
Deep Learning at Scale

Paolo Viviani
Noesis Solutions NV, Belgium

Computer Science Department

University of Torino, Italy

paolo.viviani@noesissolutions.com

Maurizio Drocco
Pacific Northwest National Laboratory

Richland, WA, USA

maurizio.drocco@pnnl.gov

Daniele Baccega
Iacopo Colonnelli
Marco Aldinucci

Computer Science Department

University of Torino, Italy

{baccega,aldinuc}@di.unito.it

iacopo.colonnelli@unito.it

Abstract—This work presents a novel approach to distributed
training of deep neural networks (DNNs) that aims to overcome
the issues related to mainstream approaches to data parallel
training. Established techniques for data parallel training are
discussed from both a parallel computing and deep learning
perspective, then a different approach is presented that is meant
to allow DNN training to scale while retaining good convergence
properties. Moreover, an experimental implementation is pre-
sented as well as some preliminary results.

I. INTRODUCTION

As deep learning techniques become more and more popular,

there is the need to move these applications from the data

scientist’s Jupyter notebook to reliable and efficient enterprise

solutions. This aim involves several steps to be taken, and this

work advocates the need to push the current state of the art

in parallel training in order to achieve: 1) faster end-to-end

training for large production datasets; 2) distributed training on

the edge, namely on a number of heterogeneous, low-power, and

loosely-coupled devices (i.e. for privacy constraints); 3) training

code that can be redistributed, possibly in form of binaries

(i.e. to train models at customer’s premises without exposing

sensitive Python code). To practically implement this vision, a

number of advancements are required and this work represents

a first step towards:

1) a better theoretical understanding of the different strategies

of data parallelism in deep neural networks;

2) a consistent way to compare different deployments and

strategies.

Issues related to point 1 will be presented, addressing some

of them and discussing how it is possible to push further the

model training efficiency; moreover, this paper will propose a

design for a programming framework that would address point

2.
Sec. II presents a survey of parallel techniques for deep

neural network training, the next section provides a further

exploration of some theoretical highlights that can be exploited

to improve training scalability. Sec. IV presents a design for

an upcoming data parallel training framework and, finally, sec.

V provides an outlook of the potential impact of the presented

results as well as the opportunities.

II. BACKGROUND

Performance issues in deep neural networks (DNNs) have

been extensively investigated from many point of views: in

particular it is possible to clearly discriminate between the

training stage and the inference stage. The latter is usually

characterised by smaller computational workloads that are,

however, highly constrained by time, memory, and power

consumption due to the deployment on portable devices that

need predictions almost in real-time. This paper is focused

on the former stage of deep neural network training. A

comprehensive survey of the state of the art for parallel DNN

training has been presented by Ben-Nun and Hoefler [1], it is

among the goals of this paper to review a subset of the relevant

work, providing a more critical insight.

To further define the research scope of this work, it is useful

to highlight the main categorization of parallel training: namely

data parallelism vs. model parallelism. Data parallelism focuses

on distributing partitions of training data among workers, that

cooperate to train replicas of the same model; model parallelism

involves the partition of the model computation graph among

different workers, that train different parts of the same model

instance. While the latter (including layer pipelining) has been

proved to be an efficient way to improve the performance of

DNN training [2–5] it can be argued that its capacity to scale

beyond the single machine is limited by the higher frequency of

communications with respect to data parallelism, especially if

the distributed workers are loosely coupled (i.e. cloud instances

without dedicated interconnection, edge devices). Moreover,

model parallelism can be used transparently within a distributed

data parallel set-up to improve node-level performance, hence it

represents an orthogonal direction of improvement with respect

to data parallelism. In fact, this aspect is not explored in this

work, but it can be quickly added to the data parallel strategies

discussed later as a further optimization, without impacting

the following discussion.

A. Mathematical notation

Despite the many attempts to implement different optimiza-

tions strategies [6], back-propagation [7–10] with some flavour

of gradient descent [11] is still the most popular way to train

deep neural networks, mostly due to its high efficiency on

modern architectures like GPUs [12]. This section presents

some useful notation for gradient descent-based neural network

training.

For the rest of this section it will be considered that

a dataset X = {x1, . . . ,xn}, is used to train a neural

124

2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

2377-5750/19/$31.00 ©2019 IEEE
DOI 10.1109/PDP.2019.00025

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

network represented here as a collection of parameters (weights)
w = {w1, . . . , wm}. Hereafter, neither the network type

and topology (i.e. convolutional, recurrent, number of hidden

layers) nor the input dimensionality and shape are considered

relevant, as the formalism is generally applied to all of

them. Mini-batch gradient descent [10, 13, 14] has quickly

became the standard, combining the faster convergence of

Stochastic (on-line) Gradient Descent (SGD) [15–17], with

the more efficient computation of batch gradient descent.

The optimization step for training can be expressed as the

following weight update, computed with respect to a mini-

batch X(i,nb) = {xi, . . . ,xi+nb−1}:

wk(t+ 1) = wk(t)− η

nb

i+nb−1∑
j=i

∂L (w(t),xj)

∂wk
(1)

where t represents the current gradient descent iteration (step),

η is the so-called learning rate that defines the size of the

step to be taken in the direction of the steepest descent, and
∂L(w,xj)/∂wkis the partial derivative of the loss function of the

neural network with respect to the weight wk, when calculated

on the training sample xj. The partial derivative is averaged

over all the samples belonging to a given subset (the mini-
batch) of the training dataset of size nb. It is useful to recall

the definition of all the versions of gradient descent by means

of the value of nb:

• nb = 1, stochastic gradient descent

• 1 < nb � n, mini-batch gradient descent

• nb = n, batch gradient descent

Note that batch averaging, as opposite of just summing, has a

non-trivial impact on the convergence of the training [11]. It

is also useful to define the gradient for all the weights of the

model as following

∇L(w,xj) =

(
∂L (w,xj)

∂w1
, . . . ,

∂L (w,xj)

∂wm

)
(2)

this represents the direction of steepest slope of the loss surface

calculated with respect to xj in the parameter’s space (L :
R

m → R); it is trivial to obtain the gradient and the step with

respect to the whole mini-batch X(i,nb) as

1

nb

i+nb−1∑
j=i

∇L(w,xj)
def
= ΔL(w, X(i,nb))

w(t+ 1) = w(t)− ηΔL(w, X(i,nb)) (3)

Equation 1 represents the simplest form of mini-batch

gradient descent. Several algorithms have been developed

to improve the convergence rate of DNN training, a good

review of them can be found in literature [18, 19]. The key

points of these evolved algorithms are: 1) variable learning

rate, η → η(t); 2) accounting for previous gradient steps (e.g.

momentum [20]); 3) defining a different learning rate for each

weight η(t)→ η(t, wk) (e.g. ADAM [21]). These points have

an impact on parallel training implementation that will be

discussed later.

Input

xi

DNN

w

Output

y
(pred)
i

Loss

L(w,xi)
Labels

yi

Gradients

w← w − η∇L(w,xi)

Fig. 1. Back-propagation diagram for on-line gradient descent.

B. Training parallelism

When considering the whole feed-forward/back-propagation
[7] training process, it is important to remark that it is, to

some extent, intrinsically sequential. Figure 1 and equation (1)

show how the gradient value depend on the present w(t)
configuration and how its application through back-propagation

produces a new configuration w(t + 1): the new weights

represent a data dependency for the feed-forward step for

sample xi+1, that must come strictly after the back-propagation,

otherwise the gradient would be calculated based on outdated

(stale) weights. In principle this prevents any kind of input

sample-based parallelism while, in fact, this is true strictly

for on-line SGD: the concept itself of batch (or mini-batch)

gradient descent involves parallelism. The gradients related

to all the samples in the (mini-)batch are computed based on

the same value of w and, possibly, at the same time. It is

worth noting that the data dependency depicted in figure 1,

is introduced by on-line training algorithm and not by the

problem itself, hence there is room to relax this dependency,

either with mini-batches or with more sophisticated techniques

that relax the dependencies between mini-batches. Figure 2

exemplifies a possible behaviour of SGD on a loss surface: it is

not necessarily true that using always the most recent gradient

leads to the best training accuracy, even the red update could

end up to good loss minimum. In this sense is important to

remember that the loss surface of DNNs is highly non-linear

and difficult to describe globally [22, 23]: a certain amount of

noise and randomness associated to the gradient descent can

be beneficial to the training outcome in terms of generalization.

The next subsections will describe how this behaviour can

be exploited to introduce some degree of parallelism into the

training process.

1) Synchronous parallelism: As stated before, mini-batch

gradient descent combines the best of both on-line and batch

training; in particular, the fact that it can be expressed as a

chain of matrix-matrix multiplication (GEMMs) [10] that allow

for a very efficient implementation on multicore CPUs and

GPUs [11], enabled a wide adoption of deep learning due to the

better training feasibility. From the parallel computing point of

view, mini-batches represent the most elementary approach to

what is called synchronous data parallel training, as a global

synchronization happens at the end of each mini-batch.

The amount of available parallelism depends on the size of

the mini-batches, that in turn affects the convergence of the

training. Apart from avoiding the extreme cases of on-line and

125

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

w(0)

w(1) = w(0) + δ10
w(0) + δ20

w(1) + δ20w(1) + δ21

Fig. 2. Gradient descent in w space. δji = −η∇L(w(i),xj) represents the
gradient calculated on the weights updated up to step i, based on sample (or
mini-batch) xj. Therefore, the red update based on δ20 is outdated with respect
to w(1), but its impact is not necessarily detrimental to the training. The
target function is L : Rm → R.

batch gradient descent, the choice of the right mini-batch size is

not trivial, and there is interaction with other hyper-parameters,

like the learning rate, as widely discussed in literature [23–28]

often concerning the linear scaling of η. In principle, larger

mini-batches allow to process more samples per unit of time,

while the convergence can be hindered if the size is too large.

Mini-batch parallelism is usually exploited by means of

parallel GEMMs on suitable architectures [12, 29, 30]. However,

recent works [31–33] have demonstrated that it is possible

to push the mini-batch size further than previously expected

without affecting the model convergence. These works leverage

distributed GPU architectures in order to allocate and efficiently

compute such large mini-batches, while relying on an all-reduce
communication pattern to perform the global synchronization.

Ignoring the communication bottlenecks that will be discussed

in Sec. II-B4, it can be argued that this approach is problem-

specific and can not always be pushed as far as [31] suggests.

In fact, smaller mini-batches (∼ 32) provide usually better gen-

eralization performance [10, 23, 28]. This induces a granularity

problem: smaller batches can be effectively computed only if

the size of the network and the complexity of the individual data

sample (e.g. large RGB picture vs. small array of numerical

data) are large enough to saturate the given platform even with

only few samples being processed concurrently. This issue

can heavily affect the capability of certain models to scale on

large distributed clusters. A further issue is the so-called batch
normalization (BN) [34], that introduces data dependencies

between different samples among the same mini-batch, such

that a full synchronization is required at each invocation of

BN.

Parallelism at mini-batch level proved to be effective at

node-level when implemented on GPUs, multi-core CPUs or

other dedicate hardware (e.g. Google TPUs [35]); still, the

scalability of its extension to distributed memory architectures

is subject to a suitable problem granularity, that is far from

being granted apart from specific problems.

Further parallel implementation of DNN training usually

take mini-batch parallelism for granted, at least at node-level,

considering mini-batches as atomic entities for which the data

dependency defined in Figure 1 exists. From this point of view,

mini-batches can be considered the only truly synchronous

kind of parallel training: while other strategies that will be

presented in the next sections might involve synchronizations at

certain stages, they necessarily relax the dependency between

subsequent mini-batches. Indeed, in the rest of this paper mini-

batches will be considered as atomic entities, that cannot

be further divided. Synchronous distributed parallelism at

mini-batch level will also be addresses as large mini-batch
parallelism.

2) Asynchronous parallelism: The success of momentum as

a method to accelerate the training convergence, show that the

information of previous gradients is definitely relevant even

at the current iteration. Although the idea of trading gradient

staleness for computational efficiency can be also related a

posteriori to the usage of mini-batches, as highlighted by

Masters and Luschi [28], this notion has been at first exploited

for what is defined asynchronous parallel training. As the name

suggests, this strategy involves multiple workers performing

their own gradient descent for a certain amount of iterations,

while their findings (i.e. new weights, accumulated gradients)

are shared with other workers without a global synchronization

at the mini-batch level.

There is a common categorization [1] between centralized

and de-centralized implementations, as well as based the

degree of model consistency achieved. The latter is a property

of a given implementation that measures how different are

the weights of each model replica at a certain instant of

time, while the former categorization regards the usage of

a centralized parameter server to store a “master copy” of

the model weights or, otherwise, to coordinate the exchange

of gradients without a central authority. Sec. III will further

discuss these classifications. Early notable implementations of

asynchronous parallel gradient descent are HOGWILD! [36]

and its deep learning-focused derivatives like Downpour SGD

[2, 37]; followed by some other significant works [38–44].

Apart from the DistBelief [2] and Project Adam [37] papers,

that presented results previously not achievable and moved

deep learning resolutely into the HPC domain, most of other

works, while reporting solid scalability and timing results, were

not able to provide a significant legacy. In fact, the dominating

entries from DAWNBench [45], at the time of writing, are still

relatively small-scale, synchronous implementations.

While this review is far from being conclusive, it is

possible to suggest some limitations that arguably prevented

widespread adoption of asynchronous techniques. For instance,

the added complexity of a parameter server or a sophisticated

decentralized protocol might be perceived as not necessary

since synchronous, all-reduce-based, parallelism has mostly

satisfied the quest for deep learning scalability up to this

point. Moreover, most of these works present asynchronous

implementations of naive SGD, while the state of the art is

moving to more sophisticated algorithms like ADAM [21].

Some effort in this directions exists [46], as well as a prominent

theoretical work [47] that links gradient staleness to momentum;

still, the literature is lacking a comprehensive analysis of the

asynchronous behaviour of algorithm beyond SGD. Finally,

results are usually reported as a collection of experiments on

126

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

specific use cases, lacking a generalization effort that might

help to understand the validity of the methodology. In this

sense a relevant analysis has been performed by Lian et. al

[48]: the theoretical discussion of the convergence rate for an

asynchronous, decentralized algorithm represent a good starting

point for a performance analysis. However, it can be argued

that the real life behaviour is affected by a large number of

variables (e.g. weight update protocol,communication latencies,

etc.) that prevent this model to fully describe the performance of

a given implementation. These limitations, along with the lack

of details on the code and framework used for experiments, lay

the ground for a research that aims to fill the gap between sparse

experimentation and mathematical modelling of convergence

rates.

3) Other approaches: Synchronous and asynchronous SGD

are not the only ways to exploit concurrency in DNN training.

Model averaging [49–51] allow concurrent model replicas to

perform training independently up to a certain point (i.e. from

several mini-batches to multiple epochs), then the weights are

averaged among the different replicas. Ensemble learning [52,

53] performs the whole training on different model instances,

then averages the predictions among them. As said before with

respect to model parallelism, ensemble learning represents an

orthogonal direction of improvement with respect to parallel

gradient descent, hence it will not be discussed hereafter. On the

other hand, model averaging is strictly related to the techniques

presented in Sec. II-B1 and II-B2 and, while it is out of the

scope of this paper to formally draw the connection, it will be

investigated in the near future.

4) Further parallelism issues: As said in Sec. II-B1, mini-

batch parallelism tends to be performed within a single

node, either in shared memory or distributed among multiple

GPU. The computing horsepower provided by GPUs or other

dedicated hardware is usually enough for most applications,

still, there is the need to push the capability to train DNNs

effectively beyond the single node. While large mini-batches

and asynchronous techniques can be applied also within a

single machine when the problem is small enough, representing

an interesting research domain itself, they are born to be

distributed; this raises a number of issues related to the

communication of gradient updates.

The size of the gradient set (ΔL(w, X(i,nb)) for a state of the

art DNN easily reaches a few hundred MB [54]. This represents

a serious bottleneck for distributed implementations and two

main techniques are used to reduce the size of the gradient set

to be transmitted: quantization and sparsification. The former

intends to reduce the precision of the gradient representation in

order to reduce its overall size and it is demonstrated that this

technique works up to 1-bit representation [39, 55]; the latter

exploits the sparsity that naturally occurs in DNN gradients,

where most of the components are zero or almost zero. In this

way the array gradient component can be represented as sparse

and compressed with well-known techniques [39]. A more

recent work [54] also includes momentum in the discussion

and presents interesting results. Also in this case, apart from

the 1-bit quantization provided by Microsoft CNTK [56], the

frameworks used are not mentioned nor the code is made

available.

More methodologies can be exploited to enhance the

performance of distributed training, like the optimization of

the all-reduce pattern required by the large mini-batch training

or the overlapping of computation and communication during

training. Even if these techniques fall more in the domain

of the implementation details than in the field of parallel

training algorithms, they play a non-negligible role in the

overall training performance: this paper highlights the need

of a general purpose framework that provides the tools to

experiment with existing techniques at different levels (i.e.

asyncronous vs. synchronous, different communication patterns,

quantization, etc.), as well as defining and testing new ones.

Sec. IV will discuss the requirements for such framework.

III. THEORETICAL DISCUSSION

Assuming that using very large mini-batches is not suitable

for any application, end-to-end training performance can be

improved at two distinct levels:

1) at node level

• by implementing tensor operations in back-propagation

even more efficiently;

• by developing new dedicated hardware that is better

suited to handle small mini-batches;

2) at distributed level

• by improving parallel gradient descent without falling

back-on large mini-batches;

• by developing a different optimization strategy that

exploits parallelism better than gradient descent.

Point 1 is being researched actively [57, 58] and it is clearly out

of the scope of this paper. Also the development of algorithms

that departs completely from gradient descent is an interesting

topic, still this work is focused on improving on parallel

gradient descent. In this sense it is possible to show that,

despite usually being treated as different approaches, all the

techniques discussed in Sec. II-B1 and II-B2 can be placed

on a spectrum of communication completeness, namely the

property of parallel implementation to distribute each gradient

update from each worker to all the other workers, regardless

of the time at which this happens. It is indeed possible to

argue that the model consistency spectrum usually proposed

[1], provides limited insight to understand what happens to

model replicas in implementations presented in previous works.

A statement can be formulated in this sense that, while being

quite naïve, it is still important to understand the behaviour of

model replicas

Statement 1: Assuming mini-batch SGD without momentum

in a distributed setting, if all the gradient updates (communica-

tions) are delivered to all the workers, regardless of the delay,

all the model replicas will be consistent.

Figure 3 presents the diagram of subsequent gradient updates

for 2 workers: using commutativity and associativity of the

vector sum that represent the gradient update, it is trivial

to prove that, if an event triggers the application of all the

127

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

w0

wA
1 = w0 + δA1 (w0)

wA
1 + δA2 (wA

1)

Not received

wA
1 + δB1 (w0)

+δA2 (wA
1 + δB1 (w(0))

Received

Worker A

wB
1 = w0 + δB1 (w0)

wB
1 + δB2 (wB

1)

Not received

wB
1 + δA1 (w0)

+δB2 (wB
1 + δA1 (w0))

Received

Worker B

δ?−→←−

time

Fig. 3. Diagram of weights update between two workers. w0 is the common starting configuration. Assuming that all the updates that are not immediatly
applied are queued somewhere, commutativity and associativity of vector sum guarantee that A and B will always be consistent once the queues are emptied.

pending updates (e.g. a global synchronization), whatever is

the state of both workers before the event, their state will be

consistent afterwards. Of course statement 1 does not hold

if, for instance, updates not yet received are simply dropped,

instead of accumulated. Moreover, it must be highlighted that

having consistent model replicas does not mean that the result

is the same as the sequential implementation, but only that all

the model replica will agree on the value of w at a certain

time. It is also important remark that consistency is not implied

at any given moment, but it is always achieved as most of

the strategies proposed either accumulate all the updates in a

parameter server or require a synchronization at each epoch

[39] or both. This leads us to the following

Statement 2: There is no need to distinguish between

centralized and de-centralized set-ups if the communication is

complete; in fact there it becomes only matter of implementa-

tion to choose the approach, while the model consistency is

granted.

In this view the centralized parameter server is only a way

to simplify the implementation as well as inducing artificially

some staleness, that can be beneficial to the training.

This discussion is relevant as our goal is to exploit more

parallelism without resorting to large mini-batch training;

however, workers in figure 3 always go through the received
branch the outcome is, not surprisingly, exactly equal to

the large mini-batch strategy. Less trivially, it is possible to

figure that this is exactly what happens in an homogeneous,

de-centralized set-up, where the load is perfectly balanced

and updates are broadcast by each worker to all the others

[39], making an asynchronous solution not different from a

synchronous one. Of course it can be argued that not enforcing

explicit synchronization can benefit scalability on very large-

scale deployment, however, most of the current implementations

are in fact still bound to a centralized parameter server.

It is useful at this point to define a new spectrum to

discriminate between strategies:

1) Synchronous communication (large mini-batches)

2) Complete communication with bound delay (stale-

synchronous [40])

3) Complete communication with unbound delay (Downpour

SGD [2])

4) Incomplete topologies ([59, 60])

It is important to remark that, when applied in an homogeneous

environment with high-bandwidth, low-latency interconnection

(i.e. any common HPC set-up), the first three points are not

significantly distinguishable in terms of training convergence,

at least from the theoretical point of view. It is true that a

centralized set-up with a parameter server forces a degree

of asynchrony since gradient updates are queued, still this is

more a limitation of the centralized implementation than a

property of this strategy, moreover the centralized approach

introduces an obvious bottleneck. Point 4 would be, instead, a

significant departure from large mini-batches, and its benefit

on the training convergence should be definitely investigated,

while its scalability can be expected to be almost linear in terms

of samples processed per unit of time, regardless of the scale

of the deployment. Moreover, this approach would significantly

benefit in loosely-coupled heterogeneous environments (e.g.

edge), where the communication is costly and unreliable.

A. Incomplete topology training

Incomplete topologies has been explored theoretically in

generic optimization context [59, 61–63], with only one deep

learning application known to the authors [64]. This last work,

while very close to what envisioned here, presents a theoretical

discussion that is not really applicable to real training, even

if sound. In fact, the authors consider a convergence criteria

that is too strict to be relevant in a training scenario where, for

instance, a sudden drop in the loss function happens after a

very long plateu. In this sense, it is hard to find a formulation

of the convergence rate that can really capture the dynamics of

the optimisation for a real training case. The most promising

direction, at the time of writing, is to draw a connection between

the work done in general-purpose distributed optimization, and

deep learning, similarly to what is done by Tatarenko et al. [63]

when highlighting how their formulation corresponds exactly

to SGD as described by Robbins and Monro [65].

It is clear that allowing partial communication definitely

gives up on model consistency, even in the long run. The

impact of this on the training must be better understood, as

well as the policy to determine which model to choose as

representative when the training ends. This last issue is also

strictly related to the possibility to terminate some workers at

any given time without impacting the overall convergence: this

matter has been already discussed [2], but only from the point

of view of fault tolerance of the training system, not in terms

of training accuracy.

128

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

Finally, it is necessary to investigate the impact of partial

communication when more sophisticated optimization algo-

rithms are used in place of naïve SGD. Momentum arises

implicitly when introducing stale gradients [47], but there is

no clear understanding of what happens in case of incomplete

communication, as well as for more sophisticated algorithms

with variable learning rates. It is reasonable to expect that the

discussion made for the synchronous case by Goyal et al. [31]

on momentum correction and aggregation of gradients subject

to momentum can be extended for asynchronous set-ups with

also implicit momentum and investigation is in progress in this

sense.

To wrap up the discussion, asynchronous gradient descent

with partial communication seems a promising alternative to

more popular methodologies. The next section will discuss

the requirements of a framework that can enable efficient

experimentation on this topic.

IV. FAST C++ FRAMEWORK

This library is currently1 under development and not yet

publicly available. In order to provide a truly general purpose

tool, as well as to exploit the peculiarities of the different

deep learning frameworks available, the proposed FAST

(Flexible (A)synchronous Scalable Training) approach intends

to decouple the intra-node execution of the training from the

parallel coordination of workers; in fact it is reasonable that

the user desires to keep using its framework of choice (e.g.

Tensorflow, PyTorch, MxNet).

The library is designed from scratch with C++ training

in mind, according to the aim of making training code

redistributable, while potentially target training in production

and keeping the overhead as low possible. However, due to

the prevalence of Python for DNN training, Python wrappers

will be provided compatible with selected frameworks.

Figure 4 presents the logical architecture of the framework.

FAST is designed to provide the user a pre-defined worker

node, that should be filled with the code worth for one iteration

of training (namely, one mini-batch). Then, the communication

of gradients between workers is completely handled by the

framework. The user is exclusively responsible for the inclusion

of gradients created by other workers and provided locally by

FAST, in the update of the local model replica.

At higher level, the global training strategy is defined by the

topology of communications that interconnect the workers. In

particular, it leverages distributed FastFlow [66, 67] to hide the

SPMD machinery to the end-user [68], who is able to simply

define a topology attaching worker nodes and channels. In a

typical deployment, workers will be logically arranged in a

2D grid with a toroidal topology with indices (i, j), where

neighbour relationships are defined with (i− 1, j), (i+ 1, j),
(i, j − 1), and (i, j + 1). This topology allows for a gradient

information to propagate quickly to all the workers, even if it is

mediated with the gradients of intermediate workers. This kind

of neighbour relationships can be encoded easily thanks to the

1Wednesday 19th December, 2018

distributed FastFlow API, that also allows for non-blocking

collective communications among neighbours.

Within the nodes, multi-core FastFlow [69, 70] is used

to hide latencies related to host-device data transfer, as

well as to handle node-node transfers asynchronously with

respect to the local training. Differently from other mainstream

approaches adopting different programming models to exploit

shared-memory, GPUs, and distributed processing elements

(e.g. OpenMP+CUDA+MPI), FastFlow targets heterogenous

platforms with a singles programming model, which exploits

message-passing to model data dependencies and a globally

distributed memory to share data among processing elements.

V. CONCLUSION AND FUTURE WORK

It is very likely that the next breakthrough in training perfor-

mance will either come from new dedicated silicon architectures

or from theoretical advancements in optimizations techniques

that departs from gradient descent. However, at this stage, the

quest for training performance at scale has been met mostly

by synchronous, large mini-batch, parallelism; unfortunately

this strategy is heavily problem-dependent, moreover, it is not

suitable for other platforms than conventional HPC clusters

and tightly coupled cloud instances.

This paper, while still lacking experimental results, advo-

cates a departure from both synchronous and conventional

asynchronous training, as they both perform similarly in

terms convergence when working within a high-performance

infrastructure, with clear bottlenecks that can prevent them to

really scale over 128-256 GPU nodes. Instead, training with

incomplete communication topology is expected to introduce a

degree of randomization in the interleaving of updates coming

from different mini-batches that represents a novelty with

respect to large mini-batches and might arguably be beneficial

to the training.

This approach would require an effort on both the theoretical

and experimental side, in order to investigate the potential issues

reported in Sec. III. This work is currently taking place and

tackles the issues related to model inconsistency that derives

from partial communications, while the development of FAST

library will allow to validate theoretical results on real models

and datasets.

Acknowledgments: This research has been supported by the

Competency Center on Scientific Computing (C3S) at University

of Turin [71], by the HPC4AI project funded by the Region

Piedmont POR-FESR 2014-20 programme (INFRA-P) [72],

and the OptiBike experiment in the H2020 projects Fortissimo2

(no. 680481).

REFERENCES

[1] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Dis-
tributed Deep Learning: An In-Depth Concurrency Analysis,”
CoRR, vol. abs/1802.09941, 2018.

[2] J. Dean, G. S. Corrado, R. Monga, et al., “Large Scale
Distributed Deep Networks,” in Proceedings of the 25th
International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’12, USA: Curran Associates
Inc., 2012, pp. 1223–1231.

129

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

Tensorflow PyTorch MxNet ...

FAST Worker node

FAST high-level Topologies

Python/C++ training code

Fig. 4. FAST logical stack.

[3] J. Ngiam, Z. Chen, D. Chia, et al., “Tiled convolutional neural
networks,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, Eds., Curran Associates, Inc.,
2010, pp. 1279–1287.

[4] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
Back-Propagation for Context-Dependent Deep Neural Net-
works,” en-US, Microsoft Research, Sep. 2012.

[5] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Mar. 2012, pp. 2133–2136.

[6] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, no. Supplement C,
pp. 85–117, Jan. 2015.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” En,
Nature, vol. 521, no. 7553, p. 436, May 2015.

[8] P. J. Werbos, “Applications of advances in nonlinear sensitivity
analysis,” en, in System Modeling and Optimization, ser. Lecture
Notes in Control and Information Sciences, Springer, Berlin,
Heidelberg, 1982, pp. 762–770.

[9] Y. LeCun, “A theoretical framework for back-propagation,”
English (US), in Proceedings of the 1988 Connectionist Models
Summer School, CMU, Pittsburg, PA, D. Touretzky, G. Hinton,
and T. Sejnowski, Eds., Morgan Kaufmann, 1988, pp. 21–28.

[10] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
BackProp,” en, in Neural Networks: Tricks of the Trade,
ser. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 1998, pp. 9–50.

[11] Y. Bengio, “Practical Recommendations for Gradient-Based
Training of Deep Architectures,” en, in Neural Networks: Tricks
of the Trade, ser. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2012, pp. 437–478.

[12] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale Deep
Unsupervised Learning Using Graphics Processors,” in Proceed-
ings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09, Montreal, Quebec, Canada: ACM,
2009, pp. 873–880.

[13] G. B. Orr, “Removing Noise in On-Line Search using Adaptive
Batch Sizes,” in Advances in Neural Information Processing
Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds.,
MIT Press, 1997, pp. 232–238.

[14] M. Moller, “Supervised learning on large redundant training
sets,” in Neural Networks for Signal Processing II Proceedings
of the 1992 IEEE Workshop, Aug. 1992, pp. 79–89.

[15] L. Bottou and O. Bousquet, “The Tradeoffs of Large Scale
Learning,” in Advances in Neural Information Processing Sys-
tems, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20,
NIPS Foundation (http://books.nips.cc), 2008, pp. 161–168.

[16] D. R. Wilson and T. R. Martinez, “The general inefficiency of
batch training for gradient descent learning,” Neural Networks,
vol. 16, no. 10, pp. 1429–1451, Dec. 2003.

[17] L. Bottou and Y. LeCun, “Large Scale Online Learning,” in
Advances in Neural Information Processing Systems 16, S.

Thrun, L. K. Saul, and B. Schölkopf, Eds., MIT Press, 2004,
pp. 217–224.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA: MIT Press, 2016.

[19] S. Ruder, “An overview of gradient descent optimization
algorithms,” CoRR, vol. abs/1609.04747, 2016.

[20] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, Jan.
1999.

[21] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014.

[22] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and
Y. LeCun, “The Loss Surfaces of Multilayer Networks,” in
Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, G. Lebanon and S. V. N.
Vishwanathan, Eds., ser. Proceedings of Machine Learning
Research, vol. 38, San Diego, California, USA: PMLR, May
2015, pp. 192–204.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang, “On Large-Batch Training for Deep
Learning: Generalization Gap and Sharp Minima,” CoRR,
vol. abs/1609.04836, 2016.

[24] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimiza-
tion Methods for Large-Scale Machine Learning,” CoRR,
vol. abs/1606.04838, 2016.

[25] S. Jastrzebski, Z. Kenton, D. Arpit, et al., “Three Factors
Influencing Minima in SGD,” CoRR, vol. abs/1711.04623,
2017.

[26] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t De-
cay the Learning Rate, Increase the Batch Size,” CoRR,
vol. abs/1711.00489, 2017.

[27] J. Chen, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting
Distributed Synchronous SGD,” CoRR, vol. abs/1604.00981,
2016.

[28] D. Masters and C. Luschi, “Revisiting Small Batch Training
for Deep Neural Networks,” ArXiv e-prints, 2018.

[29] J. Bergstra, F. Bastien, O. Breuleux, et al., “Theano: Deep
Learning on GPUs with Python,” in Big Learn Workshop,
NIPS’11, 2011.

[30] S. Chetlur, C. Woolley, P. Vandermersch, et al., “cuDNN: Effi-
cient Primitives for Deep Learning,” CoRR, vol. abs/1410.0759,
2014.

[31] P. Goyal, P. Dollár, R. B. Girshick, et al., “Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour,” CoRR,
vol. abs/1706.02677, 2017.

[32] M. Cho, U. Finkler, S. Kumar, et al., “PowerAI DDL,” CoRR,
vol. abs/1708.02188, 2017.

[33] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large
Minibatch SGD: Training ResNet-50 on ImageNet in 15
Minutes,” CoRR, vol. abs/1711.04325, 2017.

[34] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
CoRR, vol. abs/1502.03167, 2015.

130

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

[35] N. P. Jouppi, C. Young, N. Patil, et al., “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” CoRR,
vol. abs/1704.04760, 2017.

[36] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD!:
A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent,” CoRR, vol. abs/1106.5730, 2011.

[37] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project Adam: Building an Efficient and Scalable Deep
Learning Training System,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
Broomfield, CO: USENIX Association, 2014, pp. 571–582.

[38] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang, “GPU
Asynchronous Stochastic Gradient Descent to Speed Up Neural
Network Training,” CoRR, vol. abs/1312.6186, 2013.

[39] N. Strom, “Scalable Distributed DNN Training Using Com-
modity GPU Cloud Computing,” Dresden, Sep. 2015.

[40] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware Async-SGD for Distributed Deep Learning,” CoRR,
vol. abs/1511.05950, 2015.

[41] S. Zheng, Q. Meng, T. Wang, et al., “Asynchronous Stochastic
Gradient Descent with Delay Compensation for Distributed
Deep Learning,” CoRR, vol. abs/1609.08326, 2016.

[42] J. Keuper and F.-J. Pfreundt, “Asynchronous Parallel Stochastic
Gradient Descent - A Numeric Core for Scalable Distributed
Machine Learning Algorithms,” CoRR, vol. abs/1505.04956,
2015.

[43] J. Hermans, G. Spanakis, and R. Möckel, “Accumulated
Gradient Normalization,” CoRR, vol. abs/1710.02368, 2017.

[44] X. Lian, C. Zhang, H. Zhang, et al., “Can Decentralized
Algorithms Outperform Centralized Algorithms? A Case Study
for Decentralized Parallel Stochastic Gradient Descent,” CoRR,
vol. abs/1705.09056, 2017.

[45] C. A. Coleman, D. Narayanan, D. Kang, et al., “DAWNBench
: An End-to-End Deep Learning Benchmark and Competition,”
2017.

[46] J. Hermans, On Scalable Deep Learning and
Parallelizing Gradient Descent, it, Syntethic version:
http://joerihermans.com/ramblings/distributed-deep-learning-
part-1-an-introduction/ Code https://github.com/cerndb/dist-
keras, Aug. 2017.

[47] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony
begets Momentum, with an Application to Deep Learning,”
CoRR, vol. abs/1605.09774, 2016.

[48] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous
Decentralized Parallel Stochastic Gradient Descent,” ArXiv
e-prints, vol. 1710, arXiv:1710.06952, Oct. 2017.

[49] B. Polyak and A. Juditsky, “Acceleration of Stochastic Ap-
proximation by Averaging,” SIAM Journal on Control and
Optimization, vol. 30, no. 4, pp. 838–855, Jul. 1992.

[50] S. Zhang, A. Choromanska, and Y. LeCun, “Deep Learning
with Elastic Averaging SGD,” in Proceedings of the 28th
International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’15, Cambridge, MA, USA: MIT
Press, 2015, pp. 685–693.

[51] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
Deep Neural Networks with Natural Gradient and Parameter
Averaging,” CoRR, vol. abs/1410.7455, 2014.

[52] S. Lee, S. Purushwalkam, M. Cogswell, D. J. Crandall, and D.
Batra, “Why M Heads are Better than One: Training a Diverse
Ensemble of Deep Networks,” CoRR, vol. abs/1511.06314,
2015.

[53] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowl-
edge in a Neural Network,” CoRR, vol. abs/1503.02531, 2015.

[54] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gra-
dient Compression: Reducing the Communication Bandwidth
for Distributed Training,” CoRR, vol. abs/1712.01887, 2017.

[55] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-Bit Stochastic
Gradient Descent and Application to Data-Parallel Distributed
Training of Speech DNNs,” Microsoft Research, Sep. 2014.

[56] D. Yu, A. Eversole, M. Seltzer, et al., “An Introduction
to Computational Networks and the Computational Network
Toolkit,” Microsoft Research, Aug. 2014.

[57] N. Vasilache, O. Zinenko, T. Theodoridis, et al., “Tensor Com-
prehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions,” CoRR, vol. abs/1802.04730, 2018.

[58] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S.
Vetter, “NVIDIA Tensor Core Programmability, Performance
& Precision,” CoRR, vol. abs/1803.04014, 2018.

[59] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Asynchronous
gossip algorithms for stochastic optimization,” in 2009 Interna-
tional Conference on Game Theory for Networks, May 2009,
pp. 80–81.

[60] T. Hoefler, A. Barak, A. Shiloh, and Z. Drezner, “Corrected
Gossip Algorithms for Fast Reliable Broadcast on Unreliable
Systems,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2017, pp. 357–366.

[61] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat,
and A. Scaglione, “Gossip Algorithms for Distributed Sig-
nal Processing,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1847–1864, Nov. 2010.

[62] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asyn-
chronous Parallel Algorithms for Nonconvex Big-Data Opti-
mization: Model and Convergence,” CoRR, vol. abs/1607.04818,
2016.

[63] T. Tatarenko and B. Touri, “Non-Convex Distributed Optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 62, no. 8,
pp. 3744–3757, Aug. 2017.

[64] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya,
“GossipGraD: Scalable Deep Learning using Gossip Com-
munication based Asynchronous Gradient Descent,” CoRR,
vol. abs/1803.05880, 2018.

[65] H. Robbins and S. Monro, “A Stochastic Approximation
Method,” EN, The Annals of Mathematical Statistics, vol. 22,
no. 3, pp. 400–407, Sep. 1951.

[66] M. Drocco, “Parallel programming with global asynchronous
memory: Models, C++ APIs and implementations,” PhD thesis,
Computer Science Department, University of Torino, Oct. 2017.

[67] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and
M. Torquati, “Targeting distributed systems in fastflow,” in
Euro-Par 2012 Workshops, Proc. of the CoreGrid Workshop
on Grids, Clouds and P2P Computing, ser. LNCS, vol. 7640,
Springer, 2013, pp. 47–56.

[68] M. Drocco, C. Misale, and M. Aldinucci, “A cluster-as-
accelerator approach for SPMD-free data parallelism,” in Proc.
of Intl. Euromicro PDP 2016: Parallel Distributed and network-
based Processing, Crete, Greece: IEEE, 2016, pp. 350–353.

[69] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: High-level and efficient streaming on multi-core,” in
Programming Multi-core and Many-core Computing Systems,
ser. Parallel and Distributed Computing, S. Pllana and F. Xhafa,
Eds., Wiley, 2017, ch. 13.

[70] M. Aldinucci, S. Ruggieri, and M. Torquati, “Porting decision
tree algorithms to multicore using FastFlow,” in Proc. of
European Conference in Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), ser. LNCS, vol. 6321,
Barcelona, Spain: Springer, Sep. 2010, pp. 7–23.

[71] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S.
Rabellino, “OCCAM: A flexible, multi-purpose and extendable
HPC cluster,” in Journal of Physics: Conf. Series 898 (CHEP
2016), San Francisco, USA, 2017.

[72] M. Aldinucci, S. Rabellino, M. Pironti, et al., “HPC4AI, an AI-
on-demand federated platform endeavour,” in ACM Computing
Frontiers, Ischia, Italy, May 2018.

131

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on March 28,2023 at 10:35:12 UTC from IEEE Xplore. Restrictions apply.

