0.06 (0–14.76) <0.001
COVID-19 Risk (%) 41.85 (34.52–51.12) 27.35 (20.09–35.5) 0.001

Values are reported as median values of the relative percentage of lobar involvement and absolute volumes. Values in parentheses
are 25% and 75% percentiles that were used instead of the minimum and maximum, as the value 0 was frequent in the distribution.
COVID-19 = coronavirus disease 2019; RUL = right upper lobe; ML = middle lobe; RLL = right lower lobe; LUL = left upper lobe; LLL = left
lower lobe.

4. Discussion

To the best of our knowledge, this is the �rst study investigating the performance of
an AI software in differentiating COVID-19 pneumonia from radiation therapy-related
pneumonitis. We used this deep learning algorithm, initially trained on a sample popula-
tion in Wuhan, China, on an Italian sample population with lung cancer. The deep learning
algorithm was able to differentiate COVID-19 pneumonia and RP with good diagnostic
performance (AUC 0.72). However, the speci�city was very low (2%); indeed, almost all
patients with RP were classi�ed as suspected patients with COVID-19 pneumonia, con�rm-
ing that lung interstitial disease in patients with previous radiation treatment represents a
confounding factor in the differential diagnosis of COVID-19 pneumonia. Nevertheless,
the assessment of CT scans based on the low-risk/high-risk classi�cation that used the
30% cut-off value showed a net increase in speci�city up to 63% (AUC 0.84); in fact, the
median values of estimated risk probability were signi�cantly lower in patients with RP
than in those with COVID-19 ( p = 0.001). This result supports the idea that risk strati�-
cation rather than binary classi�cation is helpful in discriminating different entities with
overlapping CT features [ 16]. Moreover, these data reinforce the idea that deep learning
algorithms based only on CT images cannot distinguish COVID-19 pneumonia from other
lung interstitial diseases with overlapping CT features with high speci�city; thus, adding
clinical/laboratory �ndings to the algorithm can improve the diagnostic performance
based on binary classi�cation. In the case of the deep learning algorithm used in this study,
CT scans classi�ed as low risk (below the 30% threshold) matched with a positive molec-
ular test in less than 5% of the cases (preliminary study in our institution). Nevertheless,
further data collection is needed to improve the generalizability of our results. In addition,
total lung volume involvement was signi�cantly higher in COVID-19 than in RP patients,
as an expected consequence of the typical bilateral and multi-lobar lung involvement of
COVID-19. Moreover, the RP pattern is usually strictly related to the target volume and to
the dose distribution of the treatment plan. The lobar involvement analysis demonstrated
that both lower lobes were signi�cantly less affected in patients with RP than in patients
with COVID-19 pneumonia. These differences in chest CT patterns are the main factors that
justify the cut-off value for suspected COVID-19 pneumonia and the good performance of
the deep learning algorithm. The AI algorithm was able to detect COVID-19 pneumonia
features on chest CT images of a tested population (Caucasian) with ethnic characteristics
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different from the population used for training (Asian). The algorithm showed good per-
formance in segmentation of the most typical CT �ndings in COVID-19 pneumonia, such
as multifocal and peripheral, often bilateral, ground-glass areas associated with patchy
consolidations. The performance of the algorithm was excellent in terms of sensitivity
and negative predictive value for the detection of COVID-19 pneumonia (AUC 0.99) and
con�rmed the utility of this software as a rapid diagnostic tool to �ag suspected COVID-19
patients. This study has also some limitations: it is retrospective in nature, the size of the
samples is small and the protocols used with three different scanners were variable. In
addition, overlapping chest CT features of several diseases re�ect common mechanisms of
response of the lungs to different etiologies. Subsequently, measurements of volume, shape
or density of pulmonary lesions may not be suf�cient to develop powerful deep learning
models. The study does, however, con�rm that arti�cial intelligence solutions can assist in
the clinical management and follow-up of patients with cancer in the COVID-19 pandemic
and mitigation phases.

5. Conclusions

In conclusion, the deep learning algorithm used in this study is able to discriminate
RP from COVID-19 pneumonia, classifying most RP cases as “COVID-19 Low Risk”. These
results may be improved in time with the addition of clinical data, leading to more accurate
AI solutions in the differential diagnosis of lung diseases with interstitial involvement. Our
results suggest that lesion distribution as well as other radiomics-based data and clinical
information are necessary to improve the reliability of AI algorithms for the diagnosis of
radiation therapy-related pneumonitis.

Author Contributions: Conceptualization, C.C.Q., S.R. and E.I.; Methodology, C.C.Q., S.R. and
F.M.G.; Validation, C.C.Q., R.M.D., S.R. and B.B.Z.; Formal Analysis, F.M.G., E.I., B.S., C.A.M. and
M.F.; Investigation, P.D., C.G., C.A.M., E.I., F.M.G., M.F. and P.C.; Data Curation, B.S., F.M.G., P.D.,
C.G. and C.A.M.; Writing—Original Draft Preparation, F.M.G. and E.I.; Writing—Review and Editing,
C.C.Q., S.R. and R.M.D.; Supervision, C.C.Q., S.R., R.M.D., P.C. and B.B.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding from funding agencies in the public, commercial,
or not-for-pro�t sectors.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by The local Ethical Committee approved the study (the ethic
code is Prot.: 88/20 OSS.NOT ComEt CBM, 6 October 2020).

Informed Consent Statement: The patient consent was waived due to the observational design of
the study. Patients' data have been anonymized and codi�ed prior to any data collection and analysis.

Data Availability Statement: Raw data are readily available for presentation to the referees and the
editors of the journal, if requested. The authors ensure that raw data is retained in full for at least
5 years after publication.

Con�icts of Interest: The authors declare no con�ict of interest.

References

1. Albain, K.S.; Swann, R.S.; Rusch, V.W.; Turrisi, A.T.; Shepherd, F.; Smith, C.; Chen, Y.; Livingston, R.B.; Feins, R.H.; Gandara, D.R.;
et al. Radiotherapy Plus Chemotherapy with or without Surgical Resection for Stage III Non-small-cell Lung Cancer: A Phase III
Randomised Controlled Trial. Lancet2009, 374, 379–386. [CrossRef]

2. Curran, W.J.; Paulus, R.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al.
Sequential vs. Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. J.
Natl. Cancer Inst.2011, 103, 1452–1460. [CrossRef] [PubMed]

3. Lally, B.E.; Zelterman, D.; Colasanto, J.M.; Haffty, B.G.; Detterbeck, F.C.; Wilson, L.D. Postoperative Radiotherapy for Stage II
or III Non-Small-Cell Lung Cancer Using the Surveillance, Epidemiology, and End Results Database. J. Clin. Oncol.2006, 24,
2998–3006. [CrossRef] [PubMed]

4. Giuranno, L.; Ient, J.; De Ruysscher, D.; Vooijs, M.A. Radiation-Induced Lung Injury (RILI). Front. Oncol.2019, 9, 877. [CrossRef]



Cancers2021, 13, 1960 9 of 9

5. Palma, D.A.; Senan, S.; Tsujino, K.; Barriger, R.B.; Rengan, R.; Moreno, M.; Bradley, J.D.; Kim, T.H.; Ramella, S.; Marks, L.B.; et al.
Predicting Radiation Pneumonitis After Chemoradiation Therapy for Lung Cancer: An International Individual Patient Data
Meta-analysis. Int. J. Radiat. Oncol.2013, 85, 444–450. [CrossRef]

6. World Health Organization (WHO). Coronavirus Disease 2019 (COVID 19). Situation Report-74. Available online: https://www.
who.int/docs/default-source/coronaviruse/situation-reports/20200403-sitrep-74-covid-19-mp.pdf?sfvrsn=4e043d03_10 (ac-
cessed on 3 April 2020).

7. Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics
of Coronavirus Disease 2019 in China. N. Engl. J. Med.2020, 382, 1708–1720. [CrossRef]

8. Ippolito, E.; Fiore, M.; Greco, C.; D'Angelillo, R.M.; Ramella, S. COVID-19 and Radiation Induced Pneumonitis: Overlapping
Clinical Features of Different Diseases. Radiother. Oncol.2020, 148, 201–202. [CrossRef]

9. Giovagnoni, A. Facing the COVID-19 Emergency: We Can and We Do. Radiol. Med.2020, 125, 337–338. [CrossRef]
10. Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer Patients in SARS-CoV-2

Infection: A Nationwide Analysis in China. Lancet Oncol.2020, 21, 335–337. [CrossRef]
11. Cozzi, D.; Albanesi, M.; Cavigli, E.; Moroni, C.; Bindi, A.; Luvar   , S.; Lucarini, S.; Busoni, S.; Mazzoni, L.N.; Miele, V. Chest X-ray

in New Coronavirus Disease 2019 (COVID-19) Infection: Findings and Correlation with Clinical Outcome. Radiol. Med.2020, 125,
730–737. [CrossRef]

12. Gatti, M.; Calandri, M.; Barba, M.; Biondo, A.; Geninatti, C.; Gentile, S.; Greco, M.; Morrone, V.; Piatti, C.; Santonocito, A.; et al.
Baseline Chest X-ray in Coronavirus Disease 19 (COVID-19) Patients: Association with Clinical and Laboratory Data. Radiol. Med.
2020, 125, 1271–1279. [CrossRef]

13. Borghesi, A.; Maroldi, R. COVID-19 Outbreak in Italy: Experimental Chest X-ray Scoring System for Quantifying and Monitoring
Disease Progression.Radiol. Med.2020, 125, 509–513. [CrossRef]

14. Di Sera�no, M.; Notaro, M.; Rea, G.; Iacobellis, F.; Delli Paoli, V.; Acampora, C.; Ianniello, S.; Brunese, L.; Romano, L.; Vallone, G.
The Lung Ultrasound: Facts or Artifacts? In the Era of COVID-19 Outbreak. Radiol. Med.2020, 125, 738–753. [CrossRef]

15. Borghesi, A.; Zigliani, A.; Masciullo, R.; Golemi, S.; Maculotti, P.; Farina, D.; Maroldi, R. Radiographic Severity Index in COVID-19
Pneumonia: Relationship to Age and Sex in 783 Italian Patients. Radiol. Med.2020, 125, 461–464. [CrossRef]

16. Agostini, A.; Floridi, C.; Borgheresi, A.; Badaloni, M.; Esposto Pirani, P.; Terilli, F.; Ottaviani, L.; Giovagnoni, A. Proposal of a
Low-dose, Long-pitch, Dual-source Chest CT Protocol on Third-generation Dual-source CT Using a Tin Filter for Spectral Shaping
at 100 kVp for CoronaVirus Disease 2019 (COVID-19) Patients: A Feasibility Study. Radiol. Med.2020, 125, 365–373. [CrossRef]

17. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015; Lecture Notes in Computer Science; Navab, N., Hornegger, J., Well,
W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015.

18. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.Cell 2018, 172, 1122–1131.e9. [CrossRef]

19. Bel�ore, M.P.; Urraro, F.; Grassi, R.; Giacobbe, G.; Patelli, G.; Cappabianca, S.; Reginelli, A. Arti�cial Intelligence to Codify Lung
CT in Covid-19 Patients. Radiol. Med.2020, 125, 500–504. [CrossRef]

20. Neri, E.; Miele, V.; Coppola, F.; Grassi, R. Use of CT and Arti�cial Intelligence in Suspected or COVID-19 Positive Patients:
Statement of the Italian Society of Medical and Interventional Radiology. Radiol. Med.2020, 125, 505–508. [CrossRef]

21. Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Arti�cial Intelligence Distinguishes
COVID-19 from Community Acquired Pneumonia on Chest CT. Radiology2020, 296, E65–E71. [CrossRef]

22. Huang, L.; Han, R.; Ai, T.; Yu, P.; Kang, H.; Tao, Q.; Xia, L. Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning
Approach. Radiol. Cardiothorac. Imaging2020, e200075. [CrossRef]

23. Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Polidori, T.; Guido, G.; Rucci, C.; Bracci, B.; Muscogiuri, E.; De Dominicis, C.;
et al. Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiol. Med.2021, 126, 243–249.
[CrossRef]

24. Wang, M.; Xia, C.; Huang, L.; Xu, S.; Qin, C.; Liu, J.; Cao, Y.; Yu, P.; Zhu, T.; Zhu, H.; et al. Deep Learning-based Triage and
Analysis of Lesion Burden for COVID-19: A Retrospective Study with External Validation. Lancet Digit. Health2020, 10, e506–e515.
[CrossRef]

25. Mallio, C.A.; Napolitano, A.; Castiello, G.; Giordano, F.M.; D'Alessio, P.; Iozzino, M.; Sun, Y.; Angeletti, S.; Russano, M.;
Santini, D.; et al. Deep Learning Algorithm Trained with COVID-19 Pneumonia Also Identi�es Immune Checkpoint Inhibitor
Therapy-Related Pneumonitis. Cancers2021, 13, 652. [CrossRef]

26. Quattrocchi, C.C.; Mallio, C.A.; Presti, G.; Zobel, B.B.; Cardinale, J.; Iozzino, M.; Della Sala, S.W. The Challenge of COVID-19 Low
Disease Prevalence for Arti�cial Intelligence Models: Report of 1,610 Patients. Quant. Imaging Med. Surg.2020. [CrossRef]


