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Introduction
A huge number of studies have reported various 
types of association between the microbiota com-
position in health, metabolic disorder and gastro-
intestinal diseases.1–4 The loss of intestinal 
homeostasis, named dysbiosis, has been described 

in different intestinal disorders, including inflam-
matory bowel disease (IBD) and irritable bowel 
syndrome (IBS).5,6 IBD, such as Crohn’s disease 
(CD) and ulcerative colitis (UC), are chronic, 
relapsing-remitting, gastrointestinal inflamma-
tory diseases, which are associated with various 
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Abstract
Background: Prevotella copri is the most abundant member of the genus Prevotella that 
inhabits the human large intestines. Evidences correlated the increase in Prevotella 
abundance to inflammatory disorders, suggesting a pathobiont role.
Objectives: The aim of this study was to investigate the phylogenetic dynamics of P. copri 
in patients with irritable bowel syndrome (IBS), inflammatory bowel diseases (IBDs) and in 
healthy volunteers (CTRL).
Design: A phylogenetic approach was used to characterize 64 P. copri 16S rRNA sequences, 
selected from a metagenomic database of fecal and mucosal samples from 52 patients 
affected by IBD, 44 by IBS and 59 healthy.
Methods: Phylogenetic reconstructions were carried out using the maximum likelihood (ML) 
and Bayesian methods.
Results: Maximum likelihood phylogenetic tree applied onto reference and data sets, assigned 
all the reads to P. copri clade, in agreement with the taxonomic classification previously 
obtained. The longer mean genetic distances were observed for both the couples IBD and 
CTRL and IBD and IBS, respect to the distance between IBS and CTRL, for fecal samples. 
The intra-group mean genetic distance increased going from IBS to CTRLs to IBD, indicating 
elevated genetic variability within IBD of P. copri sequences. None clustering based on 
the tissue inflammation or on the disease status was evidenced, leading to infer that the 
variability seemed to not be influenced by concomitant diseases, disease phenotypes or tissue 
inflammation. Moreover, patients with IBS appeared colonized by different strains of  
P. copri. In IBS, a correlation between isolates and disease grading was observed.
Conclusion: The characterization of P. copri phylogeny is relevant to better understand the 
interactions between microbiota and pathophysiology of IBD and IBS, especially for future 
development of therapies based on microbes (e.g. probiotics and synbiotics), to restore the 
microbiota in these bowel diseases.

Keywords:  genetic diversity, inflammatory bowel disease, irritable bowel syndrome, 
microbiota, phylogenesis, Prevotella copri

Received: 6 April 2022; revised manuscript accepted: 13 October 2022.

Correspondence to: 
Alessandra Lo Presti 
Department of Infectious 
Diseases, Istituto 
Superiore di Sanità, Viale 
Regina Elena, 299, 00161 
Rome, Italy 
alessandra.lopresti@iss.it

Federica Del Chierico 
Multimodal Laboratory 
Medicine Research 
Area, Unit of Human 
Microbiome, Bambino 
Gesù Children’s Hospital, 
IRCCS, Rome, Italy

Annamaria Altomare 
Research Unit of 
Gastroenterology, 
Department of Science and 
Technology for Humans 
and the Environment, 
Università Campus Bio-
Medico di Roma, Via Alvaro 
del Portillo, Roma, Italy

Michele Cicala 
Michele Pier Luca Guarino 
Research Unit of 
Gastroenterology, 
Department of Medicine 
and Surgery, Università 
Campus Bio-Medico di 
Roma, Via Alvaro del 
Portillo, Roma, Italy

Operative Research Unit 
of Gastroenterology, 
Fondazione Policlinico 
Universitario Campus  
Bio-Medico of Rome, Via 
Alvaro del Portillo, Roma, 
Italy

Francesca Zorzi 
Giovanni Monteleone 
Gastrointestinal Unit, 
Department of Systems 
Medicine, University Tor 
Vergata, Rome, Italy

Lorenza Putignani 
Department of Diagnostic 
and Laboratory Medicine, 
Unit of microbiology and 
diagnostic immunology, 
Unit of microbiomics and 
Multimodal Laboratory 
Medicine Research 
Area, Unit of Human 
Microbiome, Bambino 
Gesù Children’s Hospital, 
IRCCS, Rome, Italy

1136328 TAG0010.1177/17562848221136328Therapeutic Advances in GastroenterologyA Lo Presti, F Del Chierico
research-article20232023

Original Research

https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/tag
mailto:alessandra.lopresti@iss.it


Volume 16

2	 journals.sagepub.com/home/tag

Therapeutic Advances in 
Gastroenterology

degrees of intestinal damage and intestinal inflam-
mation, due to an excessive and impaired inflam-
matory response.7 IBS is one of the common 
functional gastrointestinal disorders worldwide, 
characterized by abdominal pain or discomfort 
bloating associated with altered bowel habits.8,9

Different studies reported a fluctuation in the 
equilibrium between beneficial commensals and 
potential pathobionts in gut microbiota as well as 
alterations in microbial molecular products in 
IBD and IBS patients.10–14

The role of specific gut bacteria in pathogenesis 
of these diseases is not exactly known.

Prevotella copri has been reported as the most 
abundant member of the genus Prevotella that 
inhabits the human large intestines.15–20 Prevotella 
has been associated with high fiber-rich diet, such 
as non-Westernized diet.21,22 Moreover, it has 
been reported that the increase in Prevotella abun-
dance correlated with glucose metabolism 
improvement, suggesting a potential beneficial 
role of these bacteria in human health.17

However, the increase in Prevotella abundance 
has been also linked to inflammatory disorders, 
including periodontitis, bacterial vaginosis, rheu-
matoid arthritis, ankylosing spondylitis, meta-
bolic disorders and low-grade systemic 
inflammation, suggesting that at least some 
strains exhibit pathobiontic properties.23,24 It has 
been demonstrated that Prevotella exerts its proin-
flammatory effect by the activation of Toll-like 
receptor 4 (TLR-4) through lipopolysaccharide 
(LPS) production25,26 and by the decrease in 
colonic interleukin-18 expression (IL-18).27 
Moreover, the increment in Prevotella increased 
intestinal permeability by the production of 
mucin-degrading enzymes.28

Although studies of experimental colitis in mice 
revealed a role of Prevotella in IBD, currently no 
human studies have confirmed an association 
between the increase in Prevotella abundance and 
chronic intestinal diseases.27,29,30

This apparent conflict in Prevotella’s role on 
human physiology could be resolved by the 
increase in scientific studies aimed to understand 
the functionality of Prevotella species/strains.31 
This knowledge could give important information 
for the future development of therapies based on 

microbes for the restoring of dysbiotic gut micro-
biota, especially associated with bowel diseases.

In this study, the genetic diversity and phyloge-
netic dynamics of 64 P. copri 16S rRNA sequen
ces, selected from a metagenomic database32,33 of 
stools and biopsies from IBS and IBD patients 
and from healthy CTRL, have been investigated 
to comprehend the role of this microorganism in 
gut pathophysiology.

Materials and methods

Cohort characteristics and sample collection
This study represents a part of the research project 
(WFR GR-2011-02350817) funded by the Italian 
Ministry of Health. Specifically, during 2015–
2017, we recruited 52 IBD patients at the 
Department of medicine and gastroenterology of 
Tor Vergata Hospital (Rome, Italy), 44 IBS 
patients and 59 healthy volunteers (CTRL) at the 
Gastroenterology Unit of the Campus Biomedico 
Hospital (Rome, Italy). This study conforms to the 
guidelines for STROBE statement.34

Anthropometric and clinical characteristics of 
IBD, IBS and CTRL cohorts are reported in 
Supplemental Tables 1 and 2. More details on 
the inclusion/exclusion criteria are reported in Lo 
Presti et al.33 (2019).

The therapies administered to IBD patients were 
as follows: 5-aminosalicylic acid or sulfasalazine 
(46.9%); tumor necrosis factors (TNFs; 12.5%); 
thiopurine (5.3%); steroids (28.9%); and steroids 
plus anti-TNF (6.4%). The IBS concomitant 
therapies were as follows: antispasmodics (16%), 
antidepressive (7%) and laxatives (18%).

All patients underwent mucosal biopsies during 
colonoscopy to perform routine histological 
examinations. In IBD patients, the biopsies in 
relation to the disease localization (from injured 
and from macroscopic healthy area, when appli-
cable) were taken in the colon, while in IBS 
patients and in CTRL the biopsies were taken in 
the ascending or sigmoid colon. All patients col-
lected a stool sample the day before the colonos-
copy preparation or at least 2 weeks after the 
endoscopic examination. Biopsies were immedi-
ately frozen at −80°C, while the stool samples 
were stored at −4°C up to the time of transport to 
the hospital and stored at −80°C.
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Sequence characteristics
The 16S rRNA-based metagenomics analysis of 
microbiota of fecal and mucosal samples32,33 
revealed the presence of P. copri sequences in 9 
IBS, 11 IBD patients and in 15 CTRLs for an 
overall of 64 sequences of which 31 sequences 
from stool samples (8 from CTRL, 9 from IBD 
and 14 from IBS) and 33 from intestinal biopsies 
(8 from CTRL, 6 from IBD injured area, 5 from 
IBD healthy area and 14 from IBS).

The 16S rRNA Prevotella reference sequences 
(157 sequences) were downloaded from the 
NCBI database (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA391149).

Phylogenetic analysis
The sequences were aligned and manually edited 
using Bioedit software.35 Modeltest v. 3.736 was 
used to select the simplest evolutionary model that 
best fitted the sequence data. To obtain an overall 
impression of the phylogenetic signal in all the 
16S rRNA Prevotella sequences, the likelihood-
mapping analysis of 10,000 random quartets has 
been generated using TreePuzzle37 as previously 
described.38 Phylogenetic reconstructions were 
carried out using the ML analysis with Phyml v. 
3.039 with GTR + I + G model of evolution, previ-
ously selected. Robustness of the phylogenetic 
trees was estimated by bootstrap analysis in 1000 
replicates (statistically supported bootstrap values, 
>90%). The software MEGA v. 740 was used to 
calculate the genetic distances among different 
groups. The genetic distances were calculated 
using the K2P model with the standard deviation 
calculated from 1000 bootstrapped replicates 
among lineages. The comparisons described were 
all statistically significant (p < 0.05).

Ethics statement
This study was performed within the Research 
Project ‘Cross Sectional study to evaluate the 
interactions between gut microflora and immune 
system at the cross-road of the pathogenesis of 
Inflammatory Bowel Diseases and Irritable Bowel 
Syndrome’ (WFR GR-2011-02350817, financed 
by the Italian Ministry of Health). In this project, 
each patient who took part gave written informed 
consent and the study was approved by the local 
ethics committee (Study Protocol ‘Tor Vergata’ 
General Hospital GR-2011-02350817 Register of 

Experiments 44/15; Campus Prot. 24/15 PAR 
ComEt CBM) as previously reported.33

Results

Phylogenetic analysis
To assess the phylogenetic map of P. copri in asso-
ciation with sample origin, fecal and mucosal iso-
lates were first grouped together, and then divided 
into fecal and mucosal groups. The phylogenetic 
noise of all groups was investigated by means of 
likelihood mapping and the percentage of dots in 
the star-like region ranged from 5% to 18.2%. 
Since none of the groups showed more that 30% 
of noise, all of them contained enough phyloge-
netic signal. Maximum likelihood phylogenetic 
tree applied onto reference and sequences, 
assigned the 64 reads to P. copri clade, in agree-
ment with the taxonomic classification previously 
obtained by 16S rRNA metagenomic-based 
approach (Supplemental Figure 1).38

Overall group
The computation of the mean genetic distances 
between P. copri of fecal and mucosal sequences 
showed slightly higher statistically significant 
divergence (14.85%) in CTRL, respect to IBD 
injured (11.73%) and to IBS (10.59%). The mean 
genetic distance between mucosal CTRL group 
versus mucosal IBS was 16.76%. The mean 
genetic distance between mucosal CTRLs versus 
IBD injured was 15.20%. The mean genetic dis-
tance between mucosal IBD injured versus mucosal 
IBS was 9.94%.

Regarding fecal sequences, the higher divergences 
were between CTRLs and IBD (11.59%) and 
between IBS and IBD (11.61%); meanwhile, a 
slightly lower distance was observed between 
CTRLs and IBS (10.03%).

Maximum likelihood analysis has been conducted 
to investigate the intermixing between fecal and 
mucosal sequences or any classification of P. copri 
variants (Supplemental Figure 2). A statistically 
supported cluster (A) and a main clade (B) were 
found. All the sequences, except four cases 
located in cluster A, clustered in the main clade. 
Overall, eight supported internal clusters, com-
posed of intermixed sequences collected from 
both fecal and mucosal samples, have been 
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highlighted. Globally, 78.6% (22/28) of the 
mucosal sequences were located inside the eight 
supported internal clusters, with respect to 87% 
(27/31) of the fecal sequences.

Fecal group
The maximum likelihood (ML) phylogenetic tree of 
the fecal group highlighted a main clade within which 
it is possible to highlight two statistically supported 
clusters (A and B) and a sub-clade (C) (Figure 1).

Cluster A included one sequence from an IBD 
patient and two from IBS patients. Regarding the 
clinical characteristic, the IBD patient was 
affected by Crohn’s disease (CD) with mild endo-
scopic activity and in clinical remission. One of 
the IBS patients, belonging to IBS-D subtype, 
was affected by gastro-esophageal reflux, mean-
while the second, belonging to IBS-C subtype, 
was affected by Helicobacter pylori-associated 
chronic atrophic gastritis. Cluster B was com-
posed of two P. copri sequences from the same 
IBS patient with different branch lengths. 

Externally, it is possible to highlight the third 
sequence from the same IBS patient (IBS-C sub-
type, affected by H. pylori-associated chronic 
atrophic gastritis).

Finally, the sub-clade C included seven IBD, 
nine IBS and seven CTRLs sequences. Three sta-
tistically supported clusters (I, II and III) were 
located inside the sub-clade C. Cluster I was 
composed of four sequences from CTRLs and 
one from an IBD patient affected by ulcerative 
colitis (UC) in clinical remission.

Cluster II was composed of five sequences col-
lected from IBS patients: two of them belonged to 
patients characterized by diarrhea (IBS-D) and 
two by constipation (IBS-C). Regarding the con-
comitant diseases, a patient suffered from diver-
ticulitis, and two of gastro-esophageal reflux and 
of H. pylori-associated chronic atrophic gastritis.

Cluster III included two sequences from IBS, 
three from a CTRL and two IBD. Among IBS 
patients, one presented the constipation (IBS-C) 

Figure 1.  The ML phylogenetic tree of Prevotella copri fecal subset. Branch lengths were estimated with the 
best fitting nucleotide substitution model according to a hierarchical likelihood ratio test and were drawn to 
scale with the bar at the bottom indicating 0.2 nucleotide substitutions per site. The tree was rooted using 
the midpoint rooting method. One asterisk along the branches represent significant statistical support for the 
clade subtending that branch (bootstrap > 90%). Main clade and cluster were indicated.

https://journals.sagepub.com/home/tag
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subtype and was affected by H. pylori-associated 
chronic atrophic gastritis, and the second one suf-
fered from diverticulitis and belonged to diarrheal 
(IBS-D) subtype. The two IBD isolates were 
from patients both affected by UC without other 
concomitant diseases.

The left-over sequences were located sparsely or 
in different not supported clusters with one IBD 
sequence more externally located, showing a 
greater divergence of these sequences.

Measuring the mean genetic distances of 
sequences grouped by the disease/health status 
(IBD versus IBS versus CTRLs), we observed a 
mean genetic distance of 11.6% between IBD 
and CTRLs, of 10.0% between IBS and CTRLs 
and of 11.6% between IBS and IBD.

The intra-group mean genetic distance increased 
going from IBS (9.26%), to CTRLs (9.36%) to 
IBD (13.76%), indicating elevated genetic varia-
bility within IBD P. copri sequences and a similar 
intra-group distance in IBS and CTRLs.

The fecal IBS subset was investigated in detail to 
define the phylogenetic relationships among  
P. copri sequences from the different IBS subtypes 
(Figure 2, panel a).

Interestingly, two clades (A and B) were identi-
fied. The clade (A) was composed by three IBS-C 
subtype sequences derived from the same patient 
and showed different branch lengths. In clade B, 
the P. copri sequences from IBS-C subtype 
patients were mainly intermixed with those from 
IBS-D subtype. Inside this clade, the mean 
genetic distance of IBS-C and IBS-D sequences 
was 5.9%. When computing the mean genetic 
distance including all sequences of this sub-set, a 
mean value of 6.7% was obtained, between IBS-C 
and IBS–D. The mean distance intra-group was 
7.4% and 4.6% for IBS-C and IBS-D, respec-
tively. A mean genetic distance of 7.8% of diver-
gence was found between clade A and clade B. 
The computation of the mean genetic distance 
between clade A and all the IBS-D isolates gave 
an estimation of 8.1% of divergence.

The ML tree (Figure 2, panel b) of IBD subset 
showed a main supported cluster with one CD 
sequence, intermixed with UC sequences; mean-
while, two CD sequences were externally located 

to the main cluster. Overall, a mean genetic dis-
tance of 16.4% was obtained between CD and 
UC groups. By only investigating the main 

Figure 2.  The ML phylogenetic trees of Prevotella copri in fecal subsets. 
Panel a: IBS subset. Branch lengths were estimated with the best fitting 
nucleotide substitution model according to a hierarchical likelihood ratio 
test and were drawn to scale with the bar at the bottom indicating 0.05 
nucleotide substitutions per site. The tree was rooted using the midpoint 
rooting method. One asterisk along the branches represent significant 
statistical support for the clade subtending that branch (bootstrap > 90%). 
Main clades were indicated. IBS subtypes were indicated near the tips 
(red = IBS-C; blue = IBS-D). Panel b: IBD subset. Branch lengths were 
estimated with the best fitting nucleotide substitution model according to 
a hierarchical likelihood ratio test and were drawn to scale with the bar at 
the bottom indicating 0.08 nucleotide substitutions per site. The tree was 
rooted using the midpoint rooting method. One asterisk along the branches 
represents significant statistical support for the clade subtending that 
branch (bootstrap > 90%). The CD and UC isolates were indicated near the 
tips.

https://journals.sagepub.com/home/tag
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supported cluster, a mean genetic distance of 
3.44% was obtained between CD and UC.

Mucosal group
The ML phylogenetic tree of the mucosal group 
(Supplemental Figure 3) showed two main clades 
(A and B), in which a clear separation between 
IBD (clade A) and IBS (mainly concentrated in 
clade B) P. copri sequences was evident. All the 
IBD sequences included in clade A belonged to 
UC. Interestingly, also the clade B contained the 
IBD sequences, one of them (6PT13BD_15, 
derived from an UC patient) representing the 
outgroup of this clade and other UC isolates were 
internally located. The sequence from the CD 
patient (9PT3BD_15) resulted related to two 
UC, one CTRL and one IBS sequences.

In particular, two sequences collected from  
‘macroscopic healthy area’ were strictly related to 
one from injured area of the same patient 
(Supplemental Figure 3). This patient showed 
another mucosal IBD sequence from injured area, 
which appeared located on clade B in another 
cluster, suggesting a mild genetic divergence. 
The mean genetic distance between IBD healthy 
sequences versus IBD injured was 4.6%.

Phylogenetic analysis of P. copri mucosal 
sequences from IBS subset showed two supported 
clades (A and B) (Figure 3, panel a).

This analysis included 14 sequences, some of 
them belonging to the same patient. The ML 
phylogenetic tree revealed that sequences from 
different IBS subtypes were intermixed. In clade 
A, sequences from IBS-D were related to IBS-C 
and alternating bowel habit phenotype (IBS-M); 
meanwhile, in clade B, IBS-D sequences were 
intermixed with IBS-M subtype (Figure 3, panel 
a). In clade A, sequences from patients with dif-
ferent concomitant diseases were intermixed (i.e. 
gastro-esophageal reflux and H. pylori-associated 
chronic atrophic gastritis) with those reporting 
absences of concomitant diseases. In clade B, the 
same situation was observed, a sequence from a 
patient with calcific enthesitis and hypothyroid-
ism was intermixed with two sequences from 
patient reporting gastro-esophageal reflux and 
with a patient with absence concomitant diseases. 
The computation of the mean genetic distance 
showed that IBS-C group was more distant from 
IBS-D (8.4%) than from IBS-M (6.2%). The 

higher value of the mean genetic distance was 
observed between IBS-D and IBS-M (9.5%). 
The intra-group mean genetic distance showed 
the higher value for IBS-D (12.3%), followed by 
IBS-M (8.5%) and by IBS-C (3.8%).

The ML analysis of IBD sub-set (Figure 3, panel 
b) showed two statistically supported cluster. The 
first was composed by one sequence from an UC 
patient (affected by moderate endoscopic and 
clinical activity) collected from ‘macroscopic healthy 
area’. Externally was located a cluster including 
six UC sequences. These sequences were from 
‘macroscopic healthy area’ and from injured area, 
from three patients characterized by severe endo-
scopic and clinical activity. The second cluster 
included three isolates from UC and one from 
CD. The UC sequences (two sequences were 
from injured area and one from ‘macroscopic healthy 
area’) belonged to the same patient characterized 
by severe endoscopic and mild clinical activity. 
The CD patient was characterized by mild endo-
scopic and clinical remission. Both these patients 
had no other concomitant diseases.

The elaboration of the mean genetic distances 
between UC and CD including all the sequences 
was 3.05%; meanwhile, excluding the sequences 
from ‘the macroscopic healthy area’, a mean value 
of 8.64% was obtained (Figure 3, panel b).

Discussion
There is a growing number of papers on the impor-
tance of the link between Prevotella diversity and 
human health that are now emerging in the litera-
ture. Indeed, this topic is now considered a leading 
topic in the microbiota literature.20,21,27,41,42

By our phylogenetic approach, applied to 
16S-based metagenomics sequences of Prevotella, 
we obtained the taxon identification up to P. copri 
species level. In fact, by the ML phylogenetic 
analysis, the sequences assigned to Prevotella 
genus were re-assigned to P. copri clade, over-
coming the limited identification at genus level of 
this metagenomic approach.

As previously described, the gut microbiota of IBS 
patients resulted highly enriched in P. copri respect 
from IBD and CTRLs.33 In particular, in our sam-
ple set, the ratio of P. copri sequences/nr. patients 
was 3 for IBS, 1.8 for IBD and 1 for CTRL, sug-
gesting a putative role of P. copri in IBS.

https://journals.sagepub.com/home/tag
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Moreover, by our results, we highlighted the 
higher genetic variability within IBD P. copri 
sequences with respect to the lower genetic vari-
ability in IBS and CTRLs.

Different studies reported that Prevotella plays a 
pro-inflammatory role through the activation of 
TLR-4 by LPS production, resulting in an 
abdominal pain.25,26 Moreover, it has been dem-
onstrated that high Prevotella levels increase intes-
tinal permeability by the production of 
mucin-degrading enzymes.28 Assuming a correla-
tion between isolates and disease grading we 
investigated the correlation between the sequence 
clustering and the patients’ clinical information. 
However, the presence of concomitant diseases in 
IBD and IBS patients seemed to not influence the 
distribution of P. copri isolates.

Moreover, we investigated the correlation between 
IBS subtypes and P. copri sequence variability. By 
our results, the IBS-C reported the higher intra-
group sequence variability, respect the others. 
Furthermore a higher genetic distance between 
IBS-C and IBS-D subtypes in fecal samples and 
between IBS-M and IBS-D subtypes in mucosal 
ones was reported. Despite in literature has been 
correlated the increment of Prevotella with the risk 
of IBS diarrheal phenotype (IBS-D),43,44 in our 
study, no correlation between isolate variability 
and IBS subtypes was found. Also for IBDs, the 
UC and CD phenotypes, the inflamed condition 
of the tissue and the disease status seemed to not 
influence the distribution of P. copri.

Our study presents some limitations that could be 
addressed in future research. First, the sample 
size should be enlarged to increase the number of 
P. copri sequences and then the sequence variance 
to test. Second, the recruitment should include 
patients with different geographic origin and food 
habits to investigate the global distribution, the 
population structure and the relation with diet of 
P. copri. Third, the investigation should be 
enlarged to show the correlation between 
Prevotella species/strains and different disease 
stages and treatments of IBD and IBS.

Conclusions
In conclusion, unlike patients with IBD, those with 
IBS appeared to be colonized by different strains of 
P. copri. The variability of P. copri sequences seemed 
to not be influenced by concomitant diseases, 

disease phenotypes or intestinal tissue inflammation. 
However, in IBS patients, a correlation between iso-
lates and disease grading was observed.

Then, associate the role of single strain in host/
microbiota interaction could be useful for the 

Figure 3.  The ML phylogenetic analysis of P. copri mucosal sequences. 
Panel a: IBS subset. Branch lengths were estimated with the best fitting 
nucleotide substitution model according to a hierarchical likelihood ratio 
test and were drawn to scale with the bar at the bottom indicating 0.03 
nucleotide substitutions per site. The tree was rooted using the midpoint 
rooting method. One asterisk along the branches represents significant 
statistical support for the clade subtending that branch (bootstrap > 90%). 
Main clades were indicated. IBS subtypes were indicated in colors (red, 
IBS-C; blue, IBS-M; black, IBS-D). Panel b: IBD subset. Branch lengths 
were estimated with the best fitting nucleotide substitution model according 
to a hierarchical likelihood ratio test and were drawn to scale with the bar 
at the bottom indicating 0.02 nucleotide substitutions per site. The tree was 
rooted using the midpoint rooting method. One asterisk along the branches 
represents significant statistical support for the clade subtending that branch 
(bootstrap > 90%). Sequences from the same patients are highlighted by the 
same color: (i) injured area and (h) macroscopic healthy area.
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future development of therapies based on 
microbes (e.g. probiotics and synbiotics), to 
restore the microbiota in different disorders such 
as IBD and IBS.
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