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Abstract

The class of inertial sensors have undergone a revolution in the last
decades. From the technological standpoint, this transformation
has brought a dramatic reduction in both size and cost after the
advent of micromachined electro–mechanical system (MEMS) tech-
nology. From an application standpoint, they have spread out from
the traditional aeronautical and naval fields (i.e. inertial navigation
systems) to a plethora of new and different areas, e.g. automotive,
robotics and clinical to name a few. Nowadays, inertial sensors are
available on the market as system on chip (SoC) that are small
enough to be unobtrusively attached to any system, including the
human body, and their presence in consumer products has become
a commonplace (e.g. in smartphones) virtually electing them as a
top player in the upcoming wearables era.

However, miniaturized inertial sensors come with inherent limita-
tions that are mainly found in the reduced performance in terms of
noise. Besides, the more recently introduced applications are still
far from being mature (e.g. human motion capture). As a conse-
quence, there is a number of open challenges related to the use of
this evolved technology and that spans from signal processing and
sensor fusion of noisy measurements to the improvement of existing
algorithms and expansion to unexplored areas of application.

The main objective of this work is to improve the state of the art
with respect to some of these challenges. First, the dissertation
examines the problem of establishing accuracy in measuring orien-
tation for current inertial sensor fusion algorithms. A methodology
based on the use of a robotic manipulator is presented and confi-
dence intervals of static and dynamic performance are established.
Then, the thesis discusses the problems of calibration and motion
tracking with inertial sensors in two different contexts of applica-
tion, i.e. ground mobile robotics and biomedical research.

Regarding robotics, the setup explored in this thesis consisted of an
omnidirectional wheeled platform, equipped with an inertial sen-
sor and wheel encoders, intended to be navigated in a industrial
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setting. While this class of robots has superior mobility character-
istics, difficulties related to their autonomous navigation prevent
their widespread use in the research and industry. To overcome this
limitation, a number of sensor fusion problems are presented and a
solution proposed in order to self calibrate the platform and ame-
liorate accuracy of the navigation through robustness, e.g. against
wheel slippage.

Regarding the biomedical application, inertial sensors were used to
reconstruct the motion of children (6-7 years old) in a daily life
scenario. To this purpose, a novel calibration procedure and al-
gorithms are introduced to improve accuracy over state of the art
methods. The outcome of this research will permit the investiga-
tion of motor disorders at an earlier stage of development than is
currently possible (e.g. for the case of autism spectrum disorder).
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Notation

In this thesis, scalars are denoted with lowercase letters (a), geometric vectors
with bold lowercase letters (v), quaternions with bold lowercase letters (q),
and matrices with bold capitals (M). Left superscripts denote in which frame
a quantity is resolved, e.g. the vector p in frame A will be Ap. Subscripts
are generally used for annotations and indexing (pk) and multiple subscripts
are separated by a comma (pk,i). In some cases, subscripts are also used to
indicate points in space, e.g. dA,B is the vector from point A to point B,
or quantities computed between different reference frames, e.g. ωA,B is the
angular velocity of frame A with respect to frame B. The complete list of
mathematical operators and sets used in this thesis is reported in the table
below.

Symbol Meaning

a Scalar in R
v Vector quantity in R3 (if not differently specified)
M Matrix with m-rows and n-columns in Rm×n
ṽ Augmented vector in Q
CdA,B vector from point A to B referred to frame C
ABq quaternion rotating from the B-frame to the A-frame
ABR Rotation matrix from the B-frame to the A-frame
R Real number space
SO(3) 3-dimensional special orthogonal group
Q 4-dimensional quaternion space
Q1 Unit norm quaternion space
⊗ Quaternion product
‖·‖2 2–norm operator
arg max Maximizing argument
arg min Minimizing argument
vec(·) Matrix vectorization operator
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Part I

Background
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Chapter 1

Introduction

This chapter provides an introduction to the thesis by briefly explaining the
context in which the present work has been carried out, exposing the current
challenges and stating the goals of this research. In this setting, the main
contributions are presented and the organization of the material is outlined.

1.1 The wearable era of inertial sensors

The technology to sense inertial forces acting on an object in order to determine
its dynamic behaviour has been available to mankind for about a century. De-
spite the history of inertial sensors is relatively short, it is remarkable to observe
that most of the ingredients necessary for building accelerometer or gyroscope
sensors, such as fine mechanics and precise spring technologies, were available
from the late Middle Ages. Originally, accelerometers were developed for being
used as switches (e.g. for bomb detonators) in World War I. Instead, gyroscopes
invention dates back to the early 1800 with the mechanical gyroscope designed
by Johann Gottfried Friedrich von Bohnenberger and later, in the early 1900s,
when they were patented for use on ships (i.e. the “gyrocompass”) [Schell,
2005]. The first commercial accelerometer intended for a broader use was fab-
ricated in the early 1920s as the result of the reasearch by McCollum and
Peters [McCollum and Peters, 1924] while the foundation of modern devices
was laid in the 1940s, with the discovery of the piezoelectric and piezoresistive
principles. Instead, for gyroscopes the 1960s are the years when modern types
of devices were introduced, such as the vibrating-string gyro [Quick, 1964], the
tuning-fork gyro [Hunt and Hobbs, 1964] and the vibrating-shell resonator and
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14 CHAPTER 1. INTRODUCTION

whose principles of operation are found in current micro electro mechanical
devices (MEMS). Beginning from the 1990s, advancements in MEMS technol-
ogy, originally driven by the new requirements of the automotive industry (e.g.
the 50g accelerometer was used in the airbag ignition mechanism), have lead
to dramatic reduction in cost, weight and dimension. The consequence of this
trend is that inertial sensors, originating in traditional fields such as naval and
aeronautical have become widespread in many other fields of application and
are even fostering creation of new fields as shown in Figure1.1.

Nowadays inertial sensors are available on the market as integrated system
on chip (SoC) solutions with a dimension < 0.5 cm3 at a cost of few Euros.
They have become an ubiquitous technology that can be found in cars, smart-
phones or gaming consoles. Furthermore, with the incoming era of wearables,
it is expected that they will be found with increasing frequency actually worn
on the human body. Aside from the decreased dimensions, inertial sensors are
becoming “smarter”, as the performance of embedded algorithms is improving,
and are turning into the “silver bullet” technology for motion tracking [Welch
and Foxlin, 2002].

1.2 Research challenges

The appearance on the market of miniaturized MEMS inertial sensors, that are
so small and power efficient to be virtually attachable to any system (human
body included) has expanded their potential for use in a myriad of applications.
On the one hand, some of these applications are in the traditional fields (e.g.
inertial navigation). On the other hand, nearly every month a new application
is created and checked for commercial attractiveness and realizability.

However, the use of MEMS inertial sensors introduces new problems to be
researched. Differently from gimballed inertial platforms (i.e. the bulkier and
expensive devices used in inertial navigation systems), a common disadvantage
of the miniaturized systems are the errors corresponding to this method of
measurement. Consider for instance the gyroscope: the bias stability error of
a consumer MEMS gyroscope and a gimballed gyroscope can have differences
amounting to an order of magnitude of 7 [Fitzgerald, 2013]. As a consequence,
the algorithms originally developed for motion tracking with the more perform-
ing platform generally won’t work with this new class of inertial devices. A
common problem is that motion information is computed by time integration
of inertial quantities (i.e. acceleration and angular velocity), which, in absence
of proper compensation strategies can lead to unbounded estimation errors.
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1.2. RESEARCH CHALLENGES 15

Figure 1.1: The evolution of inertial sensors from the technological (on top the
arrow) and field of application (under the arrow) perspectives.

In that sense, the research challenge consists of solving signal processing and
sensor fusion problems. This necessitates the development of adequate error
models for MEMS inertial sensing which may be used to achieve sufficient
measurements accuracy with the implementation of appropriate filtering tech-
niques. Furthermore, the performance in terms of accuracy achievable with
the use of this class of devices and related to some of the newest applications
(e.g. human joint angles measurement) is still poorly investigated and an open
research question.

Besides issues related to performance of the sensors and the tracking algo-
rithms, there is vibrant activity in the research for improvement and extension
of recently introduced application, e.g. in the biomedical and robotics fields.
For instance, motivated by the salient role of quantifying motor functions in
clinical practice and as a potential early marker for some neurodevelopmental
disorders (i.e. autistic spectrum disorder [von Hofsten and Rosander, 2012]),
a branch of inertial sensors’ research is committed towards the development of
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16 CHAPTER 1. INTRODUCTION

wearable assessment tools. In the field of robotics, inertial sensors are common-
place on different type of platforms, e.g. on unmanned aerial vehicles (UAVs)
[Aragus, 2015], unmanned ground vehicles (UGVs) [Sahoo, 2015] or and au-
tonomous underwater vechicles (AUV) [VanMiddlesworth, 2015]. One of the
major inertial sensors’ related research challenges here is the development of
information fusion algorithms to achieve autonomous navigation.

1.3 Research goals

The main objective of this work is to improve the state of the art on inertial
sensors’ research.

The first goal is to determine accuracy in orientation tracking achievable
with recent inertial sensor fusion algorithms, as an accurate measurement of
orientation is the starting point for human motion capture with wearable iner-
tial sensors. This topic has often been overlooked in the related literature and
the absence of baseline data makes it difficult to compare algorithms’ perfor-
mance and understand the sources of error.

The second and third goals are related to extending the use of the inertial
sensors within the field of robotics and of the biomedical applications. The
second goal pertains the autonomous navigation and self calibration of an om-
nidirectional wheeled mobile platform. Though this class of ground mobile
robots have superior mobility characteristics, its use in ground robotics’ re-
search is limited due to inherent issues related to its autonomous navigation.
The aim of the research work on this topic is to demonstrate how major limita-
tions of this kind of robots can be overcome by using an inertial sensor module.
The third goal is regards achieving inertial motion reconstruction of children
in a daily life scenario. This is a topic of increasing interest in the research
community due to, on the one side, the high portability recently available with
the introduction of wearable inertial motion capture systems and, on the other
side, the relevance of the scientific quests (e.g. fine grained quantification of
motor disorders, investigation of the role of communicative gestures in child
development). A challenge here is the adaptation and improvement of existing
procedures on adults for an use with children.

1.4 Contributions

The main contribution of this thesis are related to the research goals above
mentioned and are briefly stated in order of appearance:
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1.4. CONTRIBUTIONS 17

• An extensive validation of static and dynamic accuracy in tracking the
orientation using state of the art sensor fusion algorithms with wearable
inertial measurement unit (IMU) devices. Both the absolute and the
relative accuracy are assessed under controlled and repeatable conditions.
The outcome of the validation is a reliable set of confidence intervals for
the accuracy in orientation tracking;

• An investigation on the impact of different variables (i.e. amplitudes and
bandwidth of motion, sensor fusion algorithm, magnetic field perturba-
tion) on the accuracy performance in orientation tracking with IMUs;

• A method for the automatic calibration of systematic sources of errors
affecting the odometry of an omnidirectional wheeled robotic platform.
The measurements considered by the proposed algorithm are those avail-
able from wheel encoders and an IMU, which is rigidly attached to the
robot;

• A method for the autonomous dead reckoning navigation of an omni-
directional wheeled robotic platform. The navigation is formulated as a
statistical sensor fusion algorithm having as input the measurements from
wheel encoders and the onboard IMU. The algorithm for navigation is
demonstrated to be robust against unmodelled error sources (e.g. wheel
slippage);

• The design of a protocol allowing for the identification of axis of refer-
ence from functional movements adapted to the experimental use with
typically developing children (6–7 yr). The protocol is devised to be used
with wearable IMUs and permits the collection of redundant set of func-
tional axis information, describing the movements of the thorax and the
upper limbs. It has been extensively validated over a population of 40
children;

• A procedure for extracting axis of rotation or reference axis respectively
from gyroscope and accelerometer datasets. The method doesn’t need
any data pre processing (e.g. segmentation) and provides a numerical
quantification of the reliability of the computed axis;

• A methodology for accurate calibration of IMU sensors’ body and hu-
man body’s reference frames through nonlinear regression. Eventually,
the procedure allows for the reconstruction of human motion given a
kinematic model and the orientation measured by the IMUs.
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18 CHAPTER 1. INTRODUCTION

1.5 Outline of the thesis

This dissertation is organized in two parts. Part I contains the background
material to the research focus presented in Part II.

In Part I, chapter 2 introduces the inertial measurement unit (IMU) which
is the main sensing element that has been used in the presented research and
the principal source of information to the developed algorithms. The aim of
the chapter is to provide a comprehensive overview of the different aspects
related to the use of this device, which include sensor modelling, calibration
and motion tracking. The present material is by no means extensive of the
topic, however references for further readings are provided in the text.

In Part II, chapter 3 discusses the topic of performance in orientation track-
ing accuracy for state of the art sensor fusion algorithms, targeting the applica-
tions related to human motion reconstruction. This topic is mostly overlooked
in the related literature and no baseline data were available at the time of
this writing. The experimental setup presented comprised a robotic arm to
which a set of IMUs are rigidly fixed and a protocol was devised to investigate
static and dynamic performance. Alongside reporting reliable confidence inter-
vals for accuracy, the chapter is concluded with a critical discussion of results
and experienced criticalities. In chapter 4, the area of robotics application
is discussed particularly surrounding the problem of autonomously navigat-
ing an omnidirectional wheeled robot in an industrial setting. The chapter
introduces the use of an IMU as additional onboard sensor providing helpful
information to the task at hand. It is demonstrated, through properly devel-
oped sensor fusion algorithms, how this approach is an effective solution to the
task. Furthermore, the proposed approach comes with significant advantages,
i.e. robustness against unmodelled disturbances (e.g. wheel slippage) and au-
tomatic calibration of the systematic sources of error associated to the robotic
platform. The next chapter 5 pertains to the area of biomedical applications
and explores the use of multiple IMUs to reconstruct motion in children (6-
7 yr). The problem of calibrating inertial sensor and biomechanical reference
frames is introduced and a novel procedure to solve it is provided. A calibration
protocol suitable for an use with children is presented together with the data
processing techniques developed. The outcome of the procedure is then used in
combination with the sensor fusion algorithms, analysed in chapter 3, in order
to achieve the human motion reconstruction. Finally, Chapter 6 concludes the
dissertation and gives description of future work.
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Chapter 2

Inertial measurement unit

In this work of thesis, the inertial measurement unit (commonly referred as
IMU) is used throughout the text as the main source of information to the
developed algorithms and methodologies. This chapter aims to provide the
reader with a background of the working principles, models and motion track-
ing techniques related to this device. The first section discusses the individual
sensing elements comprising an IMU, focusing on the models and the princi-
pal deterministic and stochastic sources of error. Next, commonly employed
methodologies for in–field calibration of an IMU (removal of deterministic er-
rors) are reviewed. The concluding section introduces the reader to the phys-
ical principles and techniques used in order to achieve motion reconstruction,
pointing out criticalities and limitations.

2.1 Sensors

The term IMU identifies a class of devices that comprise a pair of tri–axial
accelerometer and gyroscope in a single sensing unit. A fully equipped IMU
often includes a tri–axial magnetometer in the same package. In this latter
case, either the terms magnetic–IMU or M–IMU are found in the literature.
An IMU is capable of measuring inertial quantities (acceleration and angu-
lar velocity) and the magnetic flux vector which, in absence of magnetic field
perturbations, measures the direction of the Earth magnetic north. Since the
advent of Micro Electro–Mechanical Systems (MEMS) technology in the 1990s,
a trend in miniaturization of the individual sensor components (driven by the
requirements of the automotive and aeronautical industries) have brought to
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20 CHAPTER 2. INERTIAL MEASUREMENT UNIT

Figure 2.1: The figure reports the mechanical structure of a MEMS accelerom-
eter (left) and a close–up view of the comb structured capacitor (right) used
for measuring the displacement of the suspendend mass.

market devices that are cheap (< 100$ per axis) and so small (< 2 mm3) to be
integrated on single System on Chip (SoC) solution. On the one hand, current
IMUs are low cost, small and lightweight and are now suitable for a number of
new applications (e.g. wearable devices). On the other hand, although the per-
formance of MEMS is improving rapidly, compared to traditional technology,
MEMS devices have reduced performance in terms of accuracy and bias stabil-
ity. In this section the working principle and the mathematical models used to
describe the behaviour of MEMS sensors included in an IMU are reported. The
following material is by no means exhaustive of the topic and further details
can be found in [Titterton and Weston, 2005, J.Woodman, 2009, Mohd-Yasin
et al., 2009].

MEMS accelerometers

Micro–machined silicon accelerometers use the same principles as mechanical
and solid state sensors. The core of the sensor consists of a suspended proof
mass connected to the sensor’s basement through a spring-damper link. When
the sensor is subjected to an acceleration along its sensitive axis the proof mass
tends to resist the change in movement owing to its own inertia. As a result,
the mass moves relatively to the sensor housing in the opposite direction than is
the direction of the movement. The displacement is proportional to the applied
force and can be measured as a variation in capacitance of a properly designed
capacitor element, as shown in Figure2.1.

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



2.1. SENSORS 21

Sensor model

An accelerometer measures the external specific force (f) applied to its proof
mass, which is related to acceleration (a) as:

a = f + g (2.1)

where g denotes the Earth’s gravitational acceleration. The specific force (also
called proper acceleration) is defined as the difference between the instanta-
neous acceleration and free fall. In case of free fall, the accelerometer output
will be zero. Instead, in static condition at Earth surface, specific force is head-
ing vertically up with respect to gravitational acceleration vector and has the
same magnitude. The following measurement model can be used to describe
output from a tri–axial acelerometer (ya):

ya = MaSa f + ba + na = Ka f + ba + na (2.2)

where f is the input specific force on the sensitive axes and na is the stochastic
measurement noise. The terms associated with the major sources of determin-
istic errors, considered by this model, are:

Fixed bias (ba): This term represents the displacement from zero on
the accelerometer output when the sensed specific force (f) is null. The
magnitude of the bias term is independent of any motion to which the ac-
celerometer may be subjected and it is commonly expressed as a fraction
of the full scale of the accelerometer.

Scale-factor (Sa): This term relates sensor output (ya) to the physical
quantity to be measured (f) and is modelled as a diagonal matrix:

Sa =

sxx syy
szz

 (2.3)

where sij is the sensitivity of the i–th axis accelerometer to the acceler-
ations in the j–th axis.

Cross-coupling (Ma): this term compensates for errors that arise as a
result of manufacturing imperfections which determine non-orthogonality
of the sensor axes. It can be modelled with a matrix:

Ma =

 1 αxy αxz
αyx 1 αyz
αzx αzy 1

 (2.4)
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22 CHAPTER 2. INERTIAL MEASUREMENT UNIT

Figure 2.2: The figure reports the mechanical structure of a MEMS gyroscope
(on the left). The actuation mechanism (on the center) keeps the proof mass in
the center in vibration, such that angular velocities applied along the sensitive
axis generate a Coriolis force measurable with capacitive sensors (on the right).

where αij denotes the rotation of the sensor i–th axis about the j–th axis
in order to align with the sensor reference frame (i.e. the sensor housing).
Cross-coupling is at the origin of hysteretic behaviour of accelerometer
readings, as described in [Ang and Khoo, 2004]

The scale factor matrix and cross–coupling matrix are usually coupled in a
single, full gain matrix (Ka), as reported in the last equality of (2.2) and both
the gain matrix and the bias vector are temperature dependent. Other, minor
sources of error are due to non-linearities of sensor response and the supply
voltage dependent ratiometric errors.

MEMS gyroscopes

Almost all reported MEMS gyroscopes devices are based on on the measure-
ment of the Coriolis force acting on a vibrating structure. When a mass (m)
is moving with a linear velocity (v) and its reference frame is rotated with an
angular velocity (ω), a Coriolis force (Fc) given by the following equation is
observed:

Fc = −2m(ω × v) (2.5)

When the mass is vibrating, the Coriolis effect induces a secondary, perpendic-
ular vibration that can be measured and related to the angular velocity exerted
around the sensitive axis. Vibrating mass gyroscopes are small in dimension
(shown in Figure2.2), but have a higher noise level and are more power hungry
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2.1. SENSORS 23

than the other sensors composing an IMU. Though they are still suitable in
many battery-powered applications, their consumption limits their use in ap-
plications where a long–term monitoring with the use of a very small battery
is required.

Sensor model

A gyroscope is a sensor capable of measuring its own angular velocity, or rate–
of–turn (ω). A suitable model to describe sensor output (yg) as a function of
applied angular velocity is:

yg = MgSg ω + bg + dg,a + ng = Kg ω + bg + dg,a + ng (2.6)

where ω is the input angular velocity on the sensitive axes and ng is the
stochastic measurement noise. The other terms included in the model are:

Bias (bg): This is the most critical source of error in a gyroscope and it
results from the contribution of different terms:

bg = bFB + bBS + bBR (2.7)

The fixed bias term (bFB) represents the displacement from zero on the
output when the input ω is null and it is often modelled as a function of
temperature. The bias repeatability parameter (bBR) is a random con-
stant that varies for each powerup of the IMU. This is due to a number of
effects, including change in the physical properties of the IMU and initial
conditions of signal processing. Further, the bias of a MEMS gyroscopes
has a stability component, termed bias stability (bBS), which will vary
during in–run usage due to flicker noise in the electronics, temperature,
time and/or mechanical stress on the system. This behaviour is usually
modeled as random walk noise. Gyroscope datasheets usually reports
how stable the bias is over a certain specified period of time. This value
is typically expressed in units of ◦/s or ◦/hr.

Scale-factor (Sa): This term accounts for errors in the ratio of a change
in the output signal to a change in the input angular velocity which is
to be measured. The error is typically dependent on the magnitude of
the input value and may be expressed as percentages of the measured full
scale quantity or simply as a ratio. It is represented as a diagonal matrix:
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24 CHAPTER 2. INERTIAL MEASUREMENT UNIT

Sa =

sxx syy
szz

 (2.8)

where sij is the sensitivity of the i–th axis accelerometer to the acceler-
ations in the j–th axis.

Cross-coupling (Mg): this term compensates for errors that arise as a
result of manufacturing imperfections which determine non-orthogonality
of the sensor axes, expressed by the matrix:

Mg =

 1 αxy αxz
αyx 1 αyz
αzx αzy 1

 (2.9)

where αij denotes the rotation of the sensor i–th axis about the j–th axis
in order to align with the sensor reference frame.

Acceleration or g–sensitivity (dg,a): this term is a minor source of
error and it is strongly dependent on the physical structure of the MEMS
gyroscope. On Coriolis effect based devices it is primarily due to device
mass asymmetry. This effect can be modeled and removed from the
measurements and is often included in the IMU signal condition stage
before output of the measurements.

Again, the terms Sg and Mg are usually grouped in a single, full gain matrix
(Kg), as reported in the last equality of (2.6). Temperature dependence of
Kg is tipically negligible. Instead, temperature fluctuations due to changes
in the environment and sensor self heating induce significant movement in bg.
Therefore, most IMUs are equipped with internal temperature sensors which
make it possible to correct for temperature induced bias effects.

MEMS magnetometer

Micro–machined magnetometers included in a IMU are based on the physical
principle of anisotropic magnetoresistance (AMR) and make use of a common
material, permalloy, to act as a magnetometer. The electrical resistance of
this specific alloy depends on the angle between the metallization and the
direction of current flow which, in turn, depends on the external magnetic
field’s magnitude and direction. In MEMS magnetometers, multiple arrays of
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2.1. SENSORS 25

Figure 2.3: The figure shows the layout structure of the Honeywell’s HMC1043
anisotropic magnetoresistance MEMS magnetometer (left) and a close–up view
(right) of the chemical deposition of the sensitive material (permalloy) on a
silicon wafer.

sensing element are organized in a Wheatstone bridge configuration, as shown
in Figure2.3.

Sensor model

A tri–axial magnetometer provides a measure of the local magnetic flux vec-
tor. Under unperturbed conditions, it is sensitive to the Earth’s magnetic
field (magnitude varying from 25 to 65 µT [NGDC, ]) and plays the role of
a digital compass in the IMU ensemble. A similar model to that describing
accelerometers can be used for a tri–axial magnetometer (ym):

ym = MmSmmm + bm + nm (2.10)

= Km(Ksimm − ohi) + bm + nm

where mm is the local magnetix flux acting on the sensor’s sensitive axes and
nn denotes the stochastic noise component. Terms associated with the major
sources of systematic errors included in the model, are:

Fixed bias (bm): Sensor bias is caused by the Wheatstone bridge offset
in AMR magnetometers. Also, sensor bias can be difficult to identify due
to the fact that Earth’s magnetic field is everywhere and it can easily be
locally perturbed.

Scale-factor (Sa): The magnetic scale factor error accounts for the
sensitivity of the magnetic sensor axes response. Due to instrumentation
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26 CHAPTER 2. INERTIAL MEASUREMENT UNIT

errors, the level of magnetometer sensitivity varies from one axis to the
next. Therefore, it is necessary to define three individual scale factors for
each axis, i.e. the entries of a diagonal matrix:

Sg =

sxx syy
szz

 (2.11)

where sij is the sensitivity of the i–th axis accelerometer to the acceler-
ations in the j–th axis.

Cross-coupling (Mg): this term compensates for errors that arise as a
result of manufacturing imperfections which determine non-orthogonality
of the sensor axes. It is generall expressed by the matrix:

Mg =

 1 αxy αxz
αyx 1 αyz
αzx αzy 1

 (2.12)

where αij denotes the rotation of the sensor i–th axis about the j–th axis
in order to align with the sensor reference frame.

Soft iron effect (Ksi): Soft iron effects are generated by the interac-
tion of an external magnetic field with the ferromagnetic materials in
the vicinity of the sensor. The resulting magnetic field depends on the
magnitude and direction of the applied magnetic field with respect to the
soft iron material. The soft iron effect is complex, nonlinear and it is
also the most common source of error and the most critical parameter to
calibrate for the magnetometers.

Hard iron effect (ohi): Hard iron error relate to a permanent magnet
that is fixed in the proximity of the sensor frame. Contrary to the soft iron
error, in this case, a permanent magnet generates a constant magnetic
field regardless of an externally applied magnetic field. Consequently,
even if the applied field is null, the sensor measures this additive magnetic
field vector. The hard-iron effect acts directly on sensor bias measurement
and it can be compensated much more easily than the soft-iron effect.

Allan Variance

This paragraph introduces a tool that is typically used to compare the perfor-
mance characteristics of inertial sensors, i.e. the Allan Variance [Allan, 1966].
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2.1. SENSORS 27

It is a time-domain method that pertains to the class of cluster analysis tech-
niques and can be viewed as the time domain equivalent of the power spectrum.
It can be used to characterize various types of the underlying random processes
that give rise to the noise terms on IMU measurements. Given a data recording
(y) containing N samples of an observed stochastic process, sampled every Ts
intervals, the following steps should be performed in order to compute its Allan
Variance:

1. Divide the dataset into clusters of size Nc < N/2, where the number of

obtained clusters is C =
⌊
N
Nc

⌋
;

2. Compute the average value for each cluster as:

ȳk =
1

Nc

Nc∑
i=1

yki , k = 1, ..., C (2.13)

3. Then, the Allan variance of length Nc is defined as the two point sample
variance between cluster averages over time, i.e.:

σ2
A(Nc) =

1

2(C − 1)

C−1∑
k=1

(ȳk+1 − ȳk)2 (2.14)

and the Allan deviation is defined as:

σA(Nc) =
√
σ2
A(Nc) (2.15)

The computation of the Allan Variance is repeated for different cluster sizes,
that are related to the averaging time as τ = TsNc, in order to obtain the plot
shown in Figure2.4. The minimum point on the Allan Deviation curve is used
by inertial sensor manufacturers as the standard definition of bias instability.
This is the best stability you could achieve with a fully modeled sensor and
active bias estimation. Therefore, for the gyroscope under test the bias stability
is equal to 0.05◦/s for the x–axis, 0.04◦/s for the y–axis and 0.03◦/s for the z–
axis. The same analysis provides an indication on the averaging time necessary
to obtain the more stable initial estimate for the gyroscope bias, which in this
case is about 20 s.
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Figure 2.4: The figure reports the Allan standard deviation plots computed on
the gyroscope data from the Opal IMU by APDM over a 1 hr static trial.

2.2 Calibration

The process of IMU calibration pertains to the estimation of the determinis-
tic sources of error, introduced in the previous section, that characterize each
sensing element. The basic idea is to compare the sensor output with known
values generated using calibration instruments. Off the shelf IMUs are typically
factory calibrated. Nonetheless, reliability of calibration parameters degrades
with use or if the IMU is subjected to shocks or high intensity magnetic fields
[Picerno et al., 2011]. The availability of low cost MEMS IMU and the con-
trast with expensive traditional calibration methodologies requiring access to
sophisticated test and calibration equipment (e.g. rate table, Helmotz coil),
have pushed the research towards more convenient procedures. Since calibra-
tion is a routine operation for MEMS IMUs, in this section procedures that are
commonly found in the literature are reviewed.
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2.2. CALIBRATION 29

In–field IMU calibration

The possibility to calibrate an IMU in–field is particularly appealing for a flexi-
ble usage of IMU devices. Most of these procedures are based on sensing known
physical quantities that are readily available in any experimental condition. For
the accelerometer and magnetometer calibration, respectively Earth’s gravity
and Earth’s magnetic field are used as the physical standard. Calibration of
gyroscopes is usally a more involved process that relies on the measurements
from the other two sensors in the IMU ensemble. In order to obtain reference
measurements for the calibration process, the following assumptions are made:

accelerometers: the magnitude of the static acceleration measured must
equal that of the local gravity vector [Lötters J.C. et al., 1998];

gyroscopes: the gravity vector measured using a static tri-axial ac-
celerometer must equal the gravity vector computed using the IMU orien-
tation via the integration of the angular velocities measured by gyroscopes
[Fong et al., 2008];

magnetometers: in case of a homogeneous, uniform magnetic field, the
magnitude of the vector measured using tri–axial magnetometers must
equal that of the natural geomagnetic field [Campolo et al., 2006]

Calibration of accelerometers and magnetometers boils down to an ellipsoid
fitting problem, where the ellipsoid manifold is considered the geometric locus
of the sensor readings. A unified, general model relating sensor voltage (vs) to
the output physical quantity (y) is formulated:

y = Kvs + o (2.16)

where K is the combination of all the multiplicative factors described in the
previous section and o represent the bias terms. Under the hypothesis of a
uniform sensed field (gravitational or geomagnetical), the norm of the mea-
surements (y) is expected to be a constant, typically normalized to unity. This
is the founding idea of the so called called scalar calibration or scalar checking
methods. A cost function can then be formulated, for instance as:

(yk − o)TA(yk − o) = 1 , k = 1, ..., N (2.17)

where yk is the k–th vector of sensor measurements and A is a sensitivity
matrix related to the gains K. The form of equation (2.17) is, in fact, that
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Figure 2.5: The figure reports the typical outcome of a sensor calibration pro-
cedure (specifically the least–squares method described in [Campolo et al.,
2006]): uncalibrated accelerometer measurement (left) are mapped on an el-
lipsoid manifold. Through the estimation of the parameters describing this
ellipsoid, measurements can be corrected and calibrated. After the calibration
process, measurements are mapped on a sphere (right).

of an ellipsoid and the whole calibration procedure will estimate a map from
this ellipsoid to a sphere, as shown in Figure2.5. As discussed in [Bonnet
et al., 2009], the fitting problem can be robustly solved either via linear [Cam-
polo et al., 2006, Pylvanainen, 2008] or non–linear optimization [Pa et al.,
2012, Elkaim, 2008]. Maximum Likelihood (ML) formulation are also found in
the literature [Vasconcelos et al., 2011, Kok et al., 2012]. In [Kok et al., 2012],
the IMU frame alignment is taken into account directly during the sensor cal-
ibration stage. For the case of gyroscopes calibration, the constant bias error
can be estimated by taking a long term average of the gyroscopes output whilst
it is not undergoing any rotation, where the duration of the recording can be
inferred from the Allan Variance plot. Once the bias is known it is trivial
to compensate for it by simply subtracting the bias from the output [Ferraris
et al., 1995]. Bias free measurement can then be calibrated for misalignment
and scale factor using the methods in [Fong et al., 2008, Tedaldi et al., 2014],
which are based on correcting gyroscope based angular rotations between pairs
of static configurations.
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Figure 2.6: The figure illustrates the functional components of an ideal inertial
navigation system: orientation is obtained from integration of measured angu-
lar velocity and it is used to remove gravity from sensed specific force. Velocity
and position are then obtained respectively by single and double integration of
the acceleration.

2.3 Inertial motion tracking

The measurements from an IMU can be used to track the position and orienta-
tion of the device relative to a known starting point. The underlying principles
of inertial motion tracking pertains to the historical field of inertial navigation
[Savage, 1998]. With the advent of MEMS devices the term ‘strapdown’ is
often found alongside inertial navigation, indicating the fact that the sensor is
directly attached to the body to track rather than being mechanically isolated
(e.g. on a gimballed platform). In case of inertial sensors, a navigation sys-
tem must perfom the following sequence of operations [Titterton and Weston,
2005], summarized in the diagram of Figure2.6:

1. determination of the angular motion of a vehicle using gyroscopic sensors,
from which its orientation relative to a reference frame may be derived;

2. measure the specific force using accelerometers;

3. resolve the specific force measurements into the reference frame using the
knowledge of orientation derived from the information provided by the
gyroscopes;
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Figure 2.7: The figure illustrates the set of coordinate frames involved in the
inertial navigation framework. On the left, the inertial (I) and the Earth’s (E)
frames are defined with respect to the Earth along with the position (latitude
λ, longitude φ) of an hypothetical local frame (L). On the right, the body (B)
at time t1 and t2 with respect to a local navigation frame is shown.

4. evaluate the force resulting from the gravitational field and subtract from
the specific force;

5. integrate the resolved specific force measurements to obtain estimates of
the velocity and position of the vehicle.

Depending on the choice of the coordinate frames with respect to which the
system is navigating, each individual block will be implemented as a different
set of equations, known as inertial navigation mechanization.

Coordinate frames

The coordinate frames used for mathematical formulation of inertial navigation
mechanization, shown in Figure2.7, are the following:

Body frame (B): is the coordinate frame of the moving IMU. Its origin
is located in the center of the accelerometer triad and it is aligned to the
casing. All the inertial measurements are resolved in this frame;

Local-Level Frame (L): this frame is defined by a plane locally tangent
to the surface of the earth at the position of the IMU. This implies a

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.
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constant direction for gravity (straight down). The coordinate system
used is Easting, Northing, Up (ENU), where Up is the normal vector of
the plane, North points toward the spin axis of Earth on the plane and
East completes the orthogonal system;

Inertial frame (I): this is the canonical frame for an object near the
surface of the Earth. It is a non–rotating, non–accelerating frame of
reference with a Cartesian coordinate system whose x axis is aligned with
the mean vernal equinox and whose z axis is coaxial with the spin axis
of the earth. The y-axis completes an orthogonal basis and the system’s
origin is located at the center of mass of the Earth;

Earth frame (E): the origin of this frame is at the Earth’s center of
mass. Its z–axis coincides with the inertial frame, but it rotates with
respect to the i-frame at the Earths rotation rate, which is approximately
15 degrees per hour.

The mechanization of the inertial navigation can be be formulated with respect
to either the Local, the Inertial or the Earth coordinate frame. The frame
used as reference in the mechanization formulation is generically called the
navigation frame (N). In the following, the Local frame will be chosen as the
Navigation frame.

Mechanization equations

In this paragraph the dependence between sensor readings and the quantities
useful for the navigation purpose, with respect to the Local–level frame (L),
are briefly stated, following the original tractation reported in [Titterton and
Weston, 2005]. The inertial motion tracking scheme in Figure2.6, relating
inertial quantities in the body frame (B) to position and orientation in the
navigation frame (N), can be formulated with the following set of equations:

Npk+1 =N pk + ∆TNvk+1
Nvk+1 =N vk + ∆T (NBq∗k ⊗B f̃k+1 ⊗NB qk +N g)

NBqk+1 =NB qk ⊗
(
cos

∆T‖Bω‖
2 ,

Bω
‖Bω‖sin

∆T‖Bω‖
2

)T
where the measurements from an IMU are the specific force Bf , expanded to a
4–vector Bf̃ = [0 Bf ] to perform the quaternion vector rotation, and angular
velocity Bω in the device body frame (B), ∆T is the discrete time interval
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34 CHAPTER 2. INERTIAL MEASUREMENT UNIT

from k to k + 1 measurement, and the quaternion representation was used to
express orientations (see appendix A for details). Since IMU measurements in
the body frame express motion with respect to the inertial frame, the angular
velocity sensed by gyroscopes (equation (2.6)) turns out to be:

BωI,B = BNR(NωI,E +N ωE,N ) +B ωN,B (2.18)

where BωN,B is the actual angular velocity required for navigation and BωI,E
and BωE,N are respectively the Earth rotational (about 0.005◦/s) rate and
the transport rate (rotation of the navigation frame with respect to the Earth
frame). These latter terms are often considered negligible for the case of MEMS
IMU. Also, the specific force measured by accelerometers (equation (2.2)) is
given by:

Bf = BNR(NaI,I −N g) (2.19)

where the inertial acceleration component (NaI,I) can be further expanded as:

NaI,I =N ωI,E ×N ωI,E ×N p + 2NωI,E ×N vN +N aN,N

where Np, NvN and NaN,N are respectively the position, the velocity and
the acceleration in the navigation frame and the formulation accounts for cen-
tripetal (first term after equal sign) and Coriolis (second term after equal sign)
accelerations. Particularly, NaN,N is the quantity of interest for position track-
ing with an IMU.

Limiting drift in inertial tracking

The main limitations of the described inertial navigation system is that posi-
tion and orientation are found by time integrating gyroscope and accelerometer
signals, together with any sensor bias and noise superimposed onto them (dead
reckoning approach). For the orientation estimation, direct gyroscope intergra-
tion introduces a drift that grows approximately linearly with time. Instead,
for the position estimation the drift issue is even more severe. On the one
hand, errors on the accelerometer (detailed in 2.1) are double integrated such
that any bias error results in a position drift error that grows quadratically in
time. On the other hand, since position measurement is intimately related to
correctness in the orientation estimation for the gravity component removal, an
error of δθ in the tilt angle will result in an error of g̃ ·sin(δθ) in the horizontal
components of the acceleration, which is again double integrated in order to
compute position. Therefore, from a practical point of view, position accuracy
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2.3. INERTIAL MOTION TRACKING 35

of inertial navigation systems is limited by gyroscopes rather than accelerom-
eters. Generally, two are the major approaches to cope with drifts in inertial
motion tracking systems: sensor fusion and modeling assumptions.

Sensor fusion

Sensor fusion is defined as the process of combining sensory data from multiple
types of sensors in order to achieve a better estimate of the state of a system
than would be possible when these sources are used individually. For standalone
IMU devices, this concept has been heavily exploited, especially to limit drifts
in the orientation estimate. The basic idea of orientation estimation with an
IMU is that an orientation can be computed in two different ways: either by
gyroscope signal integration or by vector observation of the gravity and Earth’s
magnetic field. In fact, from accelerometer (~a) and magnetometer (~m) readings
a rotation matrix NBR ∈ SO(3) from the body to a navigation frame (defined
by local gravity and magnetic field) can be derived as:

NBR =

[
~a

‖~a‖2
× ~m

‖~m‖2
× ~a

‖~a‖2
,

~a

‖~a‖2
× ~m

‖~m‖2
,

~a

‖~a‖2

]
(2.20)

The problem of combining multiple vector observation in order to estimate
orientation is known in the literature as the Wahba’s problem [Wahba, 1965].
There exists an entire class of methods, termed deterministic, dedicated to
solve this problem [Shuster and Oh, 1981, Bar-Itzhack, 1996]. Both gyroscope
based and deterministic approaches to measure orientation can be combined
in a sensor fusion fashion. A possibility is to exploit the complementary noise
characteristic, in the frequency domain, of gyroscopes and accelerometers and
magnetometers. The idea is to rely on gyroscope integration in dynamic condi-
tions (low band noise) and on vector observation in static condition (high band
noise). This class of algorithms is termed complementary filters and examples
can be found in [Mahony et al., 2008, Madgwick et al., 2011]. A second op-
tion is to combine the measurements with stochastical modeling, e.g. to use a
kinematics model propagated with three axis angular velocity integrating gy-
roscopes. In order to limit orientation estimate drift, the state vector is usually
prepended with more states that accounts for bias components. This approach
is commonly formulated as a Kalman filter algorithm and examples of imple-
mentations can be found in [Roetenberg et al., 2005, Sabatini, 2011]. Finally,
a thorough review of the existing literature on the topic of sensor fusion for
orientation estimation with an IMU can be found in [Crassidis et al., 2007].
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36 CHAPTER 2. INERTIAL MEASUREMENT UNIT

Modeling assumptions

In many applications where IMUs are used for tracking the motion, drifts can
be reduced by exploiting extra information that comes from the knowledge of
the underlying physical system model. For instance, assumptions on the type
of dynamics characterizing the system can be made and used to reduce drift.
A type of information commonly used for this purpose is knowledge about the
time epochs when the system is in a stationary phase, i.e. when the system has
a constant position and orientation. Using this information to bound the error
growth is referred to as using zero-velocity updates (ZUPT). One of the best
examples of implementation of this concept is NavShoe [Foxlin, 2005], where a
shoe mounted IMU is used for pedestrian tracking. When a person walks, their
feet alternate between a stationary stance phase and a moving stride phase.
The system uses the stance phase for zero velocity updates (ZUPT), allowing
to reduce the drift from cubic to linear in time. Other examples are in the field
of human motion capture. Here, biomechanical modeling and assumptions are
often used either to estimate human body configuration and to limit drift [Zhou
and Hu, 2005, El-Gohary and McNames, 2012]. Typical assumptions regard
measured accelerations and are [Luinge, 2002]:

• The bandwidth of accelerometer is limited by the inertia of the body
segment to which the sensor is attached.

• The mean acceleration of a body segment, with respect to a nonrotating
coordinate system, is zero , also implying the acceleration spectrum is
zero for low frequencies.

The same author in [Luinge et al., 2007], proposed a technique for limiting drifts
around the vertical based on the natural constraint of the elbow abduction
angle. Also, periodic nature of human walking is often assumed to reduce
integration drifts, e.g. in [Sabatini, 2005].

2.4 Available instrumentation

The work and the results presented in the thesis, are obtained using com-
mercially available IMUs. In particular, the Opal sensor by APDM and the
series MTi–30 produced by Xsens. The Opal is a wearable, wireless device and
has been used for the validation of orientation tracking performance in chap-
ter 4 and in the experimentation with children in chapter 6. The MTi–30 is
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2.4. AVAILABLE INSTRUMENTATION 37

Table 2.1: A comparison of the Xsens MTi–30 and the APDM Opal main
features

more rugged and cabled sensor and was used for navigation of an omnidirec-
tional robotic platform, described in chapter 5. Measured data from the IMUs
are calibrated for in–factory determined biases, gains, nonorthogonalities, and
temperature drifts. Salient features of the two devices are summarized in table
2.1.
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Chapter 3

Statistical estimation

In this chapter a brief introduction to the field of estimation is proposed. The
purpose is to provide the reader with the basic notions, particularly with refer-
ence to the stochastic methods such as the maximum likelihood and maximum
a posteriori estimators, and to introduce the general estimation framework in
which part of this work of thesis has been developed. The material in this
chapter is by no means exhaustive of the topic and references are given for
further readings.

3.1 Introduction

In real-world problems the presence of uncertainty is pervasive. The typical
scenario is that of a measurement quantity (ŷ) affected by additive noise (ey):

ŷ = y + ey (3.1)

where y is the hypothetical exact value. In consideration of that, the theory of
probability provides a consistent framework for the quantification and manip-
ulation of uncertainty. In this framework, samples of an unknown quantity are
modelled as random variables, e.g. the measurement ŷ, and its behaviour is
described in terms of a probability density function (pdf), refer to [Papoulis,
2002] for a thorough introduction to probability theory. The problem of esti-
mation in this probabilistic framework is that of inferring information on the
distribution of data, i.e. the pdf, from a sample of independent, identically
distributed (i.i.d.) random variables. A fundamental choice to the aim of esti-
mation is whether to make hypotheses about the underlying behaviour of the

39
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40 CHAPTER 3. STATISTICAL ESTIMATION

data, i.e. assuming to be described by a model, or not. The first approach leads
to the class of parametric estimators, which will be discussed in this chapter,
while the second to the class of non–parametric methods.

In the typical setting of (3.1) the noise term is modelled with a pdf p(ey).
The pdf p(ey) of the noise also determines the conditional pdf p(ŷ|θ) of the
measurements, given the hypothetical exact model:

y = f(u, θ) (3.2)

that describes the system and is parametrized with a set of θ parameters defined
in a space Θ and the inputs (u) that excite the system. The goal of the
estimation is to infer the value of the parameters θ ∈ Θ from a set of of i.i.d.
sensor measurements {ŷi, ..., ŷN}. Mathematically, this translates into finding
a mapping φ, the estimator, which maps the data to the parameters’ values,
the estimate, i.e.:

θ̂ = φ(ŷ) (3.3)

where θ̂ is the parameter estimate. Among the different estimators that can be
found in the statistic literature [Lehmann, 1998, Hastie and Friedman, 2009],
the maximum likelihood (ML) estimator and the maximum a posteriori (MAP)
estimator are of particular interest and will be used in chapter 5.

Maximum Likelihood Estimator

Given a choice for the parameter values θ̂ ∈ Θ of a data distribution, the
corresponding p(ŷ|θ̂) will show that some data are more probable than other.
Conversely, given a set of i.i.d. data {ŷ1, ..., ŷN}, the likelihood that they are

drawn from a distribution with p(ŷ|θ̂) can be quantified as:

L(θ̂|ŷ) = p(ŷ|θ̂). (3.4)

where L(θ̂|x) is called the likelihood function.

Definition 3.1. The ML estimate is the value θ̂ = θ̂(ŷ) ∈ Θ maximizing

L(θ̂|ŷ), provided it exists, i.e.:

θ̂ML = arg max
θ
p(ŷ|θ) (3.5)

The method of ML selects the set of values of the model parameters that
maximizes the likelihood function. Intuitively, this maximizes the agreement
of the selected model with the observed data. ML estimation gives a unified
approach to estimation, which is well-defined in the case of the normal distri-
bution and many other problems and is an asymptotically efficient estimator.
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3.2. A COST FUNCTION INTERPRETATION 41

Maximum A Posteriori Estimator

In some cases there could be a priori information available on the distribution
parameters to estimate, e.g. there could be a model describing the physical
process that generated the dataset. This prior information can be expressed in
terms of a pdf describing the parameters to be estimated. Mathematically, the
parameter θ to be estimated is considered as the value of an random variable.
The associated pdf p(θ) is called the prior probability. The Bayes’ theorem
provides a way to incorporate prior information in the estimation process:

p(θ|ŷ) =
p(ŷ|θ)p(θ)
p(ŷ)

= ηp(ŷ|θ)p(θ) (3.6)

The term on the left hand side of the equation is called the posterior. On the
right hand side, the numerator is the product of the likelihood term and the
prior term. The denominator (p(ŷ)) serves as a normalization term, denoted
with a constant η, so that the posterior pdf integrates to unity. Thus, Bayesian
inference produces the MAP estimate.

Definition 3.2. The MAP estimate is the value θ̂ = θ̂(ŷ) ∈ Θ maximizing the
posterior p(θ|ŷ), provided it exists, i.e.:

θ̂MAP = arg max
θ
p(θ|ŷ) = arg max

θ
ηp(ŷ|θ)p(θ) (3.7)

In case of an uninformative, uniform prior pdf, the MAP estimate and the
ML estimate are equivalent.

3.2 A cost function interpretation

The parametric estimators presented in the previous paragraphs introduced
mathematical optimization problems in which the pdf to be maximized can
be equivalently thought of as a cost function, see [Pintelon and Schoukens,
2012]. In order to estimate the unknown parameter vector, ML and MAP are
restated as cost function minimization problems exploiting the equivalence:

arg max
θ
p(x|θ) = arg min

θ
−p(x|θ) (3.8)

A natural log function is also applied, leading to the equivalent problem (e.g.
for the ML case):

θ̂ML = arg max
θ
p(x|θ) = arg min

θ
− log(p(x|θ)) (3.9)
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42 CHAPTER 3. STATISTICAL ESTIMATION

In fact, the monotonicity of the log function does not affect the solution of
the problem (minima and maxima are preserved) plus it has the advantage to
transform product of factors into a summation of factors. The latter property
is appealing in view of the solution of the problem with general-purpose opti-
mization techniques that are found in the literature [Boyd and Vandenberghe,
2010], e.g. Newton or trust-region methods, as it make easier to compute
derivatives of the cost function. In the following, the derivation of the equiv-
alent cost function for two parametric pdf, i.e. a Gaussian and a Student-T,
are discussed. The hypothetical scenario in which the math is developed is
described by eq(3.1).

Gaussian cost function

The most common choice for describing the noise affecting a real system, e.g.
noise on sensor’s measurements, is that to use a Gaussian model. It can be
shows that Gaussian distributed disturbing noise leads to a quadratic cost crite-
rion. Consider the random noise vector ey of eq. 3.1 modelled with a Gaussian
multivariate distribution with a zero mean µ and a covariance matrix Σ. The
measurement ŷ from the sensor is then described by a Gaussian distribution
as well, i.e.:

p(ŷ − y) = (2π)−
m
2 det Σ−

1
2 exp(−1

2
(ŷ − y)TΣ−1(ŷ − y)) (3.10)

and by applying the log transformation:

log(p(ŷ − y)) = −m
2

log(2π)− 1

2
log det Σ− 1

2
(ŷ − y)TΣ−1(ŷ − y) (3.11)

If we consider the ML problem of estimating the parameters θ ∈ Θ of the model
in (3.2), the following optimization problem is obtained:

arg min
θ

m

2
log(2π) +

1

2
log det Σ +

1

2
(ŷ − y(θ)))TΣ−1(ŷ − y(θ))) =

arg min
θ

1

2
(ŷ − y(θ)))TΣ−1(ŷ − y(θ))) =

arg min
θ

1

2
ey(θ)TΣ−1ey(θ) = arg min

θ

1

2
‖ey(θ)‖2Σ−1 (3.12)

where the symbol ‖·‖Σ was used to denote the quadratic norm operator defined
as:

‖x‖Σ = (xTΣ1/2x)
1
2 (3.13)
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3.2. A COST FUNCTION INTERPRETATION 43

In the minimization problem of eq. (3.12) a number of terms gave no contribu-
tion to the aim of the minimization and could be ignored. The resulting cost
function is a quadratic in the error term ey and it is weighted by the covariance
matrix Σ assigned to the noise. The shape of this cost function is represented
in figure 5.15 of chapter 5.

Student-T cost function

In some cases experimental data are better fitted by a more heavy tailed distri-
bution than a Gaussian. That can happen for instance because of measurement
outliers from unreliable sensors, target manoeuvres in tracking applications, or
errors that occur when working with linearised nonlinear systems. If it is known
that some outliers in the measurements can appear (e.g. due to exceptionally
large errors, a temporary sensor failure or a transmission error), then noise on
measurements can be better modelled by a Student-T distribution, i.e.:

p(ŷ − y) =
Γ [(ν + p)/2]

Γ(ν/2)νn/2πn/2 |Σ|1/2

[
1 +

1

ν
(ŷ − y)TΣ−1(ŷ − y)

]−(ν+n)/2

(3.14)
where ν denotes the degrees of freedom of the distribution, Γ is the gamma
function and n is the dimension of the vector (ŷ−y) ∈ Rn. In a ML estimation
framework where the parameters θ ∈ Θ of the model in (3.2) are of interest,
the following optimization problem is obtained:

arg min
θ
− log(

Γ [(ν + 1)/2]

Γ(ν/2)νn/2πn/2 |Σ|1/2
) +

ν + n

2
log(1 +

(ŷ − y(θ))TΣ−1(ŷ − y(θ))

ν
) =

arg min
θ

ν + n

2
log(1 +

(ŷ − y(θ))TΣ−1(ŷ − y(θ))

ν
) =

arg min
θ

ν + n

2
log(1 +

(‖ey(θ)‖2Σ−1

ν
) (3.15)

where the function to be minimized as a logarithmic shape with a quadratic
argument and is plotted in 5.15 of chapter 5. As the gradient of this cost
function decreases the more the argument is far from the minimum, its contri-
bution to the final solution of the minimization is accordingly reduced [Boyd
and Vandenberghe, 2010]. This property can be exploited to implement an
outlier detection and rejection strategy in a scenario in which multiple sources
of information on an unknown quantity are available, e.g. a sensor measure-
ment and a physical model. In fact, assigning a student-T cost to the outlier
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prone source of information and a quadratic cost to the other has the effect
that, in case of a strong disagreement, the outlier prone sources will be ignored
in the computation of a solution.

3.3 A general probabilistic framework for estimation

In this section the results discussed in the previous paragraphs are combined
into a general framework for the estimation that will be extensively used for
the application described in chapter 5. The general problem addressed by this
framework is that of estimating the state vector (x) of a system described using
a state space representation. The system is generally assumed nonlinear and
affected by additive noise, i.e. formulated in discrete time as:

x1,k+1 = f(xk,uk) + v1,k

...
xn,k+1 = f(xk,uk) + vn,k
y1,k = g(xk,uk) +w1,k

...
yr,k = g(xk,uk) +wr,k

(3.16)

where xk ∈ Rn represents the state of the system at time sample k, uk ∈ Rm is
a vector of m inputs, and yk ∈ Rr is the vector of the r system responses. This
framework can be specialized to target both filtering or smoothing problems.

In filtering applications the general problem specializes into finding an esti-
mate of the current state given all the available measurements. From a mathe-
matical standpoint, the target of the estimation is the posterior pdf p(xk|y1:k),
where y1:k is the set of all measurements {yi, ...,yN}. In this framework the
Markov assumption is assumed valid for the model, specifically:

p(xi|x1:i−1) = p(xi|xi−1) , p(yi|xi) = p(yi|x1:i) (3.17)

For the nonlinear system formulation of (3.16)the following correspondence
applies:

xk+1 = f(xk,uk) + vk ⇒ p(xk|xk−1) (3.18)

yk = g(xk,uk) +wk ⇒ p(yk|xk) (3.19)
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and the target filter pdf can be computed using the following recursion:

p(xk|yk−1) =

∫
p(xk|xk−1)p(xk−1|yk−1)dxk−1 (3.20)

p(yk|yk−1) =

∫
p(yk|xk)p(xk|yk−1)dxk (3.21)

p(xk|yk) =
p(yk|xk)p(xk|yk−1)

p(yk|yk−1)
(3.22)

which entails marginalization steps and the Bayes’ rule for conditional pdf.
More details on the filter theory and the aspects related to practical method-
ologies to compute the pdf of (3.22) can be found in [Gustafsson, 2013].

In smoothing problems, the general problem turns into finding the best
estimate of the entire state trajectory given all the measurements. From a
mathematical standpoint, the target of the estimation is the pdf p(x1:k|y1:k),
where x1:k is the set of all states {xi, ...,xN} and y1:k is the set of all mea-
surements {yi, ...,yN}. In order to obtain a point estimate from the posterior,
the MAP estimator is the natural choice. With reference to the state space
formulation in (3.16), the MAP problem is expressed as:

x̂ = arg max
x1:k

p(x1:k|y1:k) = arg max
x1:k

p(x1)
k∏
i=2

p(xi|xi−1)
k∏
i=1

p(yi|xi) =

arg min
x1:k

− log(p(x1))−
k∑
i=2

log(p(xi|xi−1))−
k∑
i=1

log(p(yi|xi)) (3.23)

where x̂ indicates the estimated quantity and the Markov assumption of (3.17)
is again assumed. This can then be turned into the following optimizatione
problem, which accounts for the modelling equation describing the system in
(3.16) as:

arg min
θ
− log(p(x1))−

k−1∑
i=1

log(p(vi))−
k∑
i=1

log(p(wi)) (3.24)

s.t. xi = f(xi,ui) + v1,k , i = 1, ..., k − 1
yi = g(xi,ui) +wi , i = 1, ..., k

(3.25)

where the pdf to be minimized are subject to (s.t.) the constraints extracted
from the system model (3.16) and with parameters θ = {x1:k,v1:k,w1:k}. The
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use of a MAP formulation for the smoothing problem allows to straightfor-
wardly extended the estimation to include other parameters of interest as well,
e.g. alignment matrix between frames.
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Part II

Research focus
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Chapter 4

Validating accuracy of inertial
orientation tracking

This chapter presents a systematic characterization of the accuracy in orien-
tation tracking for wearable IMU devices, where the orientation is estimated
via state of the art sensor fusion algorithms. The assessment was carried out
having in mind the application to human motion tracking and use a robotic
platform in order to generate controlled and repeatable conditions. The major
contribution of this validation is in providing detailed information on static and
dynamic performance, covering a large number of test cases, of IMU based ori-
entation trackers. First, motivation and overview of relevant related literature
is presented in pursuance of putting following material in perspective. Then,
the experimental methodology is described and the results of the assessment
are reported. The chapter is concluded with a critical discussion of findings
and guidelines are provided in view of practical usage of IMU for orientation
tracking, within the field of human related applications.

4.1 Problem formulation

Human kinematic tracking by means of wearable sensors that are directly at-
tached to the body is establishing as a promising solution in the community
of motion capture researchers. These systems are based on multiple sensing
devices embedding 3D inertial sensors, i.e. accelerometers and gyroscopes,
coupled with a 3D magnetic flux sensor and are typically referred in litera-
ture as IMU, or magnetic IMU (M–IMU). A part from inertial and magnetic
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quantities, each unit can provide an estimate of 3D orientation with respect
to a fixed system of coordinates by using sensor fusion techniques [Crassidis
et al., 2007]. If the IMU is firmly attached on a segment of the human body,
it is possible to obtain an estimate of its absolute orientation. Further on,
multiple IMUs attached to multiple body segments provide relative joint ori-
entation measurements that can be combined in order to reconstruct human
kinematics [Roetenberg, ]. Despite the IMU based solution to human mo-
tion capture is regarded as less accurate than stereo–photogrammetry based
systems, that are historically ranked as the ‘golden standard’, it comes with
inherent advantages: one above all, the possibility to continuously measure
human kinematics, even outside of dedicated laboratories and with less opera-
tional constraints. Moreover, the field of application for these systems is vast,
ranging from physical and biomechanical functional assessment and rehabili-
tation [Patel et al., 2012, Zhou and Hu, 2008], to sports as well as ergonomics
[Vignais et al., 2013], movie production and gaming. Therefore, the last decade
has witnessed extensive research effort committed to: the investigation of data
fusion algorithms for orientation estimation with IMUs [Yun and Bachmann,
2006, Roetenberg et al., 2007, Sabatini, 2011, Fourati et al., 2012, Mahony
et al., 2008, Campolo et al., 2009, Madgwick et al., 2011, Tian et al., 2013]; the
definition of protocols for practical usage of wearable motion capture systems
[Ricci et al., 2014],[Cutti et al., 2010],[de Vries et al., 2010],[Kontaxis et al.,
2009],[Picerno et al., 2008],[Cutti et al., 2008]; the application of these systems
to different scenarios [Luinge et al., 2007, Brodie et al., 2008a, Cooper et al.,
2009]. Surprisingly, much less attention has been dedicated to rigorously as-
sessing the accuracy in measuring orientation that can be achieved by using
wearable IMUs under typical motion conditions found in human related appli-
cations. On the industrial side, technical specification of commercial systems
reported by vendors are presented with caveats and are poorly documented,
e.g. device dynamic accuracy is given without detailing the testing setup and
protocol, amplitude and bandwidth of testing movements. On the research
side, a variability in results is currently found in the literature, where best per-
formance is usually matched with slow and short range movements tracking.
The main contribution of this work is in providing a systematic characteriza-
tion of the accuracy in orientation tracking using state–of–the–art sensor fusion
algorithm with IMU based system for human motion capture under controlled
and repeatable conditions. Selected algorithms are in the classes of stochastic
and complementary filtering to which most of developed methods pertain. The
assessment protocol that is presented comprises evaluation of both absolute
(single IMU compared to reference) and relative (pairwise comparison among
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IMUs) accuracy in static and dynamic scenarios. For the static part, both
unperturbed and after motion performance are investigated. For the dynamic
part, accuracy was assessed for a number of different excitations signals, varied
both in amplitude of motion and frequency content, that are selected in the
range defined by human motion related literature. Also, three conditions were
tested in order to individually identify performance for the attitude (i.e. rota-
tion against the gravity vector) and the heading (i.e. rotation along the gravity
vector) components of orientation, plus a third midway, mixed case generally
termed in the following as attitude and heading. The material is organized as
follows: in section 4.2 the experimental setup is described together with the
experimental protocol and the data analysis procedure. In section 4.4 the out-
come of the validation results for each trial is reported and, in the successive
section 4.5, the chapter is concluded with a critical discussion of the findings.
Beforehand, to put the the following material in perspective, next paragraph
provides a brief review of the relevant literature on the topic.

Related work

Existing studies in the literature that investigate accuracy of IMU in orienta-
tion consider static and dynamic validation mostly under manually generated
conditions. In [Cutti et al., 2006], Cutti et al. evaluated accuracy in orienta-
tion of 4 IMUs rigidly attached to a manually rotated plank. Mean angular
velocities of 180◦/s and 360◦/s were generated with the help of a metronome
and a worst case angular error for the two velocities was found to be 5.4◦

and 11.6◦ respectively. The oscillatory motion of a pendulum has also been
considered for the dynamic accuracy assessment, e.g. in [Brodie et al., 2008c]
and in [Godwin et al., 2009]. In both studies, an optical system was used as
reference. In the first one, a worst case RMS error was found to be in the
range 8.5◦ ÷ 11.7◦ for the IMU factory orientation estimator (Kalman filter)
and much lower 0.8◦÷ 1.3◦ for the algorithm developed by the authors. In the
latter, the mean RMS error range was in between 1.9◦ and 3.5◦. A part from
single device accuracy, Picerno et al. [Picerno et al., 2011] focused on consis-
tency in orientation measurement of multiple IMUs by presenting a spot check
for device assessment. They pointed out criticalities in measuring relative ori-
entation with IMUs, reporting errors as large as 11.4◦. At present, the only
example of accuracy evaluation under controlled conditions, i.e. with an exper-
imental setup and protocol capable of providing well–defined and repeatable
testing movements is that of [Lebel et al., 2013]. In this work, Lebel and col-
leagues compared different commercial IMU based systems for motion tracking
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against an optical system and used an instrumented gimbal table to generate
static and dynamic motion conditions. Their focus was on the effect of angular
velocity on orientation error and reported results suggest a significant effect of
this variable for all tested devices. Mean errors w.r.t optical reference for the
case of 90◦/s and 180◦/s angular velocities were found to be around 3◦ and 7◦.
Finally, a recent paper from Bergamini et al. [Bergamini et al., 2014] investi-
gated accuracy of different sensor fusion approaches for orientation estimation
with IMUs during several manual and locomotion tasks. Experimental setup
consisted in two units attached to pelvis and forearm and an optical motion
capture system as reference. Reported mean errors varied greatly both de-
pending on the task and the type of rotation (heading or attitude) and ranging
from about 5◦ for manual tasks up to 21◦ for locomotion.

4.2 Materials and Methods

Experimental setup

The experimental setup for this study, shown in Figure 4.1, consists of a robotic
arm and a commercial set of IMUs. The robotic arm is the lightweight manipu-
lator LWR 4+ manufactured by KUKA GmbH. It is equipped with 7 rotational
joints paired with high resolution encoders and distributed along an anthropo-
morphic kinematic chain. Depending on the specific joint, an angular velocity
ranging from a minimum of ±110◦/s to a maximum of ±240◦/s can be gen-
erated. Relative orientation of the robot joints is measured by absolute 16-bit
magnetic encoder corresponding to an accuracy in joint orientation < 0.01◦.
Also, a salient feature of the platform is its high repeatability, ±0.05 mm (ISO
9238), according to manufacturer specifications. Joint odometry and pose of
the end-effector (EE) can be retrieved from the robot up to a maximum rate
of 1 kHz. The commercial set of IMUs is manufactured by APDM Inc. and
composed by 6 units (“Opal” type). Each unit is a lightweight box (22 g).
A real time computation of the orientation is also available via an embedded
Kalman filter (KF) algorithm. The accuracy in orientation, advertised by the
manufacturer, is 1.15◦ and 1.50◦ RMS for static conditions in roll/pitch and
heading respectively, and 2.8◦ RMS for dynamic conditions. Synchronized mea-
surements from the units can be retrieved up to a maximum rate of 128 Hz.
In order to connect the IMUs to the robotic arm a proper tool was designed
in Solidworks, shown in Figure4.1, that allows the housing of the 6 IMUs and
can be rigidly fixed to the robotic arm EE using plastic screws. The overall
weight of the tool and the 6 units is about 1.5 Kg, a value below the maximum
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Figure 4.1: The figure shows the experimental setup for accuracy assessment.
On the top, a view of the KUKA LWR 4+ robotic arm with, on the left side, the
identifier of the 7 joints as specified by the manufacture and, on the right side,
the length (in millimiters) of each link plus the custom devised tool attached
to the EE . On the bottom, a closer view of the EE tool housing the full set of
6 IMUs.
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payload that the robotic arm can sustain (14 Kg). The system was connected
to a laptop, respectively through an Ethernet connection for the KUKA LWR
4+ and a dedicated wireless connection for the IMUs.

Sensor fusion for estimating orientation with IMU

At present, there are two main classes of algorithms of widespread use in the
literature: non–linear complementary filters (CF) [Mahony et al., 2008, Cam-
polo et al., 2009, Madgwick et al., 2011, Tian et al., 2013] and Kalman filters
(KF) [Roetenberg et al., 2007, Sabatini, 2011]. The class of non–linear CF ex-
ploits the complementary spectral noise characteristics of measurement sources
in order to filter out low frequency noise components from gyroscope measure-
ments, that are due to slow time varying biases, and high frequency noise
components affecting accelerometer and magnetometer in dynamic conditions.
To the aim of an accuracy performance validation a recent implementation of a
non–linear complementary filter that uses a Gauss–Newton algorithm (GNA)
optimization, proposed in [Tian et al., 2013], was selected. The tunable pa-
rameters weights relative contribution of gyroscopes versus accelerometer and
magnetometer (β), the detection thresholds for dynamic acceleration (εA) and
magnetic field perturbations (εM ) and were set according to reccomendations
by the authors (β = 0.0756 rad/s , εA = 0.25 m/s2 and εM = 2 uT).

The class of KF algorithms represents the stochastic approach to orientation
estimation. They use a state–space model description for describing the system
and assumes Gaussian distribution for the noise components. This approach
offers flexibility in defining the state vector to be estimated, that can easily be
expanded to include sensor biases, and can also incorporate detection strategies,
e.g. for compensating magnetic field disturbances [Sabatini and Member, 2006,
Roetenberg et al., 2005]. Since a KF implementation tuned for human motion
tracking was already available from our commercial IMU system and with
known values for accuracy performance, to the purpose of validation this filter
was used as representative for this class of algorithms.

Experimental protocol

The full set of 6 IMU devices were tested together for performance evaluation
under repeatable and controlled conditions generated by accurate robotic ma-
nipulator. Prior to any data collection, the robot slowly rotated the attached
sensors in all directions and at slow speed, in order to warm–up the electronics.
Since the use of a robotic manipulator in close proximity to magnetic sensors
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can generally be detrimental to IMU orientation tracking performance due to
perturbation of the surrounding magnetic field induced by motor driving and
ferromagnetic components [Bachmann et al., 2007], a preliminary quantifica-
tion of the magnetic disturbances was carried out in order to verify whether
that is the case with our setup. Disturbances generated by the robot were
found to be negligible and details of the procedure are reported in section 4.2.

The experimental protocol includes both a dynamic and a static accuracy
assessment. The dynamic validation part of the protocol tests the IMUs under
a sinusoidal excitation pattern generated for the angular displacement (θ) of
the robot EE, that is:

qEE(t) = [cos(
θ

2
) vsin(

θ

2
)] (4.1)

θ(A, t) = Asin(2πft) (4.2)

where qEE(t) is the time varying orientation of the EE expressed as a quater-
nion of angle θ and constant axis of rotation v. The angle of rotation oscillates
in time as a sinusoidal wave with amplitude (A) and frequency (f), that were
varied in order to generate the matrix of tests reported in table 4.1. The set
of frequency comprises 7 values equally spaced on a logarithmic scale in the
bandwidth of human motion and range from a minimum of 0.18 Hz to a maxi-
mum of 5.6 Hz. The interval was selected in order to provide good coverage of
the range of frequencies typically found in human movements, which is limited
in the bandwidth up to 5 Hz, e.g. during gait [Barralon et al., 2005, Godfrey
et al., 2008]. Moreover, the predominant component of the frequency spec-
trum for common activities of daily living (ADL) is found in the literature to
be around 1 Hz and with 75% of the spectral energy below 5 Hz [Mann et al.,
1989]. Instead, the choice for excitation amplitude values was limited by a
safety constraint on the maximum torque that can be generated at the joint
level for the given payload with the robotic arm. A set of 6 amplitudes was
considered varying from a minimum of 6◦ to a maximum of about 36◦ peak
to peak. A staircase pattern for the matrix of excitation is obtained and it is
reported in table 4.1. All the dynamic rotations of the protocol were generated
as single joint or double aligned joints mono-axial rotations. Each dynamic
excitation was applied for a 20 s time duration. It was then followed by a
rest period of 40 s before the application of the subsequent excitation signal.
The rest period was necessary to guarantee any transitory effect from former
excitation to be exhausted and the algorithm for orientation estimation to be
at convergence prior the application of a new excitation. The matrix of tests
was repeated for 3 different trials in which the robotic arm E ~Z axis was aligned
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Table 4.1: Matrix of excitations for dynamic accuracy validation: row-wise are
amplitudes in and column-wise are frequencies

respectively with the W ~X, W ~Z and (W ~X +W ~Z) axis of the world reference
frame WSR (see Figure4.1) and the axis of rotation of the applied excitation
signal was approximately oriented: perpendicular (90.2±0.97◦) with respect to
the gravity, parallel (0.9± 0.56◦) to it and midway between the two conditions
(44.7 ± 1.27◦). This allows to validate the IMUs performance separately for
the attitude, the heading and for a mixed condition termed attitude and head-
ing. Each condition was repeated for 5 times, up to a number of 90 different
datasets (3 trials × 5 repetitions × 6 IMUs) for each element in Table 4.1.

The static performance assessment part of the protocol explores two dif-
ferent static conditions for the sensing unit, denoted as PS (Pure Static) and
SaM (Static after Motion). The PS test pertains accuracy evaluation when the
IMU device is kept stationary for a period of 1 hour and aims to quantify the
nominal stability of the orientation estimate. Instead, the SaM test evaluates
static behaviour of the orientation computed by the IMUs after a dynamic
excitation has been applied. The purpose of this set of tests is to determine
what is the convergence of the error in the attitude and heading estimate to
be expected after a dynamic condition is terminated, that is how fast the filter
is capable of recovering a stable, static estimate of orientation. Specifically,
excitations selected for this part of the protocol are the ones corresponding to
the minimum and maximum dynamics, i.e. element (1, 1) and (6, 5) of the test
matrix in Table 4.1, for the attitude, heading and attitude and heading trials
described above. The orientation is evaluated over a period of 30 s, started
after 0s from the extinction of the applied dynamic excitation. A number of 5
datasets for the 6 IMUs is collected for each trial and type of dynamics.
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Figure 4.2: The figure reports variation of the magnetic dip angle (top) and of
the magnetic norm (bottom) expressed as median, inter quartile range and 95%
confidence interval. The first bar represents data obtained with no motion of
the robot motors while the second are the data recorded during motor driving.

Magnetic field disturbances evaluation

In this paragraph details are reported on a preliminary experiment aimed at
evaluating the effect of using the KUKA LWR 4+ robotic manipulator on the
magnetic field sensed by IMU’s magnetometers. Robot’s housing is made of
Aluminium, stainless steel (paramagnetic materials) and ABS plastic. There-
fore, the only active source of magnetic field disturbance related to the use of
the robotic arm is due to permanent magnets in motors and electro–magnetic
waves generated by motor driving. In order to isolate this effect on the proposed
sensors setup of Figure4.1, the robot was set to a fully extended configuration,
namely “candle” configuration. Then, a pair of aligned robot joints (E1 and
A6 w.r.t Figure6.1) were driven with a counterphase sinusoidal input. In this
way the IMUs are kept static while robot motors are instead moving and per-
turbation nearby magnetic field. Particularly, each of the involved joint was
driven with a set of sinusoidal input, sharing the same amplitude and frequency
but with a 180◦ phase shifting. In practice, the occurrence of this condition
strongly relies on the assumption that commands to the joints are sent in a
synchronous way by the robot controller which, in turn, for a fixed amplitude
of motion, is dependent on the frequency of the commanded excitation. The
perturbation on the magnetic field was evaluated in terms of its effect on the
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variation both of the `2–norm of the magnetic field and of the magnetic dip
angle. The latter depends on the position on Earth’s surface (between 60 and
70 degrees at the actual latitude) and can be computed from the accelerometer
and magnetometer measurements as:

θdip =
π

2
− cos−1(

gB ·mB

‖g‖2 ‖m‖2
) (4.3)

where gB and mB are the gravity vector (measured by accelerometer in static
condition) and the magnetic flux vector in sensor body frame (B). In fact, the
variation of this quantities in time, defined as:

∆θdip(t) = θdip(t)− θdip(t− Ts) (4.4)

∆‖m‖2(t) = ‖m‖2 (t)− ‖m‖2 (t− Ts) (4.5)

where Ts is the IMU sampling time, is the input to magnetic field distur-
bances compensation strategies that are typically integrated in the orientation
estimation framework of an IMU, as discussed in [Roetenberg et al., 2005].
Experimental results for a 40 s motor static period followed by a 40 s counter
phase motor moving (60◦ peak–to–peak amplitude at 0.5 Hz) are reported in
Figure4.2. A slight increase in the IQR for the dip angle variation (+3%) and
the magnetic field norm variation (+1%) is observed. Since distribution of
∆θdip and ∆‖m‖2 is not Gaussian, a Wilkoxon rank–sum test was used for the
analysis of results. No statistical difference between the “motor static” and the
“motor moving” groups is observed with a 5% significance level (p > 0.95).

Data analysis

The dataset resulting from a trial is composed by a sequence of unit norm
quaternions describing IMU body frame (B) orientation with respect to a
global, fixed, geo–magnetic reference frame (G), i.e. (GBq), and sampled at 128
Hz. A companion sequence of quaternions is obtained from the robotic arm, i.e.
(WEq), relating the orientation of the EE frame (E) to the robot world frame
(W) that is fixed on the basis of the platform as shown in Figure4.1 and sam-
pled at 200 Hz. Prior to any performance evaluation, collected datasets from
robot and IMUs were resampled at a constant rate of 128 Hz. Resampling on
the quaternion space was carried out by using quaternion spherical linear inter-
polation (SLERP) [Shoemake1985, 1985]. Data synchronization was obtained
fitting a linear model (clock offset and skew) from measurements of correlation
of the angular velocity `2–norms data from IMU and robot at different time
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intervals. Each measurement of correlation provides an estimate of the delay
relating a pair of time instants (tI , tR), respectively referred to the IMU and
robot clocks. Multiple pairs were robustly fitted with a linear model using the
RANSAC algorithm [Hartley and Zisserman, 2000].

The metric on quaternion space was defined as:

Φ(qA, qB) = 2 cos−1(|qA · qB |) (4.6)

and can be interpreted as the length of the shortest path, i.e. a geodesic,
connecting the two quaternions (qA, qB) on the 4–dimensional hypersphere
where they are defined (more details are reported in section 4.3). In order
to consistently evaluate accuracy with this metric, IMU and robot quaternion
sequences need first to be aligned in such a way they are reffered to the same
system of coordinate, i.e.:

WGq ⊗ GBq(t) =WE q(t) ⊗ EBq (4.7)

where the additional constant quaternions WGq and EBq represent relative
frames misalignments. The problem of aligning reference frames from sequence
of measurements of the same quantity is well described in the robotics liter-
ature, known as hand–eye calibration, and for our case the method in [Horn,
1987] was used to estimate the unknown pair (WGq , EBq). Preprocessed
datasets were analysed to extract two different performance indexes of orien-
tation tracking: absolute accuracy and relative accuracy. Absolute accuracy
(εA) determines the capability of each IMU to correctly estimate orientation
against an absolute reference measure. Mathematically, it is evaluated as:

εA = Φ(qIi , qGT ) , i = 1, ..., 6 (4.8)

where, qIi is the measure from i–th IMU and qGT is the ground truth data
coming from the robotic platform. For each test on the matrix in Table 4.1, 30
datasets of absolute accuracy measures are computed (5 repetitions × 6 IMU
units).

Instead, relative accuracy (εR), accounts for differences in estimated ori-
entation between pairs of IMUs and independently of the actual orientation
value. It is a crucial parameter to consider for all applications where relative
motion is of interest, e.g. for human joint angle measurement. It is computed
as:

εR = Φ(qIi , qIj ) , i 6= j (4.9)
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where, for each test on the matrix in Table 4.1, all the possible combi-
nations of IMU pairs generate a number of 75 datasets of relative accuracy
measurements (5 reps × 15 measures per rep.).

4.3 Metric on SO3 space

Quaternions are the preferred choice for formulating orientation estimation al-
gorithms with IMU devices as they come with advantageous properties like
computational and spatial efficiency and non–singularity of representation.
Quaternions avoid trigonometric functions in the filtering algorithm, making
it more efficient and suitable for real–time implementation on embedded com-
puters. Further, issued related to round-off errors, due to limited precision of
practical implementations on computers, can be easily solved by re–enforcing
the unit norm constraint and with a reduced computational cost (e.g. com-
pared to the orthonormalization of a 3× 3 rotation matrix). The drawback of
using quaternions is that orientation is not uniquely defined as they provide a
double covering of the Special Orthogonal group (SO3) where 3D orientations
are defined (i.e. ± symbol in equation (A.1)). Therefore, proper care must
be taken in order to measure distance between quaternions. In this work the
metric was defined as:

Φ(qA, qB) = 2 cos−1(|qA · qB |) (4.10)

where the · symbol denotes vector scalar product, i.e.:

qA · qB = q0Aq0B − ~qA · ~qB (4.11)

= (1− α

2
) cos(

∆θAB
2

)− α

2
cos(

θA + θB
2

)

and the symbol α was used to denote the scalar product of the axis of rotation
(~vA, ~vB) and the term ∆θAB is referred in the literature as range of motion
(ROM). The function Φ(·) returns a value in the range [0, π] and it is a bi–
invariant metric in the SO3 group that can be interpreted as the length of the
shortest path, i.e. a geodesic, connecting two quaternions on the 4–dimensional
hypersphere where they are defined [Huynh, 2009].

4.4 Results

Reported data throughout this section were displayed as the median, the inter
quartile range (IQR) and the 95% range or upper bound (UB) for the data,
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which is defined using the 95th quantile. This choice is motivated by the fact
that, due to the characteristic of the metric on quaternion space defined in
(4.6) (e.g. it only allows for positive values of the error), data distribution is
skewed and it is generally not uniquely identifiable with a specific type of para-
metric distribution. In view of the above, data were reported in the following
using more reliable measure of central tendency (median), statistical dispersion
(IQR) and confidence interval (defined using quantiles).

Static accuracy

Experimental datasets were collected from the 6 IMU devices according to the
described protocol for the static accuracy evaluation. In Figure4.3, results for
the PS trial are reported. Each bar represents the total distribution of the
error in orientation that includes all the IMUs under test, on which both the
KF and the CF algorithms were run to estimate orientation. For the absolute
accuracy a median value of 0.44◦ (KF) and 0.25◦ (CF) was obtained while the
UB on this error was found to be 1.18◦ (KF) and 1.17◦ (CF). For the relative
accuracy slightly higher median values were obtained, 0.58◦ (KF) and 0.32◦

(CF), while the UB was found to be 1.46◦ (KF) and 1.04◦ (CF). Moreover, the
IQR resulted increased passing from absolute to relative accuracy, respectively
of the 20% for KF and of the 8% for the CF filter. Significance of results was
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Figure 4.3: The figure reports absolute (left) and relative (right) accuracy
expressed as median, inter quartile range and 95% confidence interval for the
pure static (PS) trial of static part of the protocol. The first bar represents
data obtained with the KF fusion and the second is the data obtained from
the non–linear complementary filter approach (CF).
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Figure 4.4: The figure reports results for the static after motion (SaM) trial
defined over a time interval of 30 s starting at the extinction of the dynamic
excitation. The solid line represents the median of the orientation error and
the boundaries (dashed line) are its associated inter quartile range. Graphs
are organized according to the type of trial (attitude, attitude and heading,
heading), the sensor fusion algorithm selected (KF or CF ) and the type of
dynamic excitation considered (slow and fast).

investigated using Wilcoxon rank–sum test under the verified non gaussianity
assumption of the datasets. Median values for the error of each IMU were
considered in the analysis and a significant effect of the filter was found (p <
0.05), favouring the CF algorithm in the static case. In Figure4.5 the results
for the SaM trial part of static accuracy validation are reported. Each row
in the graph is associated with either the KF sensor fusion (top) or the CF
(bottom), while each column identifies one of the 3 experimented conditions
for the former dynamic excitation (i.e. attitude, attitude and heading, heading).
The plots represent the trend in convergence of the orientation error from the
end of a dynamic excitation (at time 0 s) to a stable, static estimate. A neat
difference in the convergence rate of the two sensor fusion algorithms used is
observed: the KF algorithm takes 10 s to reach a stable estimate (within 1◦)
independently of the type of trial, dynamics or whether we are considering
absolute or relative orientation. Instead, the CF algorithm results in a noisier
(due to the optimization step), but stable convergence already at the beginning
of the static stage.
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Dynamic accuracy

The full set of 6 IMU devices was tested for dynamic accuracy assesment with
the matrix of excitations reported in Table 4.1. Outcome of the dynamic valida-
tion is reported as grafical representation in Figure4.5 for the absolute accuracy
and in Figure4.6 for the relative accuracy. Each figure displays results obtained
with the KF approach, on the left column, and results obtained with the CF
algorithm, on the right column. Errors are reported as the median value (black
line) and the UB (colored box). Each box encodes the cumulative distribution
of the error, i.e. comprising all the datasets for the specific type of trial and ele-
ment of the matrix in Table 4.1. The graphical representation provides a visual
overview of trends in orientation error under the different dynamic conditions
specificied for each trial. Besides graphical representations, numerical values
for the median and the 95% UB are also provided in tables as supplementary
material. Statistical analysis was perfomed in order to investigate the effect of
the following indipendent variables:

• type of sensor fusion algorithm;

• type of accuracy metric (i.e. absolute or relative);

• type of frequency;

• type of amplitude;

• type of rotation w.r.t gravity (i.e. attitude, heading or attitude and head-
ing trial);

The level of significance (α) was set to 0.05 for all statistical tests. Further, me-
dian value of the error during the 20 s of dynamic excitation was considered in
place of the full dataset in order to reduce the numerosity of the population to a
number of 30 and 75 samples, respectively for absolute and relative error mea-
surements, for each type of trial and element of the matrix 4.1. The statistical
significance of the effects was investigated with the following procedure: first,
the hypothesis of non Gaussianity was verified using a Lilliefors test. Then,
for pairwise comparisons a Wilcoxon rank–sum test was used. Instead, for
the analysis in case of multiple groups a Kruskal–Wallis one–way ANOVA was
considered, followed by post-hoc comparisons with Tukey–Kramer correction.
Considering the type of sensor fusion algorithm variable, the KF algorithm per-
formed slightly better than the CF with respect both to the absolute accuracy
(median value of 0.47◦ and 0.77◦ respectively) and to the relative accuracy (me-
dian value of 0.48◦ and 0.83◦ respectively) with a statistical significance p < α.
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(a) Attitude tracking trial

(b) Attitude and Heading tracking trial

(c) Heading tracking trial

Figure 4.5: The figure shows the results for absolute accuracy obtained with
the KF algorithm (left column) and CF algorithm (right column). Absolute
accuracy is represented as the 95% error range (colored box) and the median
value of results (solid black line).
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(a) Attitude tracking trial

(b) Attitude and Heading tracking trial

(c) Heading tracking trial

Figure 4.6: The figure shows the results for relative accuracy absolute obtained
with the KF algorithm (left column) and CF algorithm (right column). Relative
accuracy is represented as the 95% error range (colored box) and the median
value of results (solid black line).
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Also, a significant effect was found for the type of accuracy metric variable.
In this case, orientation errors to be expected from an IMU were lower when
absolute accuracy was considered rather than relative accuracy. The statistical
effect of the type of frequency variable on the orientation error was found to be
significant (p < α). Post-hoc analysis on the groups pertaining to this variable
(i.e. the 7 frequency considered in the experimentation) identified a number of
sets: elements within the same set had no significantly different effect on the
orientation error while elements from different sets had. For the case of KF
those sets were: {0.18, 0.32, 0.56, 1.00} and {1.78, 3.16, 5.62}, where all the val-
ues are expressed in Hz. For the case of CF the following groups were identified:
{0.18, 0.32},{0.56}, {1.00, 1.78, 3.16},{5.62} and all the values are expressed in
Hz. Varying the amplitude of excitation had a significant effect on the error
(p < α). Similarly to the case of the frequency variable, the post-hoc analysis
produced a number of different sets, that in this case were the same for the KF
and CF algorithm: {±3}, {±5}, {±6}, {±9,±10} and {±18}. In addition to
that, the median error in orientation tends to grow with the increasing value of
frequency and amplitude considered in the protocol and indipendently of the
sensor fusion algorithm. A visualization of this trend is displayed in Figure4.7
and 4.8, respectively for the KF and CF algorithms. Finally, the type of trial,
i.e. the orientation of the axis of rotation, was found to impact significantly the
orientation error and median accuracy were 0.7◦, 1.4◦ and 1.0◦, respectively
for attitude, heading, attitude and heading case.

4.5 Discussion

This paper presented a systematic study of IMU accuracy in estimating the
orientation, in the range of movement dynamics typical of human motion. In
consideration of the fact that all the present studies provide discordant re-
sults, mainly obtained without a well–controlled experimental setting and pro-
tocol, the objective of the work was to provide the scientific community with
a reliable baseline for the performance achievable with this technology. Also,
contrarily to most of existing studies that report sensor accuracy in terms of
RMS or average errors, the results are rather presented considering a 95% UB
which is computed basing on error distribution quantiles. Existing literature
on the topic has proposed 2 major approaches to perform this validation: the
first employs either manually operated or motor controlled mechanical systems
(e.g. motorized gimbal Table [Lebel et al., 2013], pendulum [Brodie et al.,
2008c, Godwin et al., 2009], plexiglas plank) while the second carries out the
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assessment directly on human subjects [Luinge et al., 2007, Bergamini et al.,
2014], usually relying on stereophotogrammetry as a reference measure. Mo-
tivation supporting the first approach is the elimination of error sources that
are due to the human factor (e.g. soft tissue artifact, sensor misalignments) in
order to isolate limitations inherent with the use of an IMU. Instead, the sec-
ond approach to validation is motivated by providing a more realistic scenario
for human motion related application. Our assessment exploits the benefits
of the first approach by using a robotic platform, which guarantees controlled
and repeatable experimental conditions that are more suitable for validation
purpose, while generating excitations in the bandwidth typically observed in
human motion (in pursuance of simulating a realistic dynamics). The pre-
sented experimental protocol comprised both static and dynamic accuracy as-
sessment. Different level of dynamic excitation are experimented and accuracy
is evaluated both as an absolute quantity, compared to orientation measured
with the robotic platform, and as a relative quantity, among pairs of IMU de-
vices. In addition, orientation is obtained via sensor fusion algorithms that
pertains to the 2 major classes of approaches found in the literature, i.e. the
stochastic (KF) and the complementary filter apporach (CF). Though care
has been taken about providing clearance from ferromagnetic objects in the
experimental setting, experimentation was purposely not carried out in a so
called clean magnetic environment in order to be representative of a typical
use case scenario. Nonetheless, disturbances specifically induced by the use
of a robotic platform were quantified and found to be negligible. Evaluation
of static accuracy is performed according to two different protocol named the
Pure Static (PS) and the Static after Motion (SaM). The former protocol, or
slight variations to that, are often found in related literature, e.g. in [Cutti
et al., 2006, Brodie et al., 2008c, Godwin et al., 2009] and partly in [Lebel
et al., 2013]. Main differences with our approach are in the error metric, which
is commonly based on Euler angle components and thus highly dependent on
the choiche of the rotation axes sequence, and in dataset time duration, 10 s
in [Cutti et al., 2006], 1 s in [Brodie et al., 2008c] and 30 s in [Lebel et al.,
2013]. Therefore, we are only partially provided with benchmark values from
literature. Also, specifications from vendor are expressed as Euler angles and
with no detail about the assessment procedure. Despite those considerations,
median errors that were reported comply well with the accuracy requirement
of human motion capturing for both sensor fusion techinques and are smaller
than vendor’s specifications for the KF case. Also, our results also suggest
good stability of static orientation estimate over a period of 1 hour and, as a
consequence, of estimated bias instability components (e.g. affecting gyroscope
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sensors), which are the major source of drifts in orientation estimate. The SaM
protocol aimed at answering the following question: is convergence to a stable
orientation estimate affected by the type of dynamics prieviously applied to
the IMU? The major difference observed here is in the behaviour of the two
algorithms. The CF algorithm has a fast convergence, driven by the GNA re-
gression and it is immediately stable within a level of accuracy comparable to
the PS trial. Instead, the KF aproach requires a static period of about 10s to
reach convergence, though it proves to be virtually indipendent of the previous
excitation’s magnitude and bandwidth and of the type of trial comprised in
our testing protocol. The dynamic accuracy assessment of orientation tracking
comprised a set sinusoidal excitations with varying frequency and amplitude.
The assumption of periodic movements to be representative of human motion
repertoire is not uncommon in the literature (e.g. in human gait) and has been
used as modeling assumption for sensor fusion algorithms [Sabatini, 2005]. The
novelty of our protocol implies there only are dodgy benchmark data in the
literature or the dynamic accuracy specifications from vendor, that comes with
no information on the assessment protocol. The only similar work in the lit-
erature is that of Lebel and colleagues [Lebel et al., 2013], where two different
dynamic conditions are explored by varying a constant angular velocity excti-
tation from a value of 90◦/s to 180◦/s. Despite our protocol consider peak
angular velociticies varying from a minimum of 3◦/s to a maximum of about
200◦/s, results in [Lebel et al., 2013] are obtained using an improper metric
for quaternions (not a geodesic path) and thus their reliability is questionable.
Our results showed that, indipendently from the fusion algorithm used, dy-
namic of movements do have an effect on the performance of the tracker with
both algorithms experimented and as a general rule of thumb, the more the
bandwidth and the amplitude, the more the error to be expected. Interestingly,
a decrement of performance was observed when passing from performing rota-
tion against the gravity to rotations along the gravity axis. In the latter case,
both sensor fusion algorithm heavily rely on magnetic field measurements in
order to limit orientation drifts. In case the magnetic field is locally perturbed
(which is likely to be the case in indoor settings [Bachmann et al., 2007]),
either wrong measurement are introduced in the sensor fusion framework or,
in case the perturbation is detected, no reference measure at all is available
to stabilize drift on the heading. In both scenarios, orientation estimate will
be prone to errors. The same effect was observed in the study from Cutti
[Cutti et al., 2006] and Bergamini [Bergamini et al., 2014], where higher angu-
lar errors were experienced for the IMU attached to the pelvis that was mainly
subjected to rotations along the gravity vector during a walking session. It was
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also found that, when considering relative orientation among IMU, level of er-
ror to be expected is increased. This result is in agreement with the discussion
in [Picerno et al., 2011] and is motivated by the fact that each IMU tends to
sense the reference geomagnetical and gravity fields in a slightly different way,
due to deviations in the sensor’s calibration parameters. Also, following the
discussion by the same authors, the aforementioned effect can be rather mit-
igated than eliminated by an initial IMUs’ reference frame alignment. With
reference to the performance of the two sensor fusion algorithms used, the KF
proved better in dynamic trials while the CF achieved a better static accuracy
and with a faster convergence rate. Though numerical values of the error in
both cases are still comparable, this result can be dependent on the tuning
of the filters parameter (not available for the commercial IMU KF). Conclud-
ing, on the one hand IMU based human motion tracking represent a valuable
alternative to accurate stereophotogrammetry as the worser but limited level
of errors (within 10◦ in the experimented cases) is traded off by the greater
portability and flexibility. On the other hand, the maturity of the technology
and the algorithms for human applications is still poor and a lot of insight is
required from the experimenter in order to properly use IMU based systems
and identify sources of error (e.g. starting from a proper metric for the error
itself). In fact, sensitivity to magnetic disturbance is one of the main issue
related to the use of this technology for orientation tracking. Evidently from
the results, magnetic field compensation strategies currently explored in the
literature, based on detecting magnetic norm or magnetic dip angle variations
[Roetenberg, ] and implemented in the sensor fusion algorithms used in this
study, are not completely effective in a complex indoor environment. A so-
lution to remove the problem is to calibrate magnetometers in the perturbed
environment. However, this approach is only valid locally in space (and time
in case of a changing scenario). Also, when relative measurements are of inter-
est, e.g. for human body joint tracking, higher errors are to be expected. In
this case, domain specific assumptions, e.g. related to natural bio–mechanical
constraints of the human body, can be exploited in order to limit error drifts
[Luinge et al., 2007].
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Figure 4.7: The figure reports trends in the absolute orientation error computed
with the KF, for varying frequency of the excitation signal (top) and varying
range of motion (bottom). Data are reported as the median value (red line),
IQR (blue box) and minimum and maximum values (black whiskers). Outliers
are removed from each dataset using a ±3 IQR threshold.
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Figure 4.8: The figure reports trends in the absolute orientation error computed
with the CF, for varying frequency of the excitation signal (top) and varying
range of motion (bottom). Data are reported as the median value (red line),
IQR (blue box) and minimum and maximum values (black whiskers). Outliers
are removed from each dataset using a ±3 IQR threshold.
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Chapter 5

Single device for navigating an
omnidirectional wheeled robot

The present chapter deals with the use of a single inertial measurement unit
(IMU) as a motion tracker and focuses on the application to the class of robotic
omnidirectional mobile platforms. Despite being attractive for its superior mo-
bility capabilities, this class of robot is still of limited use in the research and
industry fields due to additional difficulties related to its autonomous cali-
bration and navigation. In the following, a novel solution is described that
introduces an IMU as additional information source. It is presented a sensor
fusion architecture that enables automatic calibration of the robot kinematics
and improves accuracy and robustness of the motion tracking (e.g. against
wheel slippage) in a dead–reckoning navigation framework. In the first section,
an overview of issues related with the use of omnidirectional platforms and
the motivations for the present research are provided. Then the experimental
setup and the necessary mathematical modelling of the different components
comprised in the system are detailed, followed by a description of the sensor
fusion algorithms implemented. The chapter concluded with a discussion of
the results, emphasizing the significance of the contribution to current state of
the art.

5.1 Problem formulation

Mecanum or Omni–wheels provide an elegant solution for implementing om-
nidirectional motion capabilities on ground vehicles. The very first prototype

75
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(a) Omni and Mecanum
wheels (b) Airtrax Sidewinder lift truck

Figure 5.1: The figure reports the two typical mechanical layouts that are
featured by an omnidirectional wheel (a): Omniwheel type is displayed on the
top and Mecanum or Swedish wheel is displayed on the bottom. On the right
(b), an example of a commercial vehicle equipped with omnidirectional wheels.

by J. Grabowiecki dates back to 1919 [?], while the modern omnidirectional
wheel design was developed by Swedish inventor B. Ilon in 1973 [Ilon, 1975].
Compared to traditional wheels, their peculiar mechanical structure with extra
subrollers mounted around main roller diameter (shown in Figure5.1) allows
for maximum degrees of mobility [Campion et al., 1996] as they can move
at each time instant in any direction on the plane and without any need for
reorientation. Therefore, being especially suited for tasks in environments con-
gested with static and dynamic obstacles and narrow aisles, omniwheels have
found a vast interest both documented as research papers in the literature, e.g.
studying aspects related to kinematics and control [Britain and Engineering,
1987, Indiveri, 2009, Purwin and DAndrea, 2006] and exploring fields of appli-
cation [Kim and Yi, 2009, Wakita et al., 2013, Wada, 2005] and advertised as
commercial products, e.g. Airtrax [Vetexinc, ] and youBot [KUKA, ]. From a
control theory standpoint, omnidirectional wheels are free from nonholonomic
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constraints that, on the contrary, affects conventional wheels and complicate
path planning and autonomous navigation in general. However, superior mo-
bility comes at a price. Minor disadvantages of omnidirectional type wheels
regard the poor mechanical efficiency, due to the fact that not all wheels rotate
in the direction of movement, and the higher losses from friction. Instead, a ma-
jor disadvantage derive from the inherent slipping characteristics of the wheel
which deeply affects the quality encoder based odometry. In fact, in [Killpack
et al., 2010] is reported that wheel slip is very likely to occur for side–to–side
translation and rotation movements. Since typical mobile robot navigation ar-
chitectures highly relies on accurate odometry measurements [Martinelli et al.,
2006], both by using it as the only source of information in dead–reckoning lo-
calization schemes and fused with other sensors, poorly predictable behaviour
of the measurements is very detrimental to the overall performance of the lo-
calization system. For these reasons Mecanum or omniwheels are still a less
attractive choice compared to conventional wheels, even for applications per-
fectly suited for them.

In this chapter limitations related to odometry measurements reliability are
overcome by equipping a low cost, miniaturized IMU device on a custom mobile
robotic platform endued with Mecanum wheels. Specifically, the methods and
algorithms developed in this chapter will address the following two problems:

Calibration: given the wheel velocities and the proprioceptive informa-
tion from an inertial sensor, find the maximum a posteriori estimate for
all the parameters relevant to robot kinematics;

Navigation: estimate the robot’s pose relative to its environment from
a set of sensor observations. This is referred as “the most fundamental
problem to providing a mobile robot with autonomous capabilities” in
the literature [Cox, 1991].

The material in this chapter is the first attempt in the literature to demon-
strates the aiding value of an inertial sensor both in the calibration from scratch
of all the parameters that are relevant to odometry and in the autonomous nav-
igation for an omnidirectional ground platform. Despite without any external
reference the position estimate is prone to drift (i.e. the inherent limitations of
a dead–reckoning navigation scheme), a method to properly fuse inertial data
and encoders readings in order to ameliorate navigation during position–denied
updates is proposed. In addition, calibrated odometry data and inertial mea-
surement are fused together in order to achieve robustness (e.g. against wheel
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slippage) and a 3D aware motion tracking, improved w.r.t the typical assump-
tion of a planar surface describing ground platforms configurations in space.
Beforehand providing details of the method, a brief review of the relevant re-
lated literature on odometry calibration and navigation for ground vehicles is
reported.

Related work

Despite a number of interesting research efforts aiming at exploiting infor-
mation from an IMU in order to improve aspects related to calibration or
navigation of ground vehicles is reported in the literature, none of them con-
sider omnidirectional mobile platforms. In [Hardt von der et al., 1998] a general
method for calibration based upon redundant sensor information was presented
and applied to the problem of dead reckoning localization for a differential drive
mobile robot. Besides odometry information available from encoders, the au-
thors used a gyroscope and a magnetometers in order to obtain redundant
information on the vehicle heading and calibrate the kinematics. Apart from
redundancy, the value of inertial sensor in achieving robustness against non–
systematic sources of error affecting odometry is generally recognized in the
literature [Necsulescu et al., 1993, Fuke and Krotkov, 1996, Ojeda and Boren-
stein, 2002, Ward and Iagnemma, 2008, Yi et al., 2009] and algorithm have
been proposed for different type of ground mobile platforms. In the late 90s,
Borenstein and Feng presented the Gyrodometry method for fusing encoder
based odometry with gyroscopes data [Borenstein and Feng, 1996]. The detec-
tion strategy for identifying non systematic errors (e.g. when travelling over
uneven floors) was based on disagreement between the odometry readings and
the gyroscopes and compensated by using only information from the latter
source. Reported results on a differential–drive mobile robot suggested signifi-
cant improvements of the method over bare odometry navigation. A different
approach to navigation that relied only on IMU measurements and knowledge
of the mobile vehicle model was presented in [Dissanayake et al., 2001]. In
this work, the non–holomic constraints of a conventional wheeled mobile robot
were used to improve dead reckoning navigation, by formulating them as addi-
tional input measurements to an information filter (IF) estimation framework.
Though this method is not robust against slippage or vibrations, that cannot
be neglected for land vehicles in most cases (e.g. in outdoor terrains), the ad-
vantage of the fusion with inertial information was demonstrated. With the
purpose of extending the traditional 2D odometry approach (i.e. planar navi-
gation surface assumption) to a real world settings (e.g. navigation over rough
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terrains), Lamon and colleagues introduces the concept of 3D odometry [Lamon
and Siegwart, 2004] and applied their idea to a rover with a customly designed
mechanical structure that was capable of sensing vertical displacements. They
presented a method for combining information coming from an IMU and wheel
encoders in order to achieve an estimate of the a rover configuration in 3D
space. The sensor fusion scheme was based on an extended information filter
(EIF) and they demonstrated the benefits of inertial sensing in correcting odo-
metric errors and significantly improving the pose estimate. In a recent work
by Collin [Collin, 2014] an inertial sensors was even used in place of wheel en-
coders as it was positioned on a car’s wheel axis. Though this is an alternative
approach for using an IMU on a mobile vehicle and the method proves advan-
tages in terms of gyroscope bias removal and better odometry measurements,
it has been demonstrated only for low dynamic motion on a smooth surface.

5.2 Materials and methods

Experimental setup

The setup devised in order to carry out the experiments is composed by a cus-
tomly designed omnidirectional mobile robot, a commercial IMU and a number
of different software and firmware components. The robot is an autonomous
mobile platform powered by lead–acid batteries. Its kinematic structure con-
sisted of four Mecanum type wheels mounted at the corners of a rectangular
steel frame. Each wheel was mechanically connected to a high–torque step-
per motor (model ST6918 by Nanotech) through a single stage gear reduction.
Each motor was matched to an optical encoder and both were connected to a
motor controller board. A CAN bus network was implemented onboard and
linked the 4 motor controllers to a stack of Arduino boards, including a CAN
bus shield and a Arduino UNO microcontroller board. On the latter, a cus-
tomly developed firmware was flashed in order to send commands to the motor
drivers (i.e. motor velocity in rate per minutes) and retrieve encoders readings
at a maximum update rate of about 20 Hz. The microcontroller board was also
connected to an onboard PC via USB/serial connection. The commercial IMU
that was employed for the experimental trials was the Mti–30 by Xsens, whose
salient features are reported in table 2.1. The unit provides measurements
of magnetic flux alongside with velocity and orientation increments, that are
computed from the gyroscope and accelerometer readings. A connection to the
onboard PC was established via USB/serial protocol and data were streamed
from the device at a rate of 100 Hz. The onboard PC was also connected via
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(a) Omnidirectional robotic platform

(b) Schematic of the connections

Figure 5.2: The figure shows the robotic platform devised for the experimental
trials. On the top figure, two views of the platform are reported. On the
bottom, a graph detailing the implemented networks of connection on the robot
and with the remote PC.

WiFi to a base station for remote controlling of the robotic platform. On the
software side, a number of C++ add–ons (namely nodes) were developed as
part of the Robotic Operating System (ROS) framework [ROS, ]. Implemented
functionalities were relative to the interfacing with the IMU and the microcon-
troller, the robust data logging and the real–time visualization of measurements
and a video stream from an onboard camera. Collected data logs were then
imported into the Matlab environment where the proposed algorithms were
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Figure 5.3: The figure reports the geometric model for our omnidirectional
mobile robot.

implemented. In order to carry out the validation, all the experiments were
conducted in a room equipped with a stereophotogrammetry system (Nexus by
Vicon) composed by 6 IR cameras. Kinematic information of the IR markers
(i.e. position and orientation w.r.t. a specified, fixed reference frame) that were
attached to the robot frame were recorder at a rate of 100 Hz and exported in
the Matlab environment. Finally, an overview of the platform and a diagram
of the connections is shown in Figure 5.2.

Models

This paragraph introduces the mathematical models used to describe the avail-
able measurements and the kinematic characteristics of the robotic platform.
All the systems of reference (SR) considered in formulation are defined in a 3D
space and are reported in Figure 5.3, where the meaning of the subscripts is
the following:

Body frame (B): this is the frame fixed on the IMU case that was
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previously discussed in section 2.3;

Local frame (L): the local navigation frame, defined upon the direction
of the gravity vector and the geomagnetical field and detailed in section
2.3;

Robot frame (R): the robot frame is rigidly fixed on the robot chassis
and have its origin in the geometrical center of the platform;

Wheel frame (W): the wheel frame is fixed on the robot chassis, but
have its origin shifted to the wheels’ centres (black dots in Figure 5.3);

Vicon frame (V): this is the reference frame with respect to IR markers
measurements are expressed. It is set using a special set of markers during
the initialization procedure of the sterophotogrammetric system;

Cluster frame (C): the cluster frame is built upon a set of 3 IR markers
that are positioned in a rigid triangle configuration. This frame is rigidly
attached to the robot chassis.

The last two introduced system of coordinates (i.e. the Vicon and the cluster
frames) are only relevant to the validation part of the method. In addition,
it is generally assumed that each pair of reference systems are related by an
affine transformation T, such that:

Bỹ =BA T Aỹ =

[
BAR BdBA

0 1

]
Aỹ (5.1)

where BAR indicates the rotation matrix defined in SO3 space and relating
frame A to frame B, BdBA is the translation vector between the origins of
frame B and A expressed w.r.t frame B and the symbol ỹ is the homogeneous
coordinates representation of a vector in 3D space, i.e. ỹ = [yx, yy, yz, 1]T .

IMU measurement model

The measurements provided by the IMU unit that will be used as input to the
developed algorithms are an estimate of the current increment in rotation and
in velocity and are modelled as follows. The increment in rotation (δq ∈ Q1)
is defined using the quaternion representation for the orientation, detailed in
Appendix A. It is a 4–vector that relates the orientations of the body frames
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computed at two successive time instants. With respect to the angular velocity
vector (ω ∈ R3) measured by the gyroscope triad, it is formalized as:

δqk = exp(
Tsωk

2
) =

[
cos(Ts2 ‖ωk‖)

ωk
‖ωk‖sin(Ts2 ‖ωk‖)

]
(5.2)

where Ts indicates the sampling time and it is implicitly assumed piecewise
constant angular velocity behaviour within each discrete time interval. In a
similar fashion, the increment in velocity (δvk ∈ R3) is a 3–vector relating the
velocity of the body frames computed at two successive time instants. With
respect to the specific force (f ∈ R3) measured by the accelerometer triad it
can be expressed as:

δṽk = δqk ⊗ Tsf̃k ⊗ δq
∗
k (5.3)

where the symbol ⊗ denotes quaternion products and ∗ is the conjugate op-
erator. Also, in order to carry out the quaternion and vector product f̃ and
δṽ are augmented 4–vector generated respectively from f and δv as defined in
(A.7). Note that velocity increments are derived from the proper acceleration
and thus contain the gravity component that must be removed in order to ex-
tract the inertial velocity. In fact, the following relations were considered for
propagating the inertial velocity and the orientation of the IMU body frame,
both referred to the local frame (L):

Lvk+1 =L vk +LB R(δvk + ev,k) + Tsg (5.4)

LBqk+1 =LB qk ⊗ δqk ⊗ exp(
1

2
eq,k) (5.5)

where we indicated with ev,k and eq,k the realizations at the k–th time instant
of an i.i.d Gaussian noise, respectively acting on the velocity and orientation
propagation models. Furthermore, IMU sensors internal parameters are as-
sumed calibrated except for constant biases terms acting on the gyroscopes
and accelerometers and that were modelled as random walk processes:

ωb,k+1 = ωb,k + eb,k (5.6)

ab,k+1 = ab,k + ea,k (5.7)

where, with the same meaning as above, eb,k and ea,k are additive noise terms.
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Figure 5.4: The figure shows the configuration of the markers’ cluster whose
position in space, w.r.t the Vicon frame (V), is used to define a local cluster
frame (C) that is rigidly attached to the robotic platform.

Encoders measurement model

The raw measurement from the optical encoders, that are rigidly attached to
each wheel’s main hub axis, are the velocity of rotation of each motor expressed
as number of steps per second (w.r.t the stepper motor). This quantity is mea-
sured before the gear reduction stage and thus a transmission ratio coefficient
must be taken into account in order to extract the actual angular velocity of
each wheel. The following linear relation was used to model measurements
from the encoders:

φ̇i = GCsrsi + ee , i = 1, · · · , 4 (5.8)

where the term s is the step/s value measured by the i–th encoder and the
quantity φ̇ is the i–th wheel angular velocity in rad/s. The conversions factors
considered in the model are:

Csr ∈ R: it is the steps/s to rad/s ratio obtained from the stepper motor
datasheet;

G ∈ R: the transmission ratio, equal to 1
12 for the robotic platform

considered.

Finally, ee is an additive noise term introduced in the measure.

Vicon measurement model

The stereophotogrammetric system measures the position in space of the IR
markers w.r.t the Vicon frame. In the following tractation, the measurements
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of interest from this system are rather the instantaneous angular velocities and
the linear velocities in the cluster frame (C). Those quantities were derived
from position with the following steps. First, the local cluster frame must be
defined. Given a set of 3 IR markers in triangular configuration as shown in
Figure 5.4, the position of the origin (C~xO) of the cluster frame was defined as
the geometric center of the cluster, i.e.:

CxO =
CxA +C xB +C xC

3
(5.9)

The direction of the axis of the cluster frame were fixed by computing the
rotation matrix relating the cluster frame to the vicon frame, i.e.:

V C ~R =
[
CxB,A ,

CxB,A ×C xA,C ×C xB,A , CxB,A ×C xA,C
]

(5.10)

where xij denotes the versor connecting marker i to marker j. Given a time
series of quaternions (V Cq), computed from the rotation matrices, the rotation
increments can be obtained directly by inverting the relation presented in (5.5),
i.e.:

δqk =V C q∗k ⊗V C qk+1 (5.11)

and the angular velocity in the cluster frame (Cω) can be extracted as:

Cωk = 2
log(δqk)

Ts
(5.12)

Instead, the linear velocity in the vicon frame can be obtained from discrete
differentiation of position:

V vk =
V xO,k −V xO,k−1

Ts
(5.13)

and from the latter, instantaneous velocity in the cluster frame (Cv) is even-
tually computed as:

C ṽk = V Cqk ⊗ V ṽ ⊗ V Cq∗k (5.14)

where ṽ is the augmented vector of v as defined in (A.7). As the measurements
from the stereophotogrammetric system are considered as a reference to the aim
of validating the algorithms, no additive noise term is considered in the model.
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Robot kinematic model

In order to derive a model for describing the kinematic of the presented omni-
directional mobile platform, the generalized formulation proposed in [Indiveri,
2009] was chosen as a starting point. According to the mathematical tractation
there presented, an inverse differential kinematic model, i.e. that relates veloc-
ities expressed in the robot frame (SRR) to the wheel speeds, can be derived
from the following formulas:

WivWi
=R vR +R dR,Wi

×R ωR (5.15)

Witi · WivWi
= riφ̇i (5.16)

where · denotes the scalar product and, referring to the coordinate frames
introduced in Figure 5.3, the following notation was used:

• ti ∈ R3 is the versor identifying the primary rolling direction for the i–th
wheel;

• RdR,Wi
∈ R3 indicated the lever arm from the robot frame to the i–wheel

frame and is referred to robot frame;

• RvR ∈ R3 and RωR ∈ R3 are the linear and angular velocities of the
robot in the robot frame;

• WivWi
∈ R3 is the linear velocity of the i–th wheel in the wheel frame;

• ri ∈ R is the radius of the i–th wheel hub;

• φ̇i ∈ R is the angular velocity measured at the i–th wheel.

Those formulas represents the relation between velocities expressed in the dif-
ferent frames that are defined on the robotic platforms, borrowed from classical
mechanics, and the linear velocity that results from the rotation along its main
axis of the Mecanum wheel. By substituting relation (5.15) into equation
(5.16) and stacking into a matrix the equations for each wheel of the platform,
one can derive the following formula:

φ̇1

φ̇2

φ̇3

φ̇4

 = K ′

Bvx
Bvy
Bωz

 (5.17)
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where the matrix K ′ encodes the inverse kinematic relatation and is explicitly
expressed as:

K ′ = −1

r


nγ1,x nγ1,y

RdR,W1 · W1tγ,1
nγ2,x nγ2,y

RdR,W2
· W2tγ2

nγ3,x nγ3,y
RdR,W3

· W3tγ3

nγ4,x nγ4,y
RdR,W4

· W4tγ4

 (5.18)

and with reference to Figure 5.3 the new terms introduced are defined as:

• tγ,i is the versor identifying the sub–roller rolling direction for the i–th
wheel

• nγ,i is the normal versor to the i–th wheel subroller and parallel to its
axis of rotation

• ni is the normal versor to the i–th wheel hub and parallel to its axis of
rotation

When deriving the kinematic model above, the assumptions were made that
the robot frame (R) has the z–axis orthogonal to the ground plane π (w.r.t to
Figure 5.3) and that all wheels share the same radius dimension r. In practice,
the latter assumption is really likely to be violated. Therefore, in agreement
with the discussion in [Han et al., 2010], the presented model can be extended
as follows:

K ′′ =


1/αr1

1/αr2
1/αr3

1/αr4

K ′ (5.19)

where the coefficient αi accounts for variations from nominal value of the i–th
radius. In view of the sensor fusion of encoder and inertial measurements, the
relation given in (5.17) is expanded as:

φ̇1

φ̇2

φ̇3

φ̇4

 = K ′′
[
I2 02

0 1

] [
I3

RdRB
I3

] [
RBRxy

RBRxy

](
Bv
Bω

)
+ eφ

(5.20)
where the symbols 02 and I2 denotes the null and the identity matrix respec-
tively and eφ accounts for measurements noise. The term RBRxy is a rotation
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matrix acting along the x and y axis and compensating for any misalignment
between the body frame and the robot frame z axes. Note that a term RBRz

has not been included in the model as it can be demonstrated that it is not
uniquely defined for the class of estimation problems presented in the next
section. The linear (Bv) and angular velocities (Bω) in the formula are now
computed from the IMU using the relations in (5.4) and (5.12). Refactoring
the matrix products the presented relation can be rewritten as:

φ̇1

φ̇2

φ̇3

φ̇4

 = K

[
I2 02

0 1

] [
RBRxy

RBRxy

](
Bv
Bω

)
+ eφ (5.21)

where the new matrix K ∈ R4×3 now accounts for the lever arm term between
robot reference frame and that of the IMU.

Additional modeling assumptions

In the development of the algorithms, additional constraints were exploited
in order to better condition the problem. The first one was derived from the
knowledge of the dynamic behaviour of the robotic systems: the wheels’ motors
driving can’t generate any linear velocity along the vertical and any angular
velocities along the roll and pitch axes w.r.t. the robot frame. This constraint
was formulated as:0

0
0

 =

[
02 I2

1 0

] [
I3

RdRB
I3

] [
RBRxy

RBRxy

](
Bv
Bω

)
+ ek (5.22)

where the terms used are the same quantities defined in equation (5.20). In
fact, this is a reasonable assumption in most cases (e.g. the navigation terrain
is locally flat) and violation to this constraint are taken into account by an
additive noise term ek ∈ R3. Another additional information that can be
exploited for ameliorating algorithms performance is the classical zero velocity
update (ZUPT), which is a well known technique for improving accuracy of
inertial navigation systems (e.g. it is commonly used in pedestrian navigation
algorithms). Basically, the following constraint is conditionally applied:(

v
ω

)
=

[
03

03

]
+ eZUPT (5.23)
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Figure 5.5: The figure represents the typical configuration in time of the mea-
surement samples: update rates are 100 Hz for the IMU and about 20 Hz for
the wheel encoders. For each update of the sensor fusion algorithm, the ad-
ditional data from the IMU must be treated differently depending on whether
they are used to propagate inertial quantities, i.e. relation (5.4) and (5.5), or
to generate instantaneous velocities for comparison with the encoder readings,
i.e. relation (5.20).

in order to reset the integration drift when a stationary configuration is de-
tected. The detection strategy considered in the following was based on thresh-
olding the `2–norm of the encoders reading.

Data pre–processing

The datasets collected from the sensory systems considered are not synchro-
nized (see Figure 5.5) and generally not even sampled at a constant rate. The
latter case is true for the encoder data which are collected via the 8 bit embed-
ded microcontroller (i.e. Arduino UNO) and false for the commercial IMU and
stereophotogrammetric system. In order to meaningfully fuse the information
coming from the sensors, collected datasets were pre–processed to correct for
time misalignments. First, encoder measurements were resampled at a constant
rate via polynomial interpolation. Then, three synchronization problems were
considered in the given sequence: individual encoders’ clocks alignment, en-
coders with the IMU’s time alignment, encoders and with the optical reference
system’s time alignment.

The first problem arises from the fact that, on the one hand, encoders are
polled sequentially by the microcontroller as they share the same communi-
cation bus, but on the other hand, a single timestamp is used for the set of
readings. Therefore, it is not unlikely that wheel velocity readings belonging to
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the same timestamp correspond, in fact, to different time instants. Since the
control signals used in the experiments are synchronously send to the wheels
and follow the same pattern in time (a part from the sign), it is possible to syn-
chronize encoders pairwise using correlation computed on the absolute value of
the wheel angular speed. For this synchronization problem, mismatch among
clocks was modelled as a constant offset.

The remaining synchronization problems, i.e. encoders with the IMU and
the optical reference, are solved with the following procedure. A linear model
is assumed relating each pair of different clocks, i.e. an offset and a clock skew
term. This model is fitted on a number of clock correspondence pairs generated
using correlation on the `2–norms of the angular velocity of the robot, that is
directly measured by the IMU and the optical reference and inferred from the
wheel speed using nominal values for the parameters of the robot’s kinematic
model. In addition, to achieve a robust fitting against outliers the RANSAC
algorithm [Hartley and Zisserman, 2000] was used to estimate clock model’s
parameters.

5.3 Sensor fusion

In this section a number of sensor fusion problems are presented that pertain
calibration and navigation relying on a combination of measurements from the
encoders, the optical reference and the IMU. The problems will be formulated
as part of the general estimation framework introduced in Chapter 3. Cali-
bration problems will be formulated either as a maximum likelihood (ML) or
maximum a posteriori (MAP) estimation. The pdf considered in this work will
be those associated to the noise terms introduced in the models of section 5.2,
i.e. ev, eq,eb, ea, ee, eφ,eZUPT . It will generally take the form of a Gaussian
multivariate distribution:

p(e|θ) =
1√

(2π)n|Σ|
exp

(
−1

2
e(θ)TΣ−1e(θ)

)
(5.24)

where the error e ∈ Rn has a zero mean and covariance matrix Σ ∈ Rn×n and
is conditionally dependent on a set of parameters θ ∈ Θ that characterize the
model equation. As discussed in section 3.2, given the parametric statistical
distribution describing e, the maximization of (3.5) can be reformulated as
the following minimization problem:

θ̂ML = arg max
θ

p(e|θ) = arg min
θ
− log p(e|θ) = arg min

θ
‖e‖∑ (5.25)
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where the convexity of the negative logarithm function has been exploited and
the last equality is obtained by ignoring constant terms (as they have no effect
on the solution) under the assumption of a Gaussian distribution for e. The
symbol ‖·‖Σ was used to denote the quadratic norm operator defined in (3.13).
A similar result also applies to the case of MAP estimation.

The navigation problem will be formulated using the state space represen-
tation detailed in chapter 3, i.e.:{

xk+1 = f(xk,uk) + vk
yk = g(xk,uk) +wk

(5.26)

where xk ∈ Rn represents the state of the system at time k, uk is a vector of m
inputs, and yk is the vector of r system responses. The system is modelled as
nonlinear and stochastic, with the additive zero–mean noise terms vk ∈ Rn and
wk ∈ Rr, whose values for the standard deviations will be derived according
to what empirically observed in the measurements and reported in table 5.1.
The state estimation will be formulated either as a filtering problem, i.e. the
current state given all available measurement is the object of interest, or as a
smoothing problem, i.e. the trajectory of the state given all the measurement
is the object of interest. Respectively, it will be solved by maximizing the
posterior density p(xk|y1:k) or p(x1:N |y1:N ) in a MAP estimation framework.
In order to achieve robustness against unmodelled error sources (e.g. wheel

Table 5.1: Standard deviation of the available measurements.

* virtually limited by the encoder’s resolution.

slippage), the Gaussian multivariate distribution will be in some cases replaced
by a Student–t multivariate distribution 3.14.

Calibration with optical reference measurements

In order to obtain an initial estimate for the kinematic calibration matrix (K),
a first sensor fusion algorithm was designed for combining encoder readings
with information from the optical reference system according to the scheme
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reported in 5.6. The fusion algorithm was formulated as an optimization
problem, where the vector of parameters θ ∈ R18 considered was the following:

θ =



φ̇1[i=1:N ]

φ̇2[i=1:N ]

φ̇3[i=1:N ]

φ̇4[i=1:N ]

vec(K)
RCψx
RCφy


(5.27)

which comprises all wheels’ angular speed measurement φ̇i from the beginning
to the end of the recordings, the calibration matrix entries defined in (5.21)
extracted via the matrix vectorization operator (vec(·)) and the reference frame
misalignments RCRxy, which in this case relates the cluster frame (C) to the
robot frame (R), that is expressed as the individual angular component along
the x and y axis, respectively RCψx and RCφy. Referring to the scheme in (5.6),
encoders readings are considered noisy and are modelled according to (5.8)
while optical measurements are taken as the reference an both are combined
according to the constraints introduced by relation (5.22) and (5.21). The
following ML formulation results for this calibration problem:

θ̂ML = arg min
θ

N∑
i=1

‖eei‖
2
Σe

+ ‖eki‖
2
Σk

+ ‖eφi‖
2
Σφ

(5.28)

where the cost functions introduced (ee, ek, eφ) are derived from the relations
(5.8), (5.22) and (5.21) and are assumed to be Gaussian. Despite a Student-t
distribution would be a better representation of the errors on the encoders’
measurements (ee) that can be affected by outliers, it will be shown in section
5.5 that the choice of a Gaussian or a Student-t has no effect on the calibration
problem’s solution.

Calibration with inertial measurements

The calibration of the robotic platform kinematics using IMU and encoders
readings was devised as a two stage process: the first stage is obtaining an
estimate for the quantities (Bv,B ω) from the IMU measurements and the
second one is to use the estimated quantities in a sensor fusion scheme similar
to that of Figure 5.6, previously discussed. The first part of the procedure was
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Figure 5.6: The figure reports the sensor fusion scheme used for the problem
of calibrating robot kinematics using optical and encoder measurements.

Figure 5.7: The figure reports the sensor fusion scheme, respectively imple-
mented as a filter and a smoother, for estimating the quantities (Bv,B ω).

formulated as a filtering and smoothing problem and schematically represented
in Figure 5.7. The filtering problem considered the following system state
vector:

x =

 Lv
LBq
ωb

 (5.29)

where the first two elements can be combined to get the value of Bvk (see
relation (5.14)) and the third element is the gyroscope bias, used to correct
angular velocity measurements. The filter architecture used the quantities
measured by the IMU to propagate the state estimate forward in time, through
the relations formulated in (5.4), (5.5) and (5.6). The state estimate is then
corrected using a zero velocity update strategy implemented as in (5.23).
The correction is only applied when the system is considered static and the
detection strategy is based on a threshold (ε) on the value of the `2–norm of
wheel speeds. The assumption that the robot is idle when the wheel encoders
readings are close to 0 is verified experimentally to be reasonable. The output
from the filtering algorithm is used as initial value for the estimate (x̂0) in a
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smoothing problem, which considers the following state vector:

x =



Lv1

...
LvN
LBq1

...
LBqN
ωb,1

...
ωb,N
ab



(5.30)

where the bias term (ab) is now included in the problem. The smoothing algo-
rithm determines a state estimate by solving the following MAP optimization:

x̂MAP = arg min
x
‖ea‖2Σa +

N∑
i=1

(
‖evi‖

2
Σk

+ ‖eqi‖
2
Σq

+ ‖ebi‖
2
Σb

)
+

L∑
j=1

∥∥eZUPTj∥∥2

ΣZUPT
(5.31)

where the ZUPT are applied a number L < N of times. After the smoothing, an
estimate for (Bv,B ω) is available and the same calibration procedure used with
the optical measurements can be applied to obtain a value for the calibration
matrix (K̂), which in this case is related to the IMU body frame (B).

Navigation

The navigation of the omnidirectional robotic platform from sensor fusion of
IMU and wheel encoders’ measurements (which is graphically displayed in Fig-
ure 5.8) was implemented as a smoothing problem. The following state vector
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Figure 5.8: The figure shows the sensor fusion scheme used for navigation using
inertial measurements.

was considered in the formulation:

x =



Lv1

...
Lv1
LBq1

...
LBqN
ωb,1

...
ωb,N
ab



(5.32)

which is the same used for the smoother in the calibration algorithm described
above. Differently, in the navigation case a value for the robot calibration ma-
trix is available (K) and measurement from the encoders can be used in the
state correction step of the algorithm through the relation expressed in (5.20).
Instead, state propagation is based on the information from the IMU that is
used as input to the relations (5.4) and (5.5). Since measurements have
different update rates, care must be taken when combining information from
different sources in the sensor fusion scheme. Particularly, robot linear and
angular velocities computed from the encoders are instantaneous quantities.
Therefore, instantaneous quantities must be derived from the IMU in order
to evaluate the error term eφ of relation (5.20), i.e. only the last received
IMU sample must be considered in the computation, as represented in Fig-
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ure 5.5. Furthermore, in order to make the navigation scheme robust the term
eφ was assigned a Student–t distribution. Therefore, the smoothing problem
was solved as the following MAP optimization:

x̂MAP = arg min
x
‖ea‖Σa + (5.33)

N∑
i=1

(
‖evi‖Σk + ‖eqi‖Σq + ‖ebi‖Σb

)
+

M∑
j=1

ν + n

2
log(1 +

1

ν

∥∥eφj∥∥Σφ
)

where the last cost function (eφj ) is evaluated for a number M < N of samples,
due to the slower sampling rate of the encoders. Note that the navigation was
here formulated as a smoothing problem. Nonetheless, for real–time operation
the presented approach can be implemented as a filtering problem by intro-
ducing a marginalization step after each state propagation. Also, position was
not included in the state as there was no mean to correct for integration drifts
with the presented setup (dead reckoning navigation). A prone to drift esti-
mate can be recovered via Runge–Kutta integration of the computed quantities
(Bv,B ω), properly rotated in the navigation frame.

5.4 Results

The omnidirectional robotic platform was remotely driven according to the
sequence of movement shown in Figure 5.9. This sequence is composed by
a forward/backward motion, a counter and clockwise rotation of 225◦ and a
right/left motion and it was devised with the aim of spanning the space of
all the possible direction of motion. Each movement was executed for 3 s
with a 1s break time at the end and the overall duration of the experimental
trial was 400 s. The experimentation was carried in a room equipped with
an optical motion capture system. The IR reflective markers of the system
were fixed on the robot and data from the wheel encoders, the IMU and the
optical system were simultaneously collected. After pre-processing operations,
datasets were elaborated according to the algorithms described in section 5.3.
The first results presented pertain the computation of the initial value for the
calibration matrix (K) using the optical and encoder sensor fusion scheme of
Figure 5.6. In Figure 5.10 the estimated differential direct kinematic relation
for the robotic platform (i.e. the relation from wheel speeds to robot velocities
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Figure 5.9: The figure represents the sequence of robot motions that is used for
the experimental trial. The movements indicated with the light grey arrows
are executed first in the increasing order ( I,II and III), followed by those
represented with dark grey arrows that are performed in decreasing order (III,
II and I).

encoded by the inverse of calibration matrix K) is shown. In order to assess
the repeatability of the estimate, a number of 50 different datasets were used
for the computation, obtained by randomly selecting windows of 60s from the
experimental trial data. Furthermore, a different initial value was used each
time.

In Figure 5.11 the effect of having the K matrix calibrated on the accuracy
of the odometry computed from the wheels’ encoders is reported. In absence of
unpredicted perturbation, e.g. terrain bumps or wheel slippage, the calibrated
odometry is already an accurate estimate of the robot state variables. Instead,
when slippage occurs encoders readings can generate a significantly misleading
information to the aim of dead reckoning navigation. This event is shown
in Figure 5.12 between times 180 s and 190 s, where the readings from the
encoders are compared to the predicted values from the sensor fusion algorithm
and those obtained from optical reference data (using the relation in (5.20)).
Note that the reason why reference encoder data from the optical system have
different level of noise on the 4 wheels is in the different distance of wheels
reference frames from the cluster frame. The more the distance, the bigger the
lever arm and the contribution of the noisy angular velocities measured by the
optical system (see Table 5.1. Encoder measurements are predicted via the
sensor fusion scheme in Figure 5.6 in which the error term ee was in this case
modelled with a Student–t distribution. Therefore, when the slippage occurs
a significant difference between the predicted measurement (from the optical
reference) and the correction (from encoders) is observed. Basing on that,
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Figure 5.10: The figure reports the value (green markers) of the direct differen-
tial kinematic matrix of the robot (K−1) computed via sensor fusion of optical
and encoders’ data. The estimation procedure was repeated for 50 different
datasets that were associated to different initialization values (black asterisks).

the sensor fusion algorithm is capable of detecting the events and to reject the
wrong correction. Data from the IMU and the encoders were fused in agreement
with the scheme described in paragraph 5.3 in order to estimate the calibration
parameters of K. Outcome of the procedure is reported in Figure 5.13, where
the values obtained from the fusion with IMU data are compared to those
previously obtained with the optical reference. Both datasets show a good
agreement as it was expected, given the fact that the body (B) and the cluster
(C) reference frame are positioned in close proximity to each other. Nominal
value for the calibration matrix are also reported, that were computed from
the relation in (5.18), using hand measured values for the required quantities.
Finally, in Figure 5.14 the results of the sensor fusion scheme for navigation
proposed in paragraph 5.3 are reported. In nominal navigation conditions
(i.e. even floor and no wheel slippage) the calibrated odometry is accurate and
closely match the measurements from the reference optical system. Therefore,
calibrated odometry was used in the sensor fusion in order to limit the drift that
would eventually occur if navigation was solely based on the integration of data
from the IMU (e.g. to get velocity from specific force measurements). Instead,
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Figure 5.11: The figure reports a comparison of the linear and angular velocity
w.r.t. the cluster frame (C) as predicted with the uncalibrated encoder based
odometry (red line), with the calibrated odometry (black line) and as measured
by the optical reference (green line).

when slippage occurs, the usual detection and rejection strategy is applied and
calibrated odometry corrections are rejected. For the whole (expectedly short)
duration of the slippage, the sensor fusion algorithm behaves in fact as an
inertial navigation system.

5.5 Discussion

In this chapter a novel approach to autonomous navigation and calibration
of an omnidirectional robotic platform, designed to be flexible and robust, is
presented. The method requires only the presence of an IMU as additional
onboard sensor and proposes a fusion of inertial information with the readings
from wheel encoders. The presented algorithms allows for calibrating system-
atic sources of error (robot kinematics) in view of obtaining accurate odometry
information. In addition, inertial based navigation is used to correct for wheel
slippage, which is the main source of non systematic errors affecting dead reck-
oning navigation of ground robotic platforms. Though errors in position were
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Figure 5.12: The figure reports a comparison of the wheel encoders’ data as
measured by the sensors (red line), predicted by the estimation algorithm (black
line) and predicted using optical reference data (green line). Note that between
time 185 s and 190 s a slippage event occurs (1st row) leading to significant
deviation of the measurements from the predicted values.

not reported, a significant difference in navigation accuracy between odometry
based and the presented method is expected in the long run, basing on the in-
tuition that wheel slippage introduces an offset in the estimated heading that
cannot be recovered. This is the first time in the literature that an inertial
sensor is used in combination with encoders for autonomous calibration and
navigation of an omnidirectional wheeled platform.

In the presented material, a number of relations were derived linking the
measurements from the two different sensors type and the a priori knowledge on
the kinematical characteristics of the robot. Those relations were used to con-
strain different optimization problems aiming at calibrating the encoder based
odometry and at making the navigation robust against unmodelled events. The
latter result was achieved by using the Student–t distribution to model error
terms of the relation in which such spurios events can occur (i.e. the wheel en-
coder measurement model in (5.8) and the encoder to intertial relation (5.20)).
The t-distribution is a natural choice of model for such data and it provides
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Figure 5.13: The figure reports the value (blue markers) of the direct differential
kinematic matrix of the robot (K−1) estimated via sensor fusion of IMU and
encoders’ data and compared to the value from the optical sensor fusion (green
markers) and to the nominal (red markers), obtained by using measured robot
dimension in the model described in (5.18).

a parametric approach to robust statistics. In the proposed navigation algo-
rithm, the Student–t implements an implicit outlier detection and rejection
scheme that was proved to be effective for the proposed task. Instead, for the
calibration problem the choice of a t–distribution over a Gaussian had no effect
on the solution of the problem. This result is motivated by the particular ex-
perimental conditions that are verified in practice and that brings to the fusion
of noisy Gaussian distributed data (poor information content) with highly in-
formative but outlier prone Student-t distributed data. Basically, in that case
the fusion algorithm is provided with a multimodal distribution, that results in
a multiple minima optimization problem. As a consequence, the algorithm will
arbitrary pick either of the two sources of information. However, the estima-
tion of the calibration parameters does not depend on which minima is chosen
and the Student-t distributed error could have equivalently been modelled as a
Gaussian distribution. This multiple minima situation is graphically displayed
in Figure 5.15. Another aspect related to calibration that deserve further in-
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Figure 5.14: The figure reports an example of robust navigation (against wheel
slippage) achieved through combination of IMU and encoders data with the
proposed sensor fusion algorithm.

vestigation is that of observability of the calibration matrix in dependence to
the type of robot motions. Despite in the proposed experimental trial the se-
lected sequence of movements (that spanned all the space of possible direction
of motion that can be generated by the robot) proved effective for the task
of calibration, mathematical conditions that guarantee observability should be
investigated as part of future research endeavour. In addition, the processed
experimental trial was performed on a reasonably even terrain and it is leaved
as object to the future research exploring adaptations of the method to the
case of bumpy terrains or outdoor settings.

Concluding, the general framework introduced in the previous chapter 3 is
here adapted to a specific application in the field of robotics. Nevertheless, the
flexibility of the method makes it well adaptable to other classes of problems
where a inertial sensor measurements can be combined with other sensors’
types or different models. For instance, the good dead-reckoning navigation
performance that can be achieved with a single IMU in the short term makes the
presented fusion suitable for the general class of the kidnapped robot problems.
Furthermore, all the camera or depth camera based simultaneous localization
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Figure 5.15: An example of multiple optimization minima originating from the
combination (3rd row) of a poorly informative Gaussian cost function (1st row)
and a highly informative Student–t cost function (2nd row).

and mapping (SLAM) algorithms have to cope with a highly likelihood of the
presence of outliers in the measurements (e.g. generated by variation in the
environment light conditions or scattering and reflections). For this class of
problems the combined use of an IMU and the fusion scheme presented could
provide significant improvements in performance.
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Chapter 6

Multiple devices for upper body
motion capture in children

This chapter deals with inertial motion capture with children and presents
a methodology that can be used to solve the problem of calibrating inertial
sensor and bio-mechanical model reference frames. The calibration step is a
preliminary and key operation in order to achieve human motion reconstruction
from inertial measurement units, as it allows converting measurements from
the sensors into useful human kinematics information. First, a protocol of
functional movements, studied to be suitable for an use with children (tested on
6–7 years old subjects), is described. Then, a strategy to extract functional axes
together with a reliability metric is detailed. Eventually, calibration is achieved
through a proper cost function fed to a non linear optimization algorithm.
Calibrated data and a human kinematic model can be used in combination to
reconstruct human motion.

6.1 Inertial motion capture of children in daily–life
scenarios

The possibility to capture and quantitatively measure children’s motion reper-
toire in a daily life scenario is of great interest for a number of reasons. Clinical
evaluation tools to measure motor skills in children are to date able to offer
qualitative rather than quantitative evaluation (i.e. studies using standardized
measures have difficulties in providing fine–grained details on children move-
ments characteristics). Examples of widely spread test to measure motor skills

105
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in children are the Gross Motor Function Measure, the Movement ABC or the
10 Meter Walk Test [Henderson and Sugden, 1992, Russell et al., 2000, Crock
et al., 2001]). Therefore, the lack of reliable, objective measurements foster
the interest in the development of tools to accurately capture information on
children’s motion skills in real life environments. For instance, it would be
of key importance in the rehabilitation of children with a chronic health con-
dition, such as cerebral palsy, to guide and evaluate interventions, to monitor
progress and also to provide families with an objective feedback [Gilmore et al.,
2010]. Besides, quantitative motion evaluation can support standard clinical
rating scales, providing clinicians with enriched information on patients’ health
[Zhang et al., 2012]. Furthermore, research studies on the role of motor and
communicative gesture (e.g. gestures) have highlighted the importance of as-
sessing motor characteristics of children’s behaviour [Pettenati et al., 2009, von
Hofsten, 2004]. Also, in children with autistic spectrum disorder (ASD) or “at
high–risk” for ASD, appropriate motion evaluation tools may be of relevance
for early diagnosis and intervention [von Hofsten and Rosander, 2012, Taffoni
et al., 2009, Campolo et al., 2012].

A considerable number of systems for human motion capturing is commer-
cially available at present. Despite the technologies and the approaches are
many, exhibiting different performance characteristics and operating on en-
tirely different physical principles, no ‘silver bullet’ currently exists [Welch and
Foxlin, 2002]. Among the plethora of choices, wearable technologies have the
potential to meet the requirements for this specific application, as reported
in [Bonato, 2003, Bonato, 2005]. Particularly, IMU based wearable motion
tracking systems provide inertial measurements (i.e. acceleration, angular ve-
locity and magnetic flux density) aside an accurate 3D–orientation estimate,
thanks to sensor fusion algorithms (for a comprehensive review on this topic
see [Sabatini, 2011]), and are the selected choice for this study.

In order to obtain a precise tracking of the kinematics of human joints,
the fulfilment of a calibration protocol is strictly required. The aim of this
research work was to define such a calibration procedure to capture the kine-
matics of upper limbs and thorax in children. The presented method allows
the construction of meaningful functional frames (FF), in the sense of being
representative of real physiological motions, on the human body and the esti-
mation of the calibration matrix relating each IMU’s sensor frame (SF) to the
associated FF of the individual body segment. A typical calibration protocol is
composed by the following steps: (1) a series of fixed reference postures and/or
functional movements that the subject under experimentation is asked to per-
form, (2) the definition of both an FF on each body segment of interest and a

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



6.2. MATERIALS AND METHODS 107

mapping between each axis of the FF and each reference postures/functional
movements, (3) the computation of the transformation matrix between each
FF and its corresponding SF. Despite existing literature proposes procedures
for kinematic tracking of both upper and lower limbs [Luinge et al., 2007, Cutti
et al., 2008, Cutti et al., 2010, de Vries et al., 2010, Kontaxis et al., 2009], no
study to date has provided a calibration protocol specifically designed to be
used with children. In fact, existing procedures does not take into consideration
the constraints related to an use of wearable inertial technology with children,
e.g. the fact that a particular care in the choice of movements to perform
is required. Therefore an ad–hoc design is required. Based on the outcomes
from a previous study [Ricci et al., 2013], we have built a calibration protocol
which defines an ameliorated set of reference postures/functional movements,
a new way to estimate reference axes from sensors’ data and introduces a novel
methodology to compute the transformation matrix. The experimental proce-
dure has been validated in simulation and tested in typical development (TD)
children. Further, it has been administered by non–technicians in a daily life
scenarios (e.g. at school or at home) as its application does not require any
particular expertise.

The following sections are organized as follows: section 6.2 provides an
introduction of the motion tracking system architecture, including hardware
and software components that have been employed and developed, and offers a
detailed description of the proposed calibration protocol alongside data analysis
methodology; section 6.3 reports the results from simulations and experimental
sessions, plus an example on how to reconstruct motion after the proposed
procedure. Eventually, section 6.4 discusses the results and presents the study
conclusions.

6.2 Materials and Methods

System Architecture

The experimental setup is comprised of a set of IMUs and a custom developed
software for data acquisition. On the hardware side, 5 wireless sensing units
(SU) are used, chosen among the number of commercially available systems.
In Particular, we selected the Opal by APDM Inc. in reason of their smaller
dimension and lower weight (22 g) that makes them particularly suitable for the
target application on children. Each SU contains an IMU, a micro SD for robust
data logging and a wireless radio transceiver. The orientation information is
computed via an embedded Kalman filter, in the form of a quaternion (more
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details on quaternion are reported in Appendix A) relating the orientation of
a local, gravity and geomagnetic established frame (L) to the sensor frame (S),
i.e. LSq. An access point is provided to gather synchronized sensor data and
make them available to a PC in real-time.

On the software side, a C++ GUI application for agile system managing and
data collection was developed using the Qt cross-platform framework. Stream
of synchronized data can be collected at the maximum rate of 128 Hz. Within
the software functionalities, each IMU device can be tagged with the identifier
of the human limb to which it is attached in order to store this information
in the logs. The software also implemented tools for real-time data plotting
and 3D motion visualization in a virtual reality (VR) environment; the VR
environment embeds a simple kinematic model of a 3D character, which is ren-
dered using the OGRE graphic engine [OGRE, ]. An overview of the described
experimental setup is shown in Figure6.1.

Calibration protocol

This section describes the calibration protocol for the kinematic tracking of
thorax and upper limbs motion in children. Beforehand providing details and
in order to clear out what will follow, the entire procedure is briefly reported.

The proposed methodology was tested on a group of 40 primary school
children (average age is 6.9 ± 0.65 years old, the minimum is 6.0 and the
maximum is 8.0 and the group is composed by 22 females and 18 males).
Informed consent was obtained from all children’s parents, as required by the
Institutional Review Board at the italian National Research Council (CNR).
The experimentation session took place at the school, thus capturing motion
in an environment familiar to the children.

Before starting the experimentation session, IMU accelerometers calibration
was assessed following the procedure described in [Campolo et al., 2006]. Also,
all IMUs were kept idle on a plank for a period of 20 seconds, in order to
estimate and remove gyroscope constant bias. After that, each sensor was
fixed to the corresponding body segment of interest using Velcro straps. During
the procedure, the mapping sensor–body segment was stored in the data logs
through the developed software interface.

The calibration protocol requires the 5 SUs to be attached to the following
spots on the body: centrally on the thorax (sternum), latero-distally on the
right and left upper arm, and near the wrist on the right and left forearm,
as shown in Figure6.2. On each body spot an arbitrarily defined and body
fixed FF was set. The FF is a right handed system of coordinated made of
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Figure 6.1: The experimental setup comprises 5 SUs that are attached to
the upper body at predefined spots (thorax, distally on the upper arm and
forearm) and a PC for data collection. Synchronized data from the SU are
wireless received on the PC and processed via custom developed software (GUI
is visible on the top left). Each sensing unit is a wristwatch sized box fixed on
the body segments via Velcro straps (on the right).

orthogonal axes that are descriptive either of the degrees of freedom associated
to the body limb, e.g. the axis of rotation for a flexion–extension movement,
or of the anatomical structure of the segment itself, e.g. the longitudinal axis.
Finally, each SU is matched with a corresponding FF. The actual calibration
procedure articulates in a series of 4 successive steps:

step 1 The participant, while wearing the SUs, completes a predefined list of
movements and adopts a set of stances, separately comprising the thorax,
the upper limbs or the forearms. Each movement in the list is associated
with and aims to estimate an axis of the defined FFs;

step 2 The information is collected from the SUs and pre–processed in order to
remove bias from the gyroscopes and extract the direction of both the
gravity vector of the axis of rotation of the limb, respectively during the
stationary postures and movements;
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step 3 An estimate of each axis of the FFs, relative to the corresponding SF, is
obtained from the pre-processed data applying singular value decompo-
sition (SVD). Moreover, associated to the estimates there is a measure of
the reliability of the computed axis;

step 4 Given the set of FFs axes and their estimates in the SFs, a regression
algorithm, namely Levenberg Marquardt (LM), is applied to compute
the transformation between each pair of systems of coordinates. Also,
the reliability indices computed at step 3 are used to properly condition
the regression algorithm.

The final purpose of the whole calibration procedure is to define the trans-
formation between each SF and the corresponding FF arbitrarily fixed on the
body, i.e. the rotation matrix RFF

SF . Eventually, its estimation allows the tran-
sition from the orientation information of the SUs to the kinematic description
of the upper body.

Calibration movements

The first part of the calibration itself consists of a set of stationary postures
and mono–axial, functional movements that participant has to perform. This
approach relies on the two procedures that are commonly referred in the lit-
erature as ”reference” and ”functional” method, respectively [Kontaxis et al.,
2009]. The aim of this first step of the protocol is to allow the identification
of, at least, a pair of non–aligned axes on each FF of the body segments of
interest. These axes are representative of certain directions of interest on the
body, i.e. the transverse axis of a body segment, or of physiological motion, i.e.
the axis of rotation of the shoulder joint during flexion–extension of the upper
arm. For the kinematic tracking of the thorax and upper limbs in children, we
propose the following calibration movement:

• Thorax

TS : Gravity vector measured in supine position with arms alongside
the body and hand palms facing down (5 seconds)

TR : Rotation of the thorax around the transverse plane perpendicular
axis while holding a bar (3-4 reps.), the movement is shown in the
top left frame of Figure6.3

TFE : Flexion–Extension from standing position with legs opened at
shoulder–width (3-4 reps.)
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Figure 6.2: The figure shows the position of the SUs on the body segments (1
- Thorax, 2 - Right Upper Arm, 3 - Left Upper Arm, 4 - Right Forearm, 5 -
Left Forearm) with their associated sensor frames (on the left) and a possible
assignment of the body fixed FF (on the right). On the right, a possible
assignment of the FF on the body is reported. Note that each movement in
the calibration protocol list is matched to an axis in the FFs (refer to section
6.2 for the meaning of the acronyms).

• Upper arm

US : Gravity vector measured in supine position with arms alongside
the body and hand palms facing down ((5 seconds)

AA : Ab–adduction from standing position with legs opened at shoulder–
width (3-4 reps.), see bottom right frame of Figure6.3

FE : Flexion–Extension from standing position with legs opened at
shoulder–width (3-4 reps.)
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Figure 6.3: A subset of the calibration movements to be performed in the
protocol. Clockwise from the top left we have: TR associated to the x–axis of
FFThorax; FEB of the upper arm associated to the z–axis of FFUpperarm; AA
of the upper arms associated to the y–axis of FFUpperarm; PS of the forearms
associated to the x–axis of FFForearm.

FEB : Flexion–Extension while holding a bar with hands at shoulder
breadth with an adducted thumb grasp as shown in the top right
frame of Figure6.3 (3-4 reps.)

• Forearm

FS : Gravity vector measured in supine position with arms alongside
the body and hand palms facing down (5 seconds)

PS : Prono and supination movement with arms fully extended and
hands closed (3-4 reps.), see bottom left frame of Figure6.3

FFEB : Flexion–Extension while holding a bar with hands at shoulder
breadth and with upper arms close to the body (3-4 reps.)

All calibration movements were proposed to children as a short gym exercise.
An adult played the role of coach and children were asked to observe one
movement sequence before proceeding to execute the movement together with
the coach. The reported list of movements and stationary postures identifies a
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set of no less than 3 non–aligned axes for each body segment FF. The above list
describes a single run of the calibration protocol and the complete experimental
trial is composed of a set of 3 trials.

Data collection

Aiming at identifying meaningful axes for each body segment, we are interested
in collecting two kinds of information during the protocol trials, i.e. accelerom-
eters readings for the posture part and gyroscopes readings for the dynamic
part. In fact, static accelerometers readings measure the direction of the grav-
ity vector while the subject is lying in supine position with hand palms facing
down. The gyroscopes, beforehand pruned from any constant bias, capture the
angular velocity vector during movements and allow to identify the direction
of the axis of rotation itself. In order to guarantee high signal–to–noise ratio
of gyroscope measurements, a lower bound on the minimum angular velocity
accepted in the data was set to the 30% of the maximum value. Each single
measurement from accelerometers or gyroscopes is a vector of data in R3 made
of the three axis sensor readings.

Reference axis identification

In order to estimate reference axes, datasets form each movement or ref-
erence pose were organized in the following measurements matrices, SA =
[Sa1,

S a2, ...,
S aN ]T ∈ RN×3 and SΩ = [Sω1,

S ω2, ...,
S ωN ]T ∈ RN×3, which

consist of the N stacked readings from the accelerometers and the gyroscopes,
respectively. After that, we applied singular value decomposition (SVD):

SA = U Σ(σi) VT

SΩ = U Σ(σi) VT , i = 1, 2, 3 (6.1)

U ∈ RN×N , Σ ∈ RN×3 , V ∈ R3×3

where U and V are the orthonormal matrices coming out from the decompo-
sition and containing an orthogonal basis for RN and R3 spaces, respectively.
Σ is a diagonal matrix with the singular values on the main diagonal (σi).
Based on the hypothesis of a stationary posture during the static part and a
uni–axial movement during the dynamic part of the calibration protocol, the
desired axis of reference will correspond to the right singular vector associated
to the highest singular value (σ1 > σ2 > σ3), i.e. the first column of V.

This result can be explained adding the following considerations. In the
ideal case of a flawless, mono–axial movement and noiseless measurements, the
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angular velocity vectors will lay on a line in 3D Euclidean space, i.e. they are
contained in a subspace of dimension 1. Instead, during the static part of the
protocol the projections of the gravity vectors on each axis of the SF is assumed
to be constant. Again, this implies that noise free accelerometers’ readings are
described by a subspace of dimension 1, specifically a point. Therefore, both
AS and ΩS are expected to be rank 1 matrices in the ideal case. In practice,
given the objective inability for a human being to perform a perfect mono–axial
joint rotation, physiological movements while lying supine (e.g. movements due
to breathing) and noise on the sensors’ measurements, AS and ΩS will be full–
rank. Therefore, what can be achieved with SVD is a robust discrimination
between the useful information and disturbances, so to identify the underlying
1–rank submatrix with its vector basis, i.e. the axis of rotation.

In addition, the outcome of a singular value decomposition is used to de-
fine an index of the reliability for the computed axis, given by the following
expression:

ρ =
σ1∑3
i=1 σi

, [
1

3
≤ ρ ≤ 1] (6.2)

which is a dimensionless quantity representing the ratio of the largest singular
value (σ1) and the sum of all the diagonal entries of the Σ matrix. This index
provides an indication about the quality of the collected dataset, in terms
of how data distributes along directions orthogonal to the computed axis of
reference. In the ideal case, ρ should be the unity. In the practical one, the
higher the value of ρ, the more reliable is the collected dataset.

By applying this procedure to all the dataset captured during step 1 and
2, the outcome will be a set of pairs composed by an axis estimates and the
corresponding reliability index (S~v, ρ), for any movement in the calibration
list. Further, for each FF defined on the body segments of interest a set of at
least two non–aligned axis estimates is available.

Transformation matrix computation

With the purpose of estimating the 3D rotation matrix (RFF
SF ) relating each

SF to its corresponding FF, the axes estimates together with their reliability
indices are used in the Levenberg-Marquardt (LM) algorithm. In the following,
without loss of generality, we describe the method for the case of the thorax
segment (RFF

SF Thorax
), where exactly 3 axis estimates are available from the

protocol, and will provide means to generalize the method to the other body
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segments. As a first step, we construct the following vectors:

~rFF =

~xFF~yFF

~zFF


9×1

, ~vSF =

~xSF~ySF

~zSF


9×1

(6.3)

where ~rFF is the set of canonical versors for the FF, i.e. ~xFF = [1 0 0]T ,
~yFF = [0 1 0]T , ~zFF = [0 0 1]T , and ~vSF contains their corresponding esti-
mates expressed in the SF. As shown in Figure6.2, each versor in FF is ide-
ally associated with a functional axis, e.g. ~yFF represents the thorax flexion–
extension movement. The vectors ~rFF and ~vSF are related by the matrix:

Q =

R̂FF
SF Thorax

R̂FF
SF Thorax

R̂FF
SF Thorax

 ∈ R9×9 (6.4)

which is a block diagonal matrix having the rotation matrix estimate repeated
on the main diagonal. In the ideal case, when the estimates in ~vSFest are or-
thogonal and right-handed and Q contains the true RFF

SF , then the equality
~rFF = Q ~vSF is verified. In the real case, the versors composing SF~vest will
most likely be not–aligned, rather than orthogonal. Thus we can define the
following error function:

ε = (~r−Q(R̂) ~v) (6.5)

where the symbol ε is the vector of residuals. In order to properly condition
the LM algorithm, we used the following cost function:

C(R̂) = εT W ε (6.6)

where we introduced a matrix W of weights build up from the reliability indices,
associated to the SF~v elements, and defined as:

W =

ρxI3×3

ρyI3×3

ρzI3×3

 (6.7)

If no weights are used, i.e. W = I, the rotation matrix computed with the
LM algorithm will be optimal in the sense of the least squares, i.e. minimizing
the sum of squared residuals coming from equation (6.5). The advantage of
introducing a matrix W of weights, lies in the possibility to guide the optimiza-
tion process in order to achieve a better fitting along the directions associated
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to the most reliable axes. Besides, the non–linear regression formulation will
generate a rotation estimate expressed in the form of a unit norm quaternion,
i.e. q̂FFSF Thorax = [q0 q̃]T . In order to convert quaternion back to a rotation
matrix in the regression the following conversion formula must be used:

R(q) =

q2
0 + q2

x − q2
y − q2

z 2qxqy − 2q0qz 2qxqz + 2q0qy
2qxqy + 2q0qz q2

0 + q2
y − q2

x − q2
z 2qyqz − 2q0qx

2qxqz − 2q0qy 2qyqz + 2q0qx q2
0 + q2

z − q2
x − q2

y

 . (6.8)

which avoids singularity issues when computing the Jacobian of the cost func-
tion. The k–th iteration step (∆k) of the LM regression algorithm is computed
as:

∆k = (JTk W Jk + λ diag(JTk W Jk))−1 JTk W εk (6.9)

where J is the Jacobian of the error function and λ is a damping parameter,
which modulates the algorithm’s behaviour. The error Jacobian can generally
be computed as:

J = ∂ (vec ε)/∂(vec q)T (6.10)

where the term vec indicates the vectorization operator which, for a matrix
A ∈ Rm×n, is defined as:

vec A = [a11 . . . am1 . . . a12 . . . am2 . . . an1 . . . amn]T (6.11)

Note that for the regression step the more efficient expression by Marquardt
for the Fisher matrix (F = JT W J +λ diag(JT W J)) is used, which reduces
the overall convergence time of the algorithm. After each iteration, estimated
quaternion (q̂) has to be normalized in order to enforce the unit–norm con-
straint, which guarantees the estimate to be in the special orthogonal group
SO(3). Also, as an exit criterion for the regression, a lower bound on the
percentage variation of the cost function is used (ε) and evaluated as:∣∣∣∣∣C(R̂)k+1 − C(R̂)k

C(R̂)k

∣∣∣∣∣ < ε (6.12)

Beyond the presented case of the thorax, the method can be flexibly scaled
according to the number of vector estimates available, with the caveat of a
minimum of 2 estimates in order to unambiguously identify a rotation matrix.
In the general case of a number N of estimates, the presented matrices and
vectors will have the dimension:

FF~r ∈ R3N×1 , SF~v ∈ R3N×1 , Q ∈ R3N×3N , W ∈ R3N×3N (6.13)
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Algorithm 1 Calibrate sensor to body segment frames

1: procedure Calibrate(A,~r,q0)
2: for t:=1 to N do . compute axes estimates and ρ for the N trials
3: UΣV T = svd(At)
4: ~vt = V(1:3,1)

5: ρt = Σ1,1/(Σ1,1 + Σ2,2 + Σ3,3)
6: end for
7: ~v = [~vT1 . . . ~v

T
N ]T . stack axes estimates in a column vector

8: W = diag(ρ1, . . . , ρN )
9: q̂k = q0

10: while |(Ck+1 − Ck)/Ck| > ε do . regression stop condition
11: εk = (~r−Q(q̂k) ~v)
12: Jk = ∂ (vec εk)/∂(vec qk)T

13: ∆k = (JTk W Jk + λ diag(JTk W Jk))−1 JTk W εk
14: q̂k+1 = q̂k −∆k

15: q̂k+1/ ‖q̂k+1‖
16: end while
17: return R̂(q̂k+1) . The calibration matrix is R̂
18: end procedure

Concluding, the algorithm steps are summarized in 1 and further details on
the theory of LM algorithm and its implementations can be found in[Hartley
and Zisserman, 2000].

6.3 Results

In this section results obtained with the proposed procedure are reported. First,
the method is validated in simulation using artificially generated datasets and
its performance is compared with another approach from the literature [de Vries
et al., 2010]. Then, results on real datasets from a population of 40 children
are detailed.

Simulation results

To the purpose of validating the proposed method, a simulated trial was devised
to be representative of a typical experimental setting. The trial consists in a set
of 3 functional movements along different, orthogonal axes of rotation. Each
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individual movement is repeated for 3 times and a time series of synthetic
gyroscope readings, to be representative of real data obtained from functional
movements, is generated with the following sequence of steps. First, a value for
the calibration matrix R̂SF

FF is set. The columns of this matrix are the versors
(~vi) representing the functional axes of rotation in the SF (i.e. the ones to
be identified by the SVD analysis). Around each individual axes, a sinusoidal
pattern for the angular velocity (wi) is assumed. Amplitude and frequency
of oscillation are set, accordingly to experimental observation, to a value of 3
rad/s and 0.5 Hz, i.e.:

wi(t) = 3sin(πt)~vi , i = 1, . . . , 3 (6.14)

and a duration of 10 s is hypothesized for each angular velocity recording.
Upon generated datasets a noise term (ν) is superimposed distributed as a
zero–mean Gaussian with a standard deviation σ = 6 mrad/s, where this value
is obtained from the gyroscopes used in the experimentation. As the axis
of rotation during a functional movement is hardly a constant (plus noise),
another disturbance term is introduced that accounts for deviation of the axis
itself during the simulated motion. This is expressed as a unit norm quaternion
(q∗rand) that rotates the functional axis about an orthogonal direction (~a) by an
angle θ. The latter is randomly selected and can have a maximum value of 45◦.
Instead, the axis can be any direction on the plane orthogonal to ~vi. In order
to generate data with a different quality level, in terms of mono–axiality of the
movement, the incidence of this type of rotational disturbance is varied among
the 3 datasets comprised by each individual functional movement. Synthetic
measurements are implemented as:

w̃mi[kT ] = q∗rand(θ,~a)⊗ w̃i[kT ]⊗ q∗rand(θ,~a) + ν , i = 1, . . . , 3 (6.15)

w̃ =
[
0 , wT

]T
where wm is the simulated angular velocity measurement, the symbol ⊗ de-
notes quaternion product and the angular velovity vector (w) is appended with
an extra 0 component in order to carry out vector rotation with quaternions,
as defined in A.6. An example of simulated dataset is shown in Figure6.4. In
the following tractation, simulated dataset will be used to validate the methods
with respect to the ability to robustly identify reference axis from gyroscope
datasets and to estimate the correct calibration matrix.
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Figure 6.4: The figure reports spatial dispersion of the axis of rotation obtained
from a simulated gyroscope dataset (on the left), where data are segmented and
normalized. The same plot is also displayed for a set of normalized, segmented
gyroscope measurements from an experimental trial (on the right). In the
simulated case, the true axis of rotation is known and it is displayed as its
normal plane.

Reference axis identification

Proposed method for axis identification, based on SVD, is compared with the
recent procedure proposed in [de Vries et al., 2010]. The latter is based on
repeated averaging of datasets and requires data segmentation in order to invert
the negative half–wave of the sinusoidal angular velocity pattern. An axis of
rotation was set and 100 different datasets were generated according to the
formula in (6.15). For each individual dataset, its axis of rotation is estimated
with both methods and an error is computed using the metric:

Φ(~v,~r) = acos(~v ·~r) (6.16)

where ~v is the estimated axis, ~r is the reference and · denotes vector dot prod-
uct. Results are shown in Figure6.5, both as the individual errors (top plot)
and their difference (bottom plot), and better performance of the proposed
method is observed. In addition, a statistical analysis using Student’s t–test
on the errors, beforehand tested for Gaussianity, confirmed the significance of
the result (ρ < 0.05).
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Figure 6.5: The figure compares the proposed method to identify axis of rota-
tion, based on SVD, to the method described in [de Vries et al., 2010], based
on averaging. The error is represented as the angular distance between the
estimated axis and the known reference. The bottom plot reports difference
between errors with the two methods.

Transformation matrix estimation

The whole calibration procedure described in this chapter is compared with
the recent method proposed by de Vries and colleagues [de Vries et al., 2010],
demonstrated on adult subjects. The latter is based on averaging the individ-
ual datasets comprising each functional movement session in order to obtain
multiple axes estimates. The functional axis is extracted from the multiple
estimates via an extra averaging operation. Also, a dispersion parameter is
computed, which quantifies repeatability of the functional axis estimate it-
self. Better axes, differed according to this parameter, are then used for the
calibration matrix estimation and the remaining are discarded. A number of
100 different simulated trials were generated according to the procedure above
mentioned (see 6.3) and the two methods were applied. Estimated calibration
matrices (R̂) were compared to the ground truth using the metric:

Φ(R, R̂) = acos(
trace(RT R̂)− 1

2
) (6.17)
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Figure 6.6: The figure shows a boxplot of the errors in the estimated cali-
bration matrix with the proposed method (A) and the procedure described in
[de Vries et al., 2010] (B). Errors are reported as the median value (red line),
the interquartile range (blue notch) and the maximum and minimum values
(black whiskers in the figure).

which represent the geodesic distance on the SO(3) space, where rotation ma-
trices are defined. Results are reported in Figure6.6 as a boxplot showing the
median, interquartile range and maximum and minimum values of the error.
Simulations reveal a higher repeatability of the proposed method and a major
robustness against the presence of highly disturbed (in the sense of formula
(6.15)) datasets in the functional movement recordings. Finally, a statistical
analysis using Student’s t–test on the errors, beforehand tested for Gaussianity,
confirmed the significance of the better performance of the proposed method
(ρ < 0.05).

Experimental results

Experimental data were collected on the group of 40 children with methodol-
ogy described above. The recorded calibration movements were processed in
order to extract reference axes together with their reliability measure (ρ) of the
estimate. In table 6.1 the values of the proposed reliability index are reported,
where the reliability parameter is expressed as the mean value ± standard devi-
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Table 6.1: The table reports values obtained for the reliability index ρ relative
to each calibration movement. The index is a dimensionless number in the
range [1

3 , 1] and it is reported mean ± SD computed over a population of 40
subjects.

ation evaluated over the whole group of subjects. The set of axes estimates and
ρ values are eventually passed as input to the LM algorithm. The identity rota-
tion, i.e. q̂0 = [1, 0, 0, 0], is set as initial condition for the regression and a value
of λ = 0.001 is selected for the damping factor of the LM algorithm, which is
a typical assumption for this parameter (refer to Appendix A6 in [Hartley and
Zisserman, 2000]). Moreover, we set the convergence criterion lower threshold
to ε = 10−4. Given those initialization values, the number of iterations the
algorithm undergoes in the average case before attaining convergence is the
following, again expressed as mean and standard deviation:

• Thorax FF: 6.34 ± 0.561 iterations

• Upper arm FF (left and right): 8.36 ± 0.767 iterations

• Forearm FF (left and right): 7.30 ± 0.863 iterations
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Figure 6.7: The figure reports the typical converging behaviour of the LM
algorithm. On the left, the trend of the RFF

SF matrix estimate relative to
the FFThorax is shown, respectively expressed in the form of a unit norm
quaternion (top) and as Euler roll, pitch and yaw angles (bottom).

As an example of the converging behaviour of the LM algorithm, we reported
the case of the thorax FF rotation matrix in Figure6.7. Besides, in this partic-
ular case we stressed the algorithm performance giving random initialization
values as input and we still observed the attainment of convergence after a
moderate number of iterations (6 in the case of Figure6.7).

With the purpose of gaining further insight into the behaviour of our re-
gression algorithm, we focused on the error function, particularly on the vector
of residuals ε. As formalized in equation (6.5), this vector is made of the
Euclidean differences between each FF canonical axis (i.e. the versors x̂ , ŷ
and ẑ) and its corresponding estimate, both expressed in the FF system of
coordinates. The aim of the regression algorithm would be that of mitigating
these differences, by making matched pairs of vectors (~vref , ~vest) pointing to
approximately the same directions in R3 space, i.e. the closer as possible in ac-
cordance with the mathematical constraints associated to the rotation matrix
R̂FF
SF (e.g. orthogonality of the column vectors). In our weighted formulation of

the LM algorithm, some pairs of vector are expected to get closer than others,
depending on the value of their reliability index. In addition, the pairs that
get closer are also the ones that mostly affect the computation of the transfor-
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Figure 6.8: Comparison of the differences between pairs (~vref , ~vest) of axes
estimates and their FF matches, computed at the beginning and at the end of
the LM regression (refer to section 6.2 for the meaning of the acronyms). As a
distance metric we considered the angle between each pair of vectors, computed
as the arccosine of their dot product (see relation (6.16)).

mation matrix R̂FF
SF . In order to visualize this effect, we made a comparison of

the values of these differences at the first step, when R̂FF
SF = I3×3, and at the

convergence of the regression algorithm, R̂FF
SF = argmin

R
(C(R)). As a distance

metric we considered:

d(~vref , ~vest) = acos(~vTref~vest) (6.18)

that is the angle between each pair of vectors. The analysis was extended to
the whole set of 40 children and we reported the results, expressed as mean
and standard deviation, for each movement in Figure6.11. As a further result,
in Figure6.9 an example of kinematic reconstruction of the joint angles for the
forearm and the upper arm during the flexion–extension movement is presented.
As an outcome of the calibration procedure, minimal kinematic cross–talk is
expected when the user perform movements involving only one axis, as in the
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Figure 6.9: The figure reports example of kinematic calibration for the right
forearm and upper arm. Reduced kinematic cross–talking is observable on the
bottom plots that display angular velocities during the flexion–extension (FE)
movement and the supported forearm flexion–extension (FFEB) w.r.t the FF.

case reported. We observed a general reduction in the range of motion of the
angles that are not associated with the motion: in the case of the forearm, the
range of motion resulted decreased of 45% and 70%, respectively for the x and
z axes, and increased of 8% for the y axis; in the case of the upper arm, the
range of motion resulted decreased of 38.7% and 69.7%, respectively for the x
and y axes, and increased of about the 30% for the z axis.

Upper body kinematic tracking

The result reported in this section is relative to the use of wearable IMU devices,
that are capable of measuring 3D orientation, combined with the presented
calibration procedure, that allows estimating a calibration matrix between the
sensor reference frame and the human body functional frames, in order to track
upper body kinematics in real time. A part from the aforementioned compo-
nents, the missing elements to achieve the motion capturing are a kinematic
model of the upper body and a pre-defined reference pose, used to initialize
the tracking.
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Figure 6.10: The figure shows the kinematic chain implemented for the avatar
used for motion reconstruction of the upper body kinematics. All joints are set
as ball in a socket type. Orientation data from the wearable IMUs are mapped
to the movable segments (in red) through the estimated calibration matrix.

Kinematic modeling of upper body

The human upper body is kinematically modelled as a chain of segments con-
nected through ball in a socket type joints, i.e. no physiological motion con-
straint is introduced. Despite this assumption is a poor choice in terms of the
capacity of the model to be a realistic representation of the human body, it
comes with the advantage of introducing no extra artifact in the mapping be-
tween IMU measurements and human motion. Therefore, any issue related to
calibration, drifts of the sensors or soft tissue artifacts are easily identifiable.
The model is composed of 5 segments (left forearm, left upper arm, thorax,
right upper arm, right forearm), shown in Figure6.10. It has been created with
the Blender 3D animation suite [Blender, ] and then exported to the OGRE
graphics engine [OGRE, ] which is used to implement the virtual environment
of the developed software platform. Data stream from the IMU devices are
received in real time by the software components and orientation, expressed as
unit norm quaternion (qs), is converted into motion of a virtual avatar limbs
as:

qa(t) = q∗i ⊗ q∗c ⊗ q∗s(tr)⊗ qs(t)⊗ qc (6.19)
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Figure 6.11: The figure reports a screenshot of the software platform developed
during a real time motion reconstruction session, using the calibration data
from the procedure presented in this chapter. The video is available at http:

//youtu.be/Q0WP0kd4sOU.

where qa is the orientation of the avatar’s limb and qc is the constant calibration
matrix, expressed as a quaternion. The remaining terms are respectively the
initialization pose for the limb (qi), w.r.t a global reference frame which is
defined into the OGRE engine, and qs(tr) is the value of the orientation from
the IMU at the reset time tr. In fact, for practical implementation of the
tracking, both the subject and the avatar must have the same initial stance
and, once this condition is achieved, IMU measurements should be resetted to
the identity quaternion.

6.4 Discussions

In this chapter a novel calibration protocol for the kinematic tracking of the
thorax and upper limbs with IMU wearable sensors, designed to be used with
children is presented. This method allows a user to define functional coordinate
systems (FF), that are fixed on the body segments, and to estimate the relation
between a IMU sensor’s frame and its corresponding body segment’s FF. The
proposed calibration procedure itself is composed by a sequence of functional
movements and a methodology to elaborate sensor data, in order to compute
a rotation matrix relating each SF to the corresponding, arbitrarily defined
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FF (i.e. RFF
SF ). Selected movements have the twofold purpose of identifying

a sufficient number of non–aligned axes on each defined FF, at least 2, and
conforming to the constraints of being easy to perform and short in duration, in
order to avoid children’s fatigue and to reduce overall duration of experimental
sessions.

In fact, as highlighted in a previous study [Ricci et al., 2013] and as it is also
observed during the experimentation, some movements are easier to perform
for children (6-7 yo) than others: as an example, the thorax lateral flexion,
used in similar calibration protocols with adults [de Vries et al., 2010], resulted
an improper choice for children. Furthermore, given the difficulty to maintain
children’s attention for a long time compared to adults, the calibration protocol
was designed in order to limit duration while maintaining a substantial number
of functional axis estimates, as suggested in [Luinge et al., 2007]. In addition,
the protocol was presented to the child as a game of imitation: an adult plays
the role of the coach and the subject is asked to mirror his movements. This
experimental methodology is specific for an usage with children as it brings
the twofold benefit of: (i) making it easier for children to understand how the
movements should be performed; (ii) having an adult checking the correctness
of the movement. No difficulties were encountered in the experimentation
with the proposed list and in all but the thorax case a redundant number
of functional axes were identified, with respect to the minimum of two non–
aligned axes that is required in order to estimate a rotation matrix. Moreover,
a novel data analysis approach eliminates the typical need of a segmentation
process, which usually involves a rest period between any two phases of a
rotation movement, e.g. to differ the flexion from the extension phase, as
reported in [de Vries et al., 2010, Luinge et al., 2007, Cutti et al., 2008]. Thus,
with the presented methodology the duration of this part of the protocol is
further reduced (i.e. total duration is 15 minutes).

In view of the necessity that may arise to prune the list of movements to
the minimum of 2 axes per FF, a reliability index (ρ), that is defined basing
on the outcome of a singular value decomposition, as reported in 6.2, was in-
troduced to qualify the estimated axes, as reported in table 6.1. The index
of reliability is computed from measurement matrices containing repetitions
(from 9 to 12) of the same functional movement or reference posture and thus
gives an indication about the precision of the child’s performance. In the ideal
case of a noiseless sensing units, the maximum value of the index is the unity
and it is obtained when exactly the same axis of rotation is involved in each
repetition of the movement. Instead, the minimum value of the index (ρ = 1

3 ),
is mathematically obtained in the case when each repetition of the movement
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belongs to a different axis of rotation and those axes are orthogonal, e.g. that
would be the extreme case in which a subject is asked to perform three times
a flexion-extension of the upper arm and he instead performs first a flexion-
extension, then an ab-adduction and finally a prono-supination. Further, high
precision in the execution of a movement translates in a high repeatability of
the estimated reference axis. The proposed list of movements deliberately in-
cluded the same physiological movement (i.e. flexion and extension) executed
with or without the support of a rigid bar. The reason for that is the possibil-
ity to evaluate if, as expected from intuition, the introduction of an external
support to further facilitate children coordination improves the reliability of
some movements. From the reported table, the reliability index indicates the
supported movement is more repeatable than the unsupported one. Also, sta-
tistical analysis using a paired t–test on the normally distributed reliability
datasets confirmed significance (p < 0.05) of the result both for the forearm
FFs and for the upper arm FFs. In Figure6.11 a visualization of the residual
distance between vector pairs (~vref , ~vest), as defined in 6.18, at the beginning
and at the end of the LM regression and for each movement in the calibration
protocol is proposed. We observe a general trend of the pairs of axes estimates
and corresponding FF reference axes to reduce their angular distance at the
end of the regression. If more than one estimate for the same FF axis is avail-
able, the regression algorithm will favour the one with the higher reliability
value. For instance, this is true for the case of the supine posture (ρ = 0.98
and ρ = 0.99) versus the abduction and adduction movement (ρ = 0.62 and
ρ = 0.64) of the upper arms on the Y axis estimation of the associated FF. The
thorax resulted the body segment with the overall highest reliability and with
the lowest residual distance between the pairs (~vref , ~vest) in the rotation matrix
estimation, respectively 5.39◦, 2.56◦ and 2.86◦ for the x, y and z component.
This is due to a proper choice of the calibration movements for the thorax,
with reference to both the repeatability and the fact that the set of axes esti-
mated during each movement/reference pose are close to an orthogonal frame.
Moreover, this result is in accordance with what discussed in [de Vries et al.,
2010], where the functional frame built on the thorax also prove to be the most
compatible with the anatomical frame defined by the ISB recommendations
[Wu et al., 2005]. The prono–supination of the forearm is the most reliable
movement for the functional part of this specific FF and its associated axis is
the most repeatable, in agreement with similar studies in literature [de Vries
et al., 2010, Ricci et al., 2013]. Also, the residual angular distance for the pairs
(~vref , ~vest) amounts to 4.68◦ for the left and 4.72◦ for the right forearm.

The standard way to estimate the rotation matrix RFF
SF in the current liter-

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



130
CHAPTER 6. MULTIPLE DEVICES FOR UPPER BODY MOTION

CAPTURE IN CHILDREN

ature [de Vries et al., 2010],[Luinge et al., 2007],[Wu et al., 2005],[Cutti et al.,
2008] is that of using a single pair of non–aligned axis estimates to get an
orthonormal frame via successive vector products. This method is referred in
literature with the name of TRIAD (TRi-axial Attitude Determination) al-
gorithm and was originally proposed as a solution to the Wahba’s problem
[Wahba, 1965]. Our approach to RFF

SF estimation overcomes the known limita-
tions of the TRIAD algorithm, in the sense that it is capable of accommodating
more than two axis estimates, it is not sensible to the order at which the axis
estimates are considered and, more importantly, can exploit all the available
information (i.e. both the axis direction and its repeatability measure). As
an outcome to the method we reported in Figure6.9 an example of kinematic
reconstruction for the right upper limb. Though the evidence of a substan-
tial reduction in kinematic cross–talking for single joint movements with the
proposed calibration methodology, future research endeavour should focus on
comparison with data collected using optical motion capture systems, which
are still ranked as the golden standard for motion capture, for a validation
on experimental data. In the meanwhile, meaningful motion reconstruction
results obtained with the proposed procedure are in favour of the effectiveness
of the method.

Finally, the presented method only requires the subject to be able to per-
form simple calibration movements in order to enable the estimation of the
relations among reference frames. Despite this requirement is met in most of
the applications, it is still possible to imagine scenarios in which it may not
feasible to ask the subject to perform even simple but controlled movements,
e.g. when dealing with motor or cognitive impaired subjects. For those cases,
a possible solution could be that of using additional instrumentation in order
to perform the initial calibration procedure. Among the range of possibilities,
depth cameras (e.g. Microsoft Kinect) could be a promising choice. This class
of devices is now available at low cost, feature a high portability and allow a rea-
sonably accurate reconstruction of human body kinematics [Fernández-Baena
et al., 2012]. The latter can be combined with kinematic information from the
uncalibrated IMUs in order to infer the required calibration parameters. The
challenge there is to infer a proper mapping between the two different sensing
modalities, accounting for the relative reference frames and the way they are
defined, the functional limitations and the different types of sources of error
affecting the systems.
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Chapter 7

Concluding remarks

The evolution of inertial sensors has brought to an ubiquitous presence of this
technology in an increasing number of devices. Aside from inertial quantities,
advancements in the algorithms that are embedded within these sensors are
transforming them into attractive solutions for motion tracking. As a result,
inertial sensors have a widespread use in a plethora of different and novel areas
of application, including biomedical and robotics.

In consideration of that, the purpose of this dissertion is twofold: on the one
side, it proposes to investigate the performance in tracking achievable using this
technology. On the other, it extends the use of inertial sensors in the area of
robotic navigation and of human motion capture. The presented work aims and
accomplishes the research goals stated in Section 1.3: an extensive validation
of accuracy in orientation tracking with wearable inertial sensors providing
comprehensive information on error ranges and major sources of disturbance;
the autonomous self calibration and navigation of an onminidirectional wheeled
robotic platform equipped with an onboard inertial sensor; the calibration of
human body fixed reference frames from wearable inertial sensors’ readings, in
view of meaningfully reconstructing motion of children from inertial orientation
information.

7.1 Conclusions

This dissertation thesis presented innovative methods and results aimed at
supporting the improvement over state of the art and the extension of the field
of application for wearable inertial sensors.
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A first contribution of this work was to establish a reliable baseline for
accuracy in orientation tracking to be expected from inertial sensors: this
information was not available in the literature at the time of this writing. The
assessment was carried out using an accurate robotic manipulator in order to
generate controlled and repeatable testing conditions. Both static and dynamic
accuracy were validated. For the latter, a number of different periodic motions
were generated with a bandwidth picked in the range of frequencies that are
commonly found in human motion studies. Additionally, inertial measurements
were processed using two different sensor fusion approaches for orientation
estimation, that were selected among the most relevant classes of algorithms
in the literature. Results showed that the worst case absolute accuracy to be
expected is within about 8◦ for the whole set of experimented conditions. For
some application relative accuracy computed between two inertial devices is of
interest, e.g. for multiple segment tracking or human joint angle measurement.
In that case, it was found that accuracy slightly degraded to a worst case upper
bound of about 10◦. Further, it was shown that accuracy is also dependent on
the bandwidth and the amplitude of the movement: as a general rule of thumb,
the magnitude of the error is proportional to the dynamics. Interestingly, a
decrement of performance was also observed when passing from performing
rotations against the gravity to rotations along the gravity axis. In the latter
case, the orientation computed via sensor fusion is more sensitive to magnetic
field perturbations. Though perturbations are potentially compensated for
by the fusion algorithms, it was found to be still one of the main issue in
determining performance of orientation tracking for this technology.

A second contribution discussed in this dissertation pertains to the au-
tonomous navigation of an omnidirectional wheeled robotic platform. Two
novel methods were introduced in order to achieve, respectively, robot self cal-
ibration of the systematic sources of error of the odometry and robust dead
reckoning navigation (e.g. against wheel slippage). The methods were tested
on an experimental robotic platform that was designed, having in mind the
eventual application in an industrial setting. The importance of this contri-
bution to state of the art research on robotic navigation lies in the fact that
this class of robots, that feature a superior mobility on the ground, has been
traditionally overlooked, both in the research and industrial areas, due to the
additional difficulties that are introduced by the use of omnidirectional wheels
(i.e. they are prone to slippage). Furthermore, currently explored approaches
to navigation mainly rely on exteroceptive optical sensors (e.g. cameras or
laser) which makes them liable in case of occlusions. The presented meth-
ods exploit only information coming from proprioception and the knowledge
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of parametric models characterizing the robot and the sensors. From different
experimental trials, it was demonstrated how the use of an inertial sensor as
additional onboard sensor (strapped down to the robot frame) combined with
the proposed sensor fusion methods lead to a significant improvements of per-
formance in navigation. This in consideration of the fact that, with traditional
odometry based navigation, when wheel slippage occurs, an error is introduced
in the robot heading estimate. Error on the heading in turn, builds up into an
error on the position estimate that grows unbounded with the traveled distance.

A third and final novel result presented in this thesis is the design of a
calibration protocol for the kinematic tracking of the thorax and upper limbs
with inertial wearable sensors adapted to be used with children. The protocol
consisted of a series of functional movements and reference poses, intended to
generate a number of highly informative inertial datasets to the final aim of
defining reference frames that describe upper body kinematic chain. Together
with the protocol, two methods for extracting functional axis from inertial
recordings and defining reference frames on human body segments were pre-
sented. The proposed approach to axis extraction requires no preprocessing
of the inertial datasets. Aside from the direction of the axis, it also indicates
the reliability of the estimate. Both information are used in a properly tai-
lored nonlinear regression algorithm that generates the body fixed reference
frames. The two methods were extensively validated in simulation and their
improvement in performance with respect to state of the art approaches was
demonstrated. Moreover, the calibration protocol was extensively tested on a
population of 40 children (6–7 yr). Note that the experimentation was carried
out in unstructured daily life setting (i.e. a school). Results showed a substan-
tial reduction in kinematic cross–talking for single joint movements with the
proposed calibration methodology. Though a comparison with optical refer-
ence should be considered as a future research endeavour, the effectiveness of
the method was also demonstrated via visually verified motion reconstruction
results.

7.2 Future works

This dissertation spanned over various aspects related to the use of wearable
inertial sensors and therefore different potential directions for future works can
be identified.

In chapter 4 the topic of validating the state of the art technology perfor-
mance in tracking was addressed. A part for the detrimental effect of movement
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dynamics on the performance, which could be mitigated or adjusted by tuning
of the algorithms’ parameters, the major limitation to tracking are the mag-
netic field variations. Though compensation strategies have been proposed in
the literature, in practice they prove not so effective in complex indoor environ-
ments. In view of that, future research endeavours could address investigating
methods for better compensating against magnetic perturbation (e.g. by de-
tecting the disurbance and automatically recalibrating magnetometers) or for
exploiting the complexity in the magnetic field pattern to the aim of navigation
(e.g. magnetic SLAM).

In chapter 5 inertial navigation with an omnidirectional robotic platform
was explored. Here the future challenge could be that of pushing the limits of
the proposed approach. Inertial sensors proved to be the natural complement
to optical encoders. The latter output very neat but prone to outliers (e.g.
during wheel slippage) 2D data. Instead, inertial measurements are noisier,
prone to integration drift but enrich the 2D odometry information with 3D
data, practically enabling the ground robot to sense the terrain on which it
is navigating. The impression is that the combination of the two information
sources could prove effective in a number of different scenarios (e.g. in outdoor
terrains) other than the one experimented in this work.

Finally in chapter 6 methodologies for defining reference frames on human
body, particularly suitable for use with children, were presented. In this case,
directions for future works are already established. In fact, the collection of
inertial datasets of children was carried out as part of a more extensive re-
search project (i.e. the TOUM [TOUM, ]), that was ultimately aiming at
analyzing motor behavior during gesture production in children. Particularly,
part of doctoral activities were committed to collecting inertial datasets of chil-
dren performing different ad–hoc motor tasks and motor assessment tests. In
addtion, experimentation was carried out on a group of tipically developing
children and a group of children affected by autistic spectrum disorder (ASD).
In consideration of that, future research will address analysis of inertial and
kinematic information that can now be extracted from the data as a result of
the developed calibration procedure.
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Appendix A

Quaternion algebra

This appendix briefly introduces unit norm quaternions as a way to represent
orientation in 3D space. Their most basic properties are hereby stated, without
proof. For more details, see e.g. [KUIPERS, 1999]. Quaternions are a gener-
alization of complex number to a 4–dimensional space (Q1), and are defined
as:

q
.
=
(
q0 ~q

)T .
=
(
q0 qxi , qyj , qzk

)T .
= ±

(
cos( θ2 ) ~vsin( θ2 )

)T ∈ Q1 (A.1)

where q0, qx, qy, qz are real numbers, v and θ are respectively the axis and
the angle of rotation and the primitive elements i, j,k satisfy the following
property:

i2 = j2 = k2

ij = −ji = k

jk = −kj = i

ki = −ik = j (A.2)

A.1 Basic properties of quaternions

1. The conjugate of a quaternion is defined as:

q∗
.
=
(
q0 − ~q

)T
(A.3)
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138 APPENDIX A. QUATERNION ALGEBRA

2. The addition (subtraction) between quaternions is defined as:

qA ± qB
.
= (q0A + qxAi + qyAj + qzAk)± (q0B + qxBi + qyBj + qzBk)

.
= (q0A ± q0B) + (qxA ± qxB)i + (qyA ± qyB)j + (qzA ± qzB)k (A.4)

3. The quaternion multiplication is defined as:

qA ⊗ qB
.
= (q0A + qxAi + qyAj + qzAk)(q0B + qxBi + qyBj + qzBk) =

(q0Aq0B − qxAqxB − qyAqyB − qzAqzB)+

(q0AqxB + qxAq0B + qyAz1− qzAqyB)i+

(q0AqyB − qxAqzB + qyAq0B + qzAqxB)j+

(q0AqzB + qxAqzB − qyAqxB + qzAq0B)k. (A.5)

4. The vector rotation of v ∈ R3 by a quaternion q ∈ Q1 is defined as:

q⊗ ṽ ⊗ q∗ (A.6)

where ṽ ∈ Q is an augmented 4–vector generated from the original 3–
vector as:

ṽ =

[
0
v

]
(A.7)

5. The natural logarithm of a quaternion is defined as:

log q =

(
log ‖q‖

~q

‖~q‖
cos−1 q0

‖q‖

)
(A.8)

A.2 Spherical Linear Interpolation

The spherical linear interpolation [Shoemake1985, 1985] between two quater-
nions qA and qB is defined as:

slerp (qA,qB, t) = qA
sin (1− t) Ω

sin Ω
+ qB

sin Ωt

sinh Ω
. (A.9)

where Ω is the angle subtended by the two quaternions, i.e.:

cos Ω = qA · qB (A.10)
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Appendix B

Orientation conversion

There are different possible parameterizations to describe orientation. This
appendix provides the conversion formulas between the unit norm quaternions
and the other orientation representations used throughout this dissertation.

B.1 Axis and angles

A unit norm quaternion can be decomposed into an axis (n̂) and angle (θ)
representation as:

θ = 2 ∗ cos−1(q0) , n̂ =
q̂

‖q̂‖
(B.1)

An axis and angle rapresentation can be found combined into a rotation vector
r = n̂θ. In this case, conversion from and to a quaternion is given:

q = exp(−1

2
r) , r = −2 log(q) (B.2)

where the quaternion logarithm is defined in A.8.

B.2 Rotation matrix

A unit norm quaternion q can be converted to a rotation matrix R in SO3
with the following relation:

R =

q2
0 + q2

x − q2
y − q2

z 2qxqy − 2q0qz 2qxqz + 2q0qy
2qxqy + 2q0qz q2

0 − q2
x + q2

y − q2
z 2qyqz − 2q0qx

2qxqz − 2q0qy 2qyqz + 2q0qx q2
0 − q2

x − q2
y + q2

z

 . (B.3)
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140 APPENDIX B. ORIENTATION CONVERSION

where the elements of the quaternion are defined according to

B.3 Euler angles

Euler angles are a minimal parametrization of the orientation that use a se-
quence of three rotations around coordinate axes. A popular sequence derived
from the aeronautical field is termed roll–pitch–yaw. In this case, one rotates
first an angle ψ about the z-axis (yaw), then an angle θ around the y-axis
(pitch) and finally an angle φ around the x-axis (roll). Those angles can be
derived from a unit norm quaternion as:

ψ = tan−1 2(q0qz − qxqy)

1− 2(q2
y + q2

z)
(B.4)

θ = sin−1(2(q0qy + qzqx)) (B.5)

φ = tan−1 2(q0qx − qyqz)
1− 2(q2

x + q2
y)

(B.6)
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(2008). Direct measurement of human movement by accelerometry. 30:1364–
1386.

[Godwin et al., 2009] Godwin, A., Agnew, M., and Stevenson, J. (2009). Ac-
curacy of inertial motion sensors in static, quasistatic, and complex dynamic
motion. Journal of biomechanical engineering, 131(11):114501–114505.

[Gustafsson, 2013] Gustafsson, F. (2013). Statistical Sensor Fusionn.

[Han et al., 2010] Han, K.-L., Kim, H., and Lee, J. S. (2010). The sources of
position errors of omni-directional mobile robot with Mecanum wheel. 2010
IEEE International Conference on Systems, Man and Cybernetics, pages
581–586.

[Hardt von der et al., 1998] Hardt von der, H.-J., Husson, R., and Wolf, D.
(1998). An Automatic Calibration Method for a Multisensor System: Ap-
plication to a Mobile Robot Localization System. In IEEE International
Conference on Robotics and Automation, number May, pages 3141–3146.

[Hartley and Zisserman, 2000] Hartley, R. I. and Zisserman, A. (2000). ”Mul-
tiple View Geometry in Computer Vision”. Cambridge University Press,
second edition.

[Hastie and Friedman, 2009] Hastie, T Tibshirani, R. and Friedman, J. (2009).
The Elements of Statistical Learning.

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



146 BIBLIOGRAPHY

[Henderson and Sugden, 1992] Henderson, S. and Sugden, D. (1992). Move-
ment Assessment Battery for Children. The Psychological Corporation: Lon-
don, UK.

[Horn, 1987] Horn, B. K. P. (1987). Closed-form solution of absolute orienta-
tion using unit quaternions. Journal of the Optical Society of America A,
4(4):629.

[Hunt and Hobbs, 1964] Hunt, G. W. and Hobbs, A. E. W. (1964). Devel-
opment of an accurate tuning- fork gyroscope, in Symposium on Gyros. In
Proceedings of the Institute of Mechanical Engineers (London), pages 1964–
65.

[Huynh, 2009] Huynh, D. Q. (2009). Metrics for 3D Rotations: Comparison
and Analysis. Journal of Mathematical Imaging and Vision, 35(2):155–164.

[Ilon, 1975] Ilon, B. E. (1975). Wheels for a course stable self-propelling vehicle
movable in any desired direction on the ground or some other base.

[Indiveri, 2009] Indiveri, G. (2009). Swedish Wheeled Omnidirectional Mobile
Robots: Kinematics Analysis and Control. IEEE Transactions on Robotics,
25(1):164–171.

[J.Woodman, 2009] J.Woodman, O. (2009). An introduction to inertial navi-
gation. Technical Report 696.

[Killpack et al., 2010] Killpack, M., Deyle, T., Anderson, C., and Kemp, C. C.
(2010). Visual odometry and control for an omnidirectional mobile robot
with a downward-facing camera. 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 139–146.

[Kim and Yi, 2009] Kim, D. Y. and Yi, K. Y. (2009). A user-steered guide
robot for the blind. 2008 IEEE International Conference on Robotics and
Biomimetics, pages 114–119.

[Kok et al., 2012] Kok, M., Hol, J. D., and Sch, T. B. (2012). Calibration of
a magnetometer in combination with inertial sensors. In 15th International
Conference on Information Fusion (FUSION), pages 787–793.

[Kontaxis et al., 2009] Kontaxis, a., Cutti, a. G., Johnson, G. R., and Veeger,
H. E. J. (2009). A framework for the definition of standardized protocols
for measuring upper-extremity kinematics. Clinical biomechanics (Bristol,
Avon), 24(3):246–53.

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



BIBLIOGRAPHY 147

[KUIPERS, 1999] KUIPERS, J. B. (1999). Quaternions and Rotation Se-
quences: A Primer with Applications to Orbits, Aerospace and Virtual Re-
ality. Princeton University Press, New Jersey.

[KUKA, ] KUKA. Kuka Laboratories GmbH. http://www.kuka-labs.com/.

[Lamon and Siegwart, 2004] Lamon, P. and Siegwart, R. (2004). Inertial and
3D-odometry fusion in rough terrain - towards real 3D navigation. In
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), volume 2, pages 1716–1721. Ieee.

[Lebel et al., 2013] Lebel, K., Boissy, P., Hamel, M., and Duval, C. (2013).
Inertial Measures of Motion for Clinical Biomechanics: Comparative Assess-
ment of Accuracy under Controlled Conditions - Effect of Velocity. PloS
one, 8(11):e79945.

[Lehmann, 1998] Lehmann, E. L. (1998). Theory of Point Estimation.

[Lötters J.C. et al., 1998] Lötters J.C., Schipperb, J., P.H. Veltink, Olthuisd,
W., and Bergveldd, P. (1998). A Procedure for in-use calibration of triaxial
accelerometers in medical applications. Sensors and Actuators A: Physical,
68(98):221–228.

[Luinge, 2002] Luinge, H. J. (2002). Inertial sensing of human movement. PhD
thesis, Twente.

[Luinge et al., 2007] Luinge, H. J., Veltink, P. H., and Baten, C. T. M. (2007).
Ambulatory measurement of arm orientation. Journal of biomechanics,
40(1):78–85.

[Madgwick et al., 2011] Madgwick, S. O. H., Harrison, A. J. L., and
Vaidyanathan, A. (2011). Estimation of IMU and MARG orientation us-
ing a gradient descent algorithm. IEEE ... International Conference on
Rehabilitation Robotics : [proceedings], 2011:5975346.

[Mahony et al., 2008] Mahony, R., Member, S., Hamel, T., and Pflimlin, J.-m.
(2008). Nonlinear Complementary Filters on the Special Orthogonal Group.
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 53(5):1203–1218.

[Mann et al., 1989] Mann, K. A., Werner, F. W., and Palmer, A. K. (1989).
Frequency Spectrum Analysis of Wrist Motion for Activities of Daily Living.
(2):304–306.

Tesi di dottorato in Ingegneria biomedica, di Luca Ricci, 
discussa presso l’Università Campus Bio-Medico di Roma in data 11/06/2015. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.

http://www.kuka-labs.com/
http://www.kuka-labs.com/


148 BIBLIOGRAPHY

[Martinelli et al., 2006] Martinelli, A., Tomatis, N., and Siegwart, R. (2006).
Simultaneous localization and odometry self calibration for mobile robot.
Autonomous Robots, 22(1):75–85.

[McCollum and Peters, 1924] McCollum, B. and Peters, O. S. (1924). A new
electrical telemeter. [United States] Bureau of Standards. Technologic papers,
(247):737–777.

[Mohd-Yasin et al., 2009] Mohd-Yasin, F., Nagel, D. J., and Korman, C. E.
(2009). Noise in MEMS. Measurement Science and Technology, 21:012001.

[Necsulescu et al., 1993] Necsulescu, D. S., Sasiadek, J. Z., Kim, B., Green,
D. N., and Ks, C. (1993). Fusion of Inertial and Kinematic Navigation
Systems for Autonomous Vehicles. In IEEE International Conference on
Vehicle Navigation and Information Systems, pages 462–465.

[NGDC, ] NGDC. National Geophysical Data Center. http://www.ngdc.

noaa.gov/geomag/WMM.

[OGRE, ] OGRE. Object-Oriented Graphics Rendering Engine. Available at
http://www.ogre3d.org/.

[Ojeda and Borenstein, 2002] Ojeda, L. and Borenstein, J. (2002). FLEXnav:
fuzzy logic expert rule-based position estimation for mobile robots on rugged
terrain. In Proceedings 2002 IEEE International Conference on Robotics and
Automation, volume 1.
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