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Abstract: This paper investigates the control problem of linear systems affected by an unknown
constant input delay by means of a finite-dimensional state feedback. The proposed solution
extends an approach used in the case of known delays by means of a suitably developed delay
identifier. A more general result about the convergence to zero of the controlled system when
the delay estimation error only converges to some neighborhood of zero is provided. Numerical
examples show the effectiveness of the proposed approach.
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1. INTRODUCTION

The control problem of linear and nonlinear systems af-
fected by input delay has been widely studied in recent
years (Bresch-Pietri and Krstic, 2013; Krstic, 2009, 2010;
Cacace et al., 2016). Most of the proposed approaches
extend the classic infinite-dimensional predictor approach
(Manitius and Olbrot, 1979; W. Michiels and Ztek, 2010)
or, more recently, use finite-dimensional control laws (Ca-
cace et al., 2014, 2015; Zhou et al., 2012; Yoon and Lin,
2013; Zhou, 2014). All of them assume the precise knowl-
edge of the input delay. When the delay is unknown, one
may resort to robust controllers (Fridman, 2014) but losing
useful properties such as the exponential convergence. An
alternative approach is to couple the controller with a
delay identifier. However, the delay identification problem
is challenging and very few contributions are devoted to
this problem. The methods proposed in Belkoura (2005)
and Belkoura et al. (2009) concern with parametric identi-
fication of delay systems with possibly unknown delays for
first order linear systems. In Hetel et al. (2011) a Linear
Matrix Inequality (LMI) based controller that uses an
approximate knowledge of a time-varying delay is realized.
The paper Polyakov et al. (2013) proposes an interval
observer for an input time-varying delay to realize an
adaptive output stabilization of linear systems using an
infinite-dimensional predictor controller. In Bresch-Pietri
and Krstic (2010) a delay-adaptive controller for linear sys-
tems with a single constant delay is designed by coupling
an infinite-dimensional predictor with a delay identifier.
This approach has been extended to uncertain systems
in Bresch-Pietri et al. (2012) and nonlinear systems in
Bresch-Pietri and Krstic (2014).

In this paper, we consider a finite-dimensional predictor
controller developed for linear systems with known input
delays (Cacace et al., 2014). The idea is to use the same

control law but replacing the real delay with an estimate.
As first contribution, we study the robustness of the
considered controller with respect to the delay estimation
error dynamics. Supposing the conditions to exponentially
stabilize the system, given the knowledge of the true
delay, to be satisfied, we prove that: 1) if the estimate
converges to the true delay value, the controlled system
is exponentially stable, 2) if the delay estimate definitely
belongs to a finite interval containing the true value, the
exponentially stability of the controlled system is still
guaranteed. As second contribution, we propose a delay
identifier that, under suitable hypotheses, converges to
this interval and guarantees the exponential convergence
to zero of the controlled system.

Notation. Given x ∈ R
n, ‖x‖ is the euclidean norm.

C(A;B) denotes the set of continuous functions that map
A into B with the uniform convergence norm, denoted by
‖ · ‖∞. Given an integer n and a positive real number δ,
Cn
δ = C([−δ, 0];Rn). Iδ̄ is the interval [0, δ̄]. The subscript

µ in fµ(t), where f ∈ C([a, b];Rm) for some integer m
and real numbers b > a ≥ 0 denotes that f depends on
the function µ ∈ C([a, b]; Iδ̄). W

1,2 indicates the space of
absolutely continuous functions form [−δ, 0] into R

n. σ(A)
is the spectrum of a square real matrix A. In is the identity
matrix in R

n. Given a linear operator T which maps a
normed space H into itself, ‖T ‖H denotes the induced
operator norm supx∈H ‖Tx‖H/‖x‖H . In the special case
of a matrix A, ‖A‖ is the euclidean induced matrix norm.
Finally, a function T : R+ → R

+ is of class K if it is zero
at zero, continuous and strictly increasing.

2. PROBLEM FORMULATION

Consider a linear system with the following form:

ẋ(t) = Ax(t) +Bu(t− δ) (1)
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where x(t) ∈ R
n is the state vector and u(t−δ) ∈ R

p is the
delayed control input. The delay δ is unknown and belongs
to the interval Iδ̄. The state x(t) is supposed to be available
at time t. Under the hypothesis that the pair (A,B) is
controllable, we consider the problem of constructing a
stabilizing control law with a delay dependent gain matrix,
similarly to Cacace et al. (2014). In the present paper,
since the delay is unknown, we suppose to have an estimate

δ̂(t). Therefore, we consider a feedback control law with
the following form:

u(t) = −K(δ̂(t))x(t) (2)

whereK(δ̂(t)) ∈ R
p×n. We assume that the control law (2)

starts operating at time t = −δ. Therefore, the closed-loop
system has the form of a state time-delay system:

ẋ(t) = Ax(t) −BK(δ̂(t− δ))x(t − δ), t ≥ 0

x(t) = φ(t), t ∈ [−δ, 0].
(3)

where φ ∈ Cn
δ is the so called preshape function.

The objective of this paper is to design a feedback control
law with the form in (2) coupled with a time-delay identi-

fier, which computes the estimate δ̂(t), in order to ensure
the exponential stability of the system state.

The following definition, introduced in Cacace et al. (2014)
and Fridman (2014), will be useful in the sequel.

Definition 1. (Exponential stability). For a given real num-
ber α > 0, system (3) is said to be α-exp stable if there
exist γ > 0 such that

||x(t)|| ≤ e−αtγ||φ||∞, ∀t ≥ 0, ∀φ ∈ Cn
δ . (4)

System (3) is exponentially stable if there exists a real
number α > 0 such that (4) holds true.

3. THE FEEDBACK LAW

We propose the following delay dependent control law:

u(t) = −K(δ̂(t))x(t), with K(δ̂(t)) = K̄eĀδ̂(t) (5)

where Ā = A − BK̄, with K̄ ∈ R
p×n is such that Ā

is Hurwitz with arbitrarily assigned eigenvalues (possible
in virtue of the controllability of the pair (A,B)). The
feedback control law (5) has the same form proposed in
Cacace et al. (2014), where the time-delay δ is known. We
report in the next Lemma a key result of Cacace et al.
(2014) (Theorem 1) useful to the present paper.

Lemma 1. Consider system (1) with the control law (5).

Assume that δ̂(t) = δ ≤ δ̄ for all t ≥ −δ. If there exists a
real number α > 0 such that

∫ δ̄

0

‖K̄eĀtB‖eαtdt ≤ 1, (6)

then, the closed loop system (3) is α̃-exp stable, with
α̃ ≥ α.

Lemma 1 states that, when condition (6) holds true, if

the delay identification error ǫ(t) = δ − δ̂(t) is null, i.e.

δ̂(t) = δ, the controlled system is exponentially stable
with rate α̃ > 0. In the present paper, we are interested

in studying what happens when the delay estimate δ̂(t)
is computed by a properly designed delay identifier. The
following theorems give the conditions on the delay iden-
tification error to keep the exponential stability of the
controlled system.

Theorem 2. Consider system (1) with the control law (5).
Assume that condition (6) is satisfied for a positive real
α. If |ǫ(t)| is uniformly bounded for all t ≥ −δ and
limt→+∞ ǫ(t) = 0, then system (3) is exponentially stable.

Theorem 3. Consider system (1) with the control law (5).
Assume that condition (6) is satisfied for a positive real α
and that |ǫ(t)| is uniformly bounded for all t ≥ −δ. Then,
there exists ǭ > 0 such that, if for some t∗ ≥ 0 |ǫ(t)| ≤ ǭ,
∀t ≥ t∗, then system (3) is exponentially stable.

The proofs to these theorems are given in Section 5. The-
orem 2 is the first main result of the paper. It states that,
once designed a feedback control law able to make expo-
nentially stable the system when the delay identification
error is zero, it is possible to keep the exponential stability
if the delay identification converges to zero.

Theorem 3 says that it is possible to keep the exponential
stability of the system even if the delay identifier is only
able to definitively drive the identification error into a
sufficiently small interval around zero.

4. THE DELAY IDENTIFIER

As discussed in last section, in order to obtain the expo-
nential stability of system (1) by using the control law (5),

we need a delay identifier able to drive the estimate δ̂(t)
toward the real value δ. To this aim, it is required that
the delay is identifiable from the state measurements. It
is important to stress that the system dynamics depends
on the time-delay since the control input is delayed. As
a consequence, the delay identifiability also depends on
the control law and we therefore provide a definition with
reference to the closed-loop system (3).

Definition 2. The delay δ in the closed-loop system (3)
is identifiable from the state if, for any non-zero initial
condition, it is not possible to have two delays δ1 and δ2,
δ1 6= δ2, such that x1(t) = x2(t) for all t > 0, where x1(t)
and x2(t) are the state vector trajectories associated to δ1
and δ2, respectively.

The delay identifiability assumption can be tested off-line
by analytic means or by simulations using copies of the
system with distinct delays.

The delay identifier that we propose is a piecewise constant

function, i.e. δ̂(t) is constant in time intervals of uniform
length ∆ > δ̄. Let tk = −δ + k∆, k = 0, 1, 2, . . . so that
[−δ,∞) is partitioned into the intervals [tk, tk+1). Given

an initial estimate δ̂0 ∈ Iδ̄ at t = −δ = t0, the piece-wise

constant delay estimate δ̂(t) is defined as

δ̂(t) =

{

dk−1(tk), t ∈ [tk, tk+1), k > 0,

δ̂0, t ∈ [t0, t1),
(7)

where dk(t) are temporary delay estimates, each one de-
fined in ℓk = [tk, tk+1] with the following dynamics:

ḋk(t) =
1

η + β‖Sk(t)‖
Proj[0,δ]

(

rTk (t)Sk(t)
)

dk(t0) = δ̂0 for k = 0,

dk(tk) = dk−1(tk) for k ≥ 1,

(8)

where:

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

1268



Fig. 1. Example of the delay identification dynamics.

• the standard projection operator is given by

Proj[0,δ̄](τ) =







0, dk(t) = 0 and τ < 0

0, dk(t) = δ̄ and τ > 0

τ, otherwise

. (9)

• η, β > 0 are tuning parameters.
• rk(t) is the difference

rk(t) = x(t) − ξk(t) (10)

between the system state and an observer ξk(t),
defined as ξk(t) = x(t) in [tk − δ̄, tk + δ̄], and

ξ̇k(t) = Aξk(t)−BK(dk(tk))ξk(t− dk(t)), (11)

in [tk + δ̄, tk+1].
• Sk(t) is the sensitivity of ξk(t) with respect to the
delay estimate dk(t), defined as

Sk(t) =
∂ξk(t)

∂dk

∣

∣

∣

∣

dk=dk(t)

, (12)

and computed by integrating in [tk + δ̄, tk+1]

Ṡk(t) = ASk(t)−BK(dk(tk))

·
(

Sk(t− dk(t)) − ξ̇k(t− dk(t))
)

, (13)

with initial condition Sk(t) = 0 in [tk − δ̄, tk + δ̄]. In

(13), ξ̇k(t−dk(t)) is computed at time t by using (11).

Figure 1 illustrates the dynamics of the delay identifier.
Within each interval ℓk, the temporary estimate dk evolves
following (8). In particular, within the initial time interval
[tk, tk+ δ̄] it is constant and equal to the last value reached
by the preceding temporary estimate dk−1 (notice that
ξk(t) = x(t) and therefore rk(t) = 0 in this interval,
see (11)). Then, dk is driven by a differential equation
depending on the residual rk and the sensitivity Sk. The
temporary delay estimate reached at the end of the interval

is used to update the delay estimate δ̂(t) and to initialize
the following temporary estimate dk+1.

As said in the notation description at the end of Section 1,
subscript µ in fµ(t) denotes that a function f depends on
the function µ. In (8)–(13), rk(t), ξk(t) and Sk(t) depends
on the temporary estimates dk(t). The notation rule should
be therefore applied to these quantities. However, in order
to improve the paper readability, in these cases, the
subscript dk has been substituted with a simple k.

We provide now a motivation to the piece-wise structure
of the proposed delay identifier. The idea is to reach the
real delay using an anti-gradient based approach. More
specifically, to direct the delay estimate along the opposite
direction of the gradient of the difference between the real
state x and the state ξ

δ̂
of a copy of the system, generated

using the estimated delay δ̂, i.e. using an update equation

of the form δ̇ = −γ∇
δ̂
(x − ξ

δ̂
). As done for example in

Cacace et al. (2016), realizing this idea requires the com-
putation of a sensitivity vector S

δ̂
= ∇

δ̂
ξ
δ̂
. Unfortunately,

because of the use of the control law (5), which depends

on the estimated delay δ̂, the computation of S
δ̂
needs

the knowledge of the real delay δ, which is obviously not
available. This does not hold if the estimation delay used
in (5) is constant. Therefore, the problem has been solved
as proposed in (8)–(13), by partitioning the time into the

intervals ℓk, keeping constant the delay estimate δ̂ used
in the control law within each interval, applying the anti-
gradient based method to a temporary delay estimate dk,

and updating δ̂ at the end of each interval.

Next theorem provides a sufficient condition for the con-
vergence to zero of the delay identification error ǫ(t).

Theorem 4. Assume that, for all k = 0, 1, 2, . . ., there exist
a function Tk : [0,∆− δ̄] → R+ of class K and two positive
constants η, β such that

∫ t

tk+δ̄

ST
d̃k

(τ)Sk(τ)

η + β‖Sk(τ)‖
dτ = Tk(t− tk − δ̄), (14)

for all t ∈ [tk + δ̄, tk+1] and for any d̃k ∈ C(ℓk; Iδ̄) such

that |δ − d̃k(t)| ≤ |δ − dk(t)|. Then, the delay estimate

δ̂(t) provided by (7)–(13) is such that ǫ(t) converges
asymptotically to zero.

The proof is given in Section 5.

Remark 5. The main assumption (14) in Theorem 4 is a
technical hypothesis to guarantee the convergence to zero
of ǫ(t). However, it is easy to see that if ‖Sk(t)‖ is a non-
zero function, then (14) is satisfied locally with respect
to the delay (i.e. when |δ − dk(t)| is sufficiently small).

Indeed, since the function d̃k is supposed to be such that
|δ − d̃k(t)| ≤ |δ − dk(t)|, the temporary estimate dk(t)
can be sufficiently close to the real delay δ to make itself
sufficiently close to d̃k and obtain that ‖Sk(t)‖ > 0 implies
ST

d̃k

(t)Sk(t) > 0. Therefore, even if condition (14) cannot

be verified a priori, we can check on line if it is satisfied
locally with respect to the delay by verifying if ‖Sk(t)‖ is
different from zero (see the examples in Section 6).

Next Corollary summarizes the main results this paper by
providing the sufficient conditions to obtain the exponen-
tial stability of the considered delay system.

Corollary 6. Consider system (1) with the control law (5)

and the delay estimate δ̂(t), provided by (7)–(13). Assume
that the hypothesis of Theorem 4 holds true and condition
(6) is satisfied for a positive real α. Then, system (1) is
exponentially stable.

The proof is given in Section 5.

5. PROOFS

In order to prove Theorem 2 and Theorem 3, we repre-
sent system (3) with an infinite dimensional state space
representation, which is often used for managing delay
systems (e.g. Germani et al. (2000); Cacace et al. (2015)).
The next subsection introduces this representation. Then,
Subsection 5.2 provides the proofs of Theorem 2 and The-
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orem 3, Subsection 5.3 provides the proof of Theorem 4
and, finally, Corollary 6 is proved in Subsection 5.4.

5.1 Infinite dimensional representation of system (3)

Using the control law (5) and recalling that Ā = A−BK̄,
system (3) assumes the form

ẋ(t) = Ax(t)−BK̄eĀδ̂(t−δ)x(t− δ). (15)

Considering that ǫ(t) = δ− δ̂(t), here supposed to be given
for t ≥ −δ, (15) becomes, for t ≥ 0,

ẋ(t) = Ax(t) −BK̄eĀδx(t− δ)

+BK̄eĀδ(In − e−Āǫ(t−δ))x(t − δ). (16)

Notice that the last term is null when ǫ(t− δ) is equal to
zero. Therefore, first two terms coincide to the dynamics

of system (3) with δ̂(t) = δ ∀t ≥ −δ.

System (16) can be rewritten in state-space form in the
Banach space M∞, defined as

M∞ :=

{[

x0

x1

]

:
x0 ∈ R

n

x1 ∈ W 1,2 , x0 = x1(0)

}

endowed with the norm ‖x‖M∞
:=

√

‖x0‖2 + ‖x1‖2∞
where x ∈ M∞ is composed by x0 ∈ R

n and x1 ∈ Cn
δ ,

x =

[

x0

x1

]

,

and ‖x1‖∞ = supθ∈[−δ,0] ‖x1(θ)‖
2.

In M2, system (16) assumes the form

ẋ(t) = A0x(t) +A1(t)x(t), t ≥ 0 (17)

where

x(t) =

[

x(t)
xt

]

,

is composed by the current state x(t) and xt ∈ W 1,2,
which is the state trajectory into the interval [t − δ, t],
i.e. xt : xt(θ) = x(t + θ) with θ ∈ [−δ, 0]. The initial
condition is

x(0) =

[

φ(0)
φ

]

. (18)

The operator A0 : D(A0) → M2 is defined as

A0 : A0

[

x0

x1

]

=





Ax0 −BK̄eĀδx1(−δ)
d

dθ
x1



 ,

with domain D(A0) = M∞. The collection of operators
A1(t) : M∞ → M∞ is defined for t ≥ 0 as

A1(t) : A1(t)

[

x0

x1

]

=

[

BK̄eĀδ(In − e−Āǫ(t−δ))x1(−δ)
0

]

,

We can readily prove that for all t ≥ 0,

‖A1(t)‖M∞
≤ ‖BK̄eĀδ(In − e−Āǫ(t−δ))‖ =: F(t). (19)

Indeed, since for any x ∈ M∞, ‖x0‖
2 ≤ ‖x‖2M∞

, we obtain:

‖A1(t)‖
2
M∞

= sup
x∈M∞

‖A1(t)x‖
2
M∞

‖x‖2M∞

= sup
x∈M∞

‖BK̄eĀδ(In − e−Āǫ(t−δ))x1(−δ)‖2

‖x‖2M∞

≤ sup
x∈M∞

‖BK̄eĀδ(In − e−Āǫ(t−δ))‖2‖x1(−δ)‖2

‖x‖2M∞

≤ ‖BK̄eĀδ(In − e−Āǫ(t−δ))‖2.

Notice that if ǫ(t − δ) = 0, then A1(t) = 0. Moreover,
if |ǫ(t)| is uniformly bounded, then F(t) is uniformly
bounded and A(t) is a bounded operator. Under this
hypothesis, the differential equation (17), with initial con-
dition (18), admits the mild solution

x(t) = Φ(t)x(0) +

∫ t

0

Φ(t− τ)A1(τ)x(τ)dτ (20)

where, for 0 ≤ t ≤ tf (tf < ∞), Φ(t) is a linear
bounded operator on M∞ into itself, strongly continuous
in t ∈ [0, tf ], and such thatΦ(t) = Φ(t−θ)Φ(θ), t ≥ θ ≥ 0,
and Φ(0) is equal to the identity operator in M∞ (Pazy,
1983).

We also define the operator Π0
n : M∞ → R

n as Π0
nx = x0,

which simply extracts the first component of the state
x ∈ M∞, and we introduce the useful property stated
by the following Lemma.

Lemma 7. Consider system (17) with the initial condition
(18). Suppose ǫ(t) = 0 for all t ≥ −δ, i.e. A1(t) = 0
for all t ≥ 0. If there exist γ, α > 0 such that, for all
t ≥ 0, ‖Π0

nx(t)‖ ≤ γe−αt‖φ‖∞, with φ(θ) = Π0
nx(θ) for

all θ ∈ [−δ, 0], then there exists Γα > 0 such that, for all
t ≥ 0, ‖Φ(t)‖M∞

≤ Γαe
−αt.

Proof. By the definition of M∞ we have that xt(θ) =
x(t + θ) = Π0

nx(t + θ). Since A1(t) = 0, from (20) it
follows that, for all t ≥ 0, x(t) = Φ(t)x(0) and therefore:

‖Φ(t)‖2M∞

= sup
x(0)∈M∞

‖Φ(t)x(0)‖2M∞

‖x(0)‖2M∞

= sup
x(0)∈M∞

‖x(t)‖2M∞

‖x(0)‖2M∞

= sup
x(0)∈M∞

‖Π0
nx(t)‖

2 + supθ∈[−δ,0] ‖Π
0
nx(t+ θ)‖2

‖x(0)‖2M∞

≤ sup
x(0)∈M∞

γ2
(

e−2αt + supθ∈[−δ,0] e
−2α(t+θ)

)

‖φ‖2∞

‖x(0)‖2M∞

= sup
x(0)∈M∞

γ2
(

e−2αt + e−2α(t−δ)
)

‖φ‖2∞
‖x(0)‖2M∞

≤ sup
x(0)∈M∞

γ2
(

1 + e2αδ
)

e−2αt‖x(0)‖2M∞

‖x(0)‖2M∞

= Γ2
αe

−2αt,

with

Γα =
√

γ2(1 + e2αδ)). (21)

5.2 Proof of Theorem 2 and Theorem 3

Even if similar, for clarity of presentation, Theorem 2 and
Theorem 3 are given as two different results. Anyway,
Theorem 2 actually is a corollary of Theorem 3 since, if
limt→+∞ ǫ(t) = 0, the delay identification error ǫ(t) will
surely definitely enter into an arbitrarily small interval
around zero. By Theorem 3 this means that the controlled
system is exponentially stable. Therefore, in order to prove
both the theorems, we need now to only prove Theorem 3.

Proof. Under the hypotheses of Theorem 3, Lemma 1

implies that the delay system (15), with δ̂(t) = δ is
α-exp stable. The state of this system coincides with
the component Π0

nx(t) of the state of system (17), with
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A1(t) = 0. This implies that the hypotheses of Lemma 7
are satisfied. Therefore, we have that, for all t ≥ 0,
‖Φ(t)‖M∞

≤ Γαe
−αt with Γα as in (21). Taking into

account such an inequality and the bound for ‖A1(t)‖M∞

in (19), from the mild solution (20), we obtain

‖x(t)‖M∞

≤ ‖Φ(t)x(0)‖M∞
+

∫ t

0

‖Φ(t− τ)A1(τ)x(τ)‖M∞
dτ

≤ ‖Φ(t)‖M∞
‖x(0)‖M∞

+

∫ t

0

‖Φ(t− τ)‖M∞
‖A1(τ)‖M∞

‖x(τ)‖M∞
dτ

≤ Γαe
−αt‖x(0)‖M∞

+

∫ t

0

Γαe
−α(t−τ)F(τ)‖x(τ)‖M∞

dτ.

from which, by using the the integral Bellman-Gronwall
inequality, it follows that

‖x(t)‖M∞
≤ Γα‖x(0)‖M∞

exp

(
∫ t

0

ΓαF(τ)dτ − αt

)

.

(22)
Let us observe now that F(t) is a function of ǫ(t) as defined
in (19). Since, by hypothesis, ǫ(t) is uniformly bounded it
results that F(t) is bounded too. Moreover, by continuity,
there exists a positive real ǭ such that, if for some t∗ ≥ 0
|ǫ(t)| ≤ ǭ, ∀t ≥ t∗, then ΓαF(t) ≤ α − α̃, ∀t ≥ t∗, with
0 < α̃ < α. Thus, from (22) follows that

‖x(t)‖M∞
≤ Γα‖x(0)‖M∞

eT
∗

e−α̃t, (23)

where T ∗ =
∫ t∗

0
ΓαF(τ)dτ is positive and bounded. The

proof is concluded by finally noticing that ‖x(t)‖ ≤
‖x(t)‖M∞

for all t ≥ 0.

5.3 Proof of Theorem 4

Proof. Let us define for t ∈ ℓk the temporary identifica-
tion error ǫk(t) as ǫk(t) = δ−dk(t). From (11) follows that,
for all t ≥ 0, ξδ(t) = x(t) (ξδ(t) is the version of ξk(t) with
dk(t) = δ for all t and k). Therefore, the residual rk(t) can
be rewritten as rk(t) = ξδ(t) − ξk(t). By the mean value
theorem, we can thus write

rk(t) =

∫ δ

dk(t)

∂ξµ(t)

∂µ
dµ = ǫk(t)

∫ δ

dk(t)

Sµ(t)dµ

= ǫk(t)Sd̃k
(t)

(24)

where d̃k(t) is a proper function is C(ℓk; Iδ̄) such that

|δ − d̃k(t)| ≤ |δ − dk(t)|. From (24) and (8), omitting the
saturations at 0 and δ̄, we obtain that

ǫ̇k(t) = −
ST

d̃k

(t)Sk(t)

η + β‖Sk(t)‖
ǫk(t), t ∈ [tk + δ̄, tk+1],

ǫk(t) = ǫk(tk), t ∈ [tk, tk + δ̄],

which admits the solution, for t ∈ [tk + δ̄, tk+1],

ǫk(t) = exp

(

−

∫ t

tk+δ̄

ST

d̃k

(τ)Sk(τ)

η + β‖Sk(τ)‖
dτ

)

ǫk(tk)

= e−Tk(t−tk−δ̄)ǫk(tk),

from which follows that

ǫk(tk+1) = e−Tk(∆−δ̄)ǫk(tk) = αkǫk(tk). (25)

Under the theorem hypothesis αk = e−Tk(∆−δ̄) < 1 for
all k = 0, 1, 2, . . .. Therefore, from (25) it follows that

limk→∞ ǫk(tk+1) = 0. This proves that ǫ(t) converges
asymptotically to zero since by (7) we have limt→+∞ ǫ(t) =
limk→∞ ǫk(tk+1).

5.4 Proof of Corollary 6

Proof. Because of the use of the projection operator (9)
and recalling that δ ≤ δ̄, we have that |ǫ(t)| ≤ δ̄ for all
t > −δ, i.e. it is uniformly bounded. Moreover, Theorem 4
implies that limk→∞ ǫk(tk+1) = 0. This means that all the
hypotheses of Theorem 2 are satisfied and thus system (1)
with the control law (5) is exponentially stable.

6. EXAMPLE

Let us consider the double oscillator system with input
delay presented in Cacace et al. (2014) and Yoon and Lin
(2013), which has the state space matrices

A =











p 1 0 0 0
0 0 ω 0 0
0 −ω 0 1 0
0 0 0 0 ω
0 0 0 −ω 0











, B =











0
0
0
0
1











. (26)

For p = 0.1 and ω = 1, σ(A) = {0.1, ±j}. The delay
bound is supposed to be δ̄ = 4 . Once σ(Ā) is set, it is
possible to compute the maximal delay δmax such that, if
δ is known and lower than δmax, system (1), controlled by
(5) is exponentially stable, i.e. condition (6) in Lemma 1
is satisfied for some α > 0 (see Cacace et al. (2014) for
details). By setting σ(Ā) = {−0.1, −0.1 ± j} we have,
for system (26), δmax = 5.54 s. Since δ̄ = 4 < δmax,
the hypotheses of Theorems 2 and 3 are satisfied. Con-
sequently, we can obtain the exponential stability of the
controlled system by identifying the delay δ using the
identifier presented in Section 4.

We consider two cases, both with the true delay value

δ = 1.5 s: one with the initial delay estimate δ̂0 = 0 s (case

1) and one with δ̂0 = 4 s (case 2). By keeping δ(t) = δ̂0
for all t ≥ −δ̄, the closed-loop system is unstable in both
the cases. Figures 2 and 3 illustrate the obtained results.
Figure 2 clearly shows that the closed-loop system is
asymptotically stable in both the cases. The state variables

converge to zero in about 60 s, when δ̂0 = 0 s, and in

about 80 s, when δ̂0 = 4 s. Figure 3-(left) depicts the

delay estimate, which starts from δ̂0 = 0 s and increases
monotonically toward the actual delay δ = 1.5 s, stopping
at about 1.2 after 60 s. We are therefore in the situation
of Theorem 3, since the delay identifier does not converge
to the real delay but reduces the delay identification error
enough for getting the exponential stability of the closed-
loop system.

Figure 3 also shows the index ρk defined as the ratio
between the maxima of the residuals and sensitivities
norms ‖rk(t)‖ and ‖Sk(t)‖, computed over the intervals

ℓk. When δ̂0 = 0 s (case 1), these two quantities both
tend to zero because of the convergence of the system
state. However, since ρk converges to a non-zero constant,
they have the same decay order. This means that quan-
tities ‖Sk(t)‖ are strictly positive. Thus, coherently with
Remark 5, condition (14) is locally satisfied for a time
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Fig. 2. State and control time evolutions with δ̂0 = 0 s

(left) and δ̂0 = 4 s (right), ∆ = 5 s and η = β = 2.
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Fig. 3. Delay estimate δ̂(t) (top) and ratio

ρk = ‖rk‖∞/‖Sk‖∞ (bottom), with δ̂0 = 0 s

(left) and δ̂0 = 4 s (right), ∆ = 5 s and η = β = 2.

interval sufficiently large to allow the delay identifier to
reduce the delay identification error enough for getting the
exponential stability of the closed-loop system.

In Figure 3-(right) we see that, starting from δ̂0 = 4 s
(case 2), the delay identifier converges to the true value.
In this case, the ratio ρk converges to zero, meaning that
‖Sk(t)‖ are always strictly positive. Thus, coherently with
Remark 5, condition (14) is locally satisfied allowing the
delay identifier to correctly estimate the real delay δ.

7. CONCLUSIONS

In this paper we have proposed a finite-dimensional state
feedback able to guarantee the exponential stability of
a linear system affected by an unknown constant input
delay. The control law uses a delay estimate computed by
a delay identifier. We have proved that the convergence of
the system state can be obtained when the delay identifier
converges to the true value or, more generally, to a neigh-
borhood of it. We also provided a sufficient condition for
the convergence or the delay identification error. Further
studies are needed to investigate the relationship among
the control law, the delay identifiability and the conditions
for the convergence of the delay estimate, in order to be
able to guarantee a priori the effectiveness of the control.
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