
Vol. 87 - No. 4	 Minerva Anestesiologica	 481

E X P E R T S ’  O P I N I O N

Neurophysiological models of phantom 
limb pain: what can be learnt

Giovanni DI PINO 1 *, Valeria PIOMBINO 1, 
Massimiliano CARASSITI 2, Max ORTIZ-CATALAN 3, 4, 5, 6

1Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus 
Bio-Medico University, Rome, Italy; 2Unit of Anesthesia, Intensive Care and Pain Management, Department of 
Medicine, Campus Bio-Medico University, Rome, Italy; 3Center for Bionics and Pain Research, Mölndal, Sweden; 
4Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; 5Operational 
Area 3, Sahlgrenska University Hospital, Mölndal, Sweden; 6Department of Orthopedics, Institute of Clinical 
Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
*Corresponding author: Giovanni Di Pino, Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interac-
tion (NeXTlab), Campus Bio-Medico University, Rome, Italy. E-mail: g.dipino@unicampus.it

A B STRACT    
Phantom Limb Pain (PLP) is a dysesthesic painful sensations perceived in the lost limb, resulting from complex interac-
tions between structural and functional nervous systems changes. We analyze its main pathogenetic models and speculate 
on candidate therapeutic targets. The neuroma model considers PLP to arise from spontaneous activity of residual limb 
injured axons. Other peripheral-origin models attribute PLP to damage of somatosensory receptors or vascular changes. 
According to the cortical remapping model, the loss of bidirectional nervous flow and the need to enhance alternative 
functions trigger reorganization and arm and face skin afferents “invade” the hand territory. On the contrary, the persistent 
representation model suggests that continued inputs preserve the lost limb representation and that, instead to a shrinkage, 
PLP is associated with larger representation and stronger cortical activity. In the neuromatrix model, the mismatch be-
tween body representation, which remains intact despite limb amputation, and real body appearance generates pain. An-
other hypothesis is that proprioceptive memories associate specific limb positions with pre-amputation pain and may be 
recalled by those positions. Finally, the stochastic entanglement model offers a direct relationship between sensorimotor 
neural reorganization and pain. Amputation disrupts motor and somatosensory circuits, allowing for maladaptive wiring 
with pain circuits and causing pain without nociception. Relief of PLP depends solely on motor and somatosensory cir-
cuitry engagement, making anthropomorphic visual feedback dispensable. Existing and apparently contradicting theories 
might not be mutually exclusive. All of them involve several intertwined potential mechanisms by which replacing the 
amputated limb by an artificial one could counteract PLP.
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Sixty percent to 80%1 of subjects that suffered 
limb amputation have often their quality of 

life worsened by phantom limb pain (PLP).2 
Phantom sensation or awareness is the non-
painful feeling that the lost limb is still present 
and kinesthetically perceived, whereas PLP is a 
dysesthesic and painful sensations perceived in 
the lost limb. Phantom limbs can be experienced 
in the form of kinetic sensations (perception of 

movement), proprioceptive components (size, 
shape, position) and exteroceptive perceptions 
(touch, pressure, temperature, itch, vibration).3 
The phantom can be perceived as having a nor-
mal limb size, or shorter than the original limb 
(telescoping) with hands, fingers, or toes per-
ceived at the level of the stump.4

The majority of amputees experience PLP 
as burning (13.6%), cramps (15.3%), prick-
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more appropriate to refer to such pain as “neu-
roma pain.”24 Whereas neuromas can result in 
pain perceived in the missing limb treatable by 
surgical interventions,25, 26 maladaptive changes 
in the central nervous system can maintain PLP 
without a neuroma. Moreover, stump pain should 
be resolved as it can be a trigger of PLP.

Other models on the peripheral origin of PLP 
hypothesize that damaged residual somatosen-
sory receptors may produce unwanted discharge 
causing allodynia,27 or that non-neural factors, 
such as vascular changes in the stump, may con-
tribute to phantom pain.28

Alongside peripheral models, others focus on 
central mechanisms. After injury and loss of bidi-
rectional nervous flow, a topographical and func-
tional reorganization of the nervous system takes 
place, pushed by the need to enhance alternative 
functions vicariating for the hand loss.29 An initial 
unmasking of existing but functionally silent syn-
aptic connections due to the lack of “surround” 
inhibition from the “orphan” area is followed by 
a later arising of new path connecting the areas 
controlling the lost limb with adjacent regions.30 
Such cortical reorganization sets the stage for the 
cortical remapping model, which is one of the 
most popular explanations for the PLP.

Afferents from skin in the upper arm and face 
“invade” the hand territory, in line with the hand 
cortical representation setting, which is in be-
tween the face area on one side and the upper 
arm on the other.31

Built upon an older hypothesis,32 a keystone 
study shifted the focus to the CNS by showing 
that the amount of somatosensory cortical reor-
ganization correlates with the magnitude of PLP, 
not with non-painful phantom phenomena,33 
suggesting PLP as directly correlated with plastic 
changes occurring in this cortex. Along this line, 
PLP patients showed a shift of the lip representa-
tion toward the deafferented primary motor and 
somatosensory hand areas.34

The remapping model could explain telescop-
ing; since the cortical representation of the hand 
is wider and “stronger” compared to that of the 
forearm, and thus transradial amputations are 
less likely to develop a phantom forearm.35, 36

However, recent experiments found no clear 
correlation between cortical reorganization and 

ling (23.4%), electrification (21%) and tingling 
(20.4%).1 In 35% of cases, PLP is associated 
with the reason of amputation or with stump pain 
originating after amputation.5

PLP pharmacological management employs 
CNS-acting drugs and local anesthetics. Antide-
pressants, especially amitriptyline, are first-line 
therapies.6 Gabapentin is safer than other anticon-
vulsants,7 but its efficacy for PLP is low.8 Strong 
Opioids are effective,9, 10 while tramadol – a weak 
opioid μ-receptor agonist – is rapid but less ef-
fective.8 Memantine, an NMDA glutamate recep-
tor antagonist, is effective in acute pain,11 yet less 
effective on chronic one.12, 13 Local anaesthetics, 
(e.g. lidocaine – a sodium channel blocker) inject-
ed into the dorsal root ganglion transiently relieve 
PLP.14

Interestingly, there are no proofs that combi-
nation of medications is superior to single drug.8 
Other treatments include mirror and cognitive 
behavioral therapy, neuromodulation, and sur-
gery.15 Also, transcutaneous electrical nerve 
stimulation (TENS) has been proved to be help-
ful.16, 17

Despite such wide choice of possible treat-
ments, PLP remains often not completely resolved, 
and sufferers exhibit high psychological and emo-
tional distress,18 anxiety and mood disturbance.19

The origin of PLP has intrigued scientists for 
long.20, 21 Initially, PLP was believed to have no 
organic roots and its psychological consequence 
were misinterpreted as its cause.3 Today, PLP is 
believed to be the result of complex interactions 
between structural and functional changes of the 
central and peripheral nervous systems.

In this article we analyze the main pathoge-
netic models of PLP and speculate on candidate 
therapeutic targets. Here, we consider a “model” 
as a theoretical abstraction useful to circumscribe 
the object of investigation and examine the vari-
ables at play.

Peripheral pathogenesis behind PLP was 
popular in the past and had recently regaining 
relevance. The neuroma model considers PLP 
to arise from the spontaneous activity of ectopic 
hyperexcitable loci on injured axons within the 
residual limb.22 Although the brain might mis-
interpret impulses generated at the residual limb 
as originating from the absent limb,23 it may be 
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erning the intact and the lost limb, which reflects 
a repeated lack of their coactivation.37

Looking at the topic from a different perspec-
tive, the concept of body image and schema, the 
brain dynamic representation of the spatial and 
biomechanical properties of one’s body, derived 
from sensory inputs and from the copy of the 
motor commands during the interaction with the 
external world,41 could provide a template for 
understanding phantom limb syndrome after in-
terruption of sensory feedback.42, 43

During an anesthetic block of the brachial plex-
us, patients report their limb to be in one or two 
predominant postures, which do not vary among 
patients and ignore the actual position of the limb, 
as if the posture was coded in a static physical-
self.44 This possibility disrupts the traditional 
view of the body representation as being only a 
continuously updating projection of sensory feed-
back. Melzack hypothesizes that this representa-
tion relies on a genetically determined network 
connecting the cortex with the thalamus and the 
limbic system, named neuromatrix (Figure 1).45, 46

PLP challenging the orthodoxy of this relation-
ship. In the persistent representation model, 
maintained representation and continued inputs 
are supposed to preserve local structures and 
their functions in an experience-dependent man-
ner.37, 38 Instead to a shrinkage of the lost limb 
representation, this model associates greater PLP 
with stronger cortical activity and larger repre-
sentation of the phantom. In support of this mod-
el, it was found that the amount of PLP reduction 
experienced by patients undergoing transcranial 
direct current stimulation, while producing phan-
tom motor execution, inversely correlates with 
the level of activity in the affected sensorimo-
tor areas.39 Prior studies have found a reduction 
of PLP by transcranial direct current stimula-
tion alone,40 but the combination with phantom 
motor execution has been theorized as more 
effective in other models.24 In addition, similar 
cortical activity has been observed between able-
bodied and subjects with amputations, but latter 
showed a disruption of inter-regional functional 
connectivity between homologous cortices gov-

Figure 1.—Brief description of phantom limb pain models.

Motor pathway
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of the limb representation is still preserved, or in 
case of overlapping.53 The persistent representa-
tion model shares with Melzack’s hypothesis the 
idea that PLP arises while the representation of 
the limb remains mostly unchanged.

Another explanation which holds for several 
models sees maladaptive plasticity not mainly 
affecting the extension of the cortical representa-
tion or its absolute activity, but other functional 
features, such as the interplay with relevant ar-
eas. Peripheral factors such as neuromas and vas-
cular changes might not directly maintain PLP 
but, they could contribute to the stump pain that, 
in turn, could exacerbate PLP driving it to chro-
nicity.

One holistic approach to the complexity of the 
phenomenon was already suggested in the late 
nineties, where at least five different causes were 
argued to play a role in PLP: stump neuromas, 
cortical remapping, monitoring of corollary dis-
charge from motor commands to the limb, one’s 
body image and vivid somatic memories of pain-
ful sensations or posture of the original limb 
translated into the phantom.54 These components 
were thought to work together and influence 
each other; as a result, subjective experience of 
PLP may vary substantially from one patient to 
another. However, the necessity of each of these 
components, and the exclusion of others, remains 
an open question.

All considering, it emerges clearly that togeth-
er with the pharmacological management of pain, 
the complex nature of the phenomenon is better 
faced by a multilevel care approach designed to 
achieve physical and psychological recovery.

From this brief overview of the neuropatho-
genetic hypotheses behind PLP, few suggestions 
can be gathered. PLP complexity and its tight re-
lation with other types of pain (e.g. stump or dys-
autonomic pain) can easily lead to a PLP wrong 
diagnosis. Improving our knowledge of the phe-
nomenon is the first step towards the most accu-
rate therapeutic approach.

For instance, it is interesting to note how us-
ing a prosthesis can modulate body-related sen-
sorimotor integration,55 which is the basis on 
which the representation of the body is built, and 
it can also reduce the perceived pain.35, 56-59 In-
terestingly, the use of prostheses was reported to 

Neuromatrix is the base for a further PLP 
model suggesting that subject’s body representa-
tion remains intact despite limb amputation, but 
it no longer matches the real body appearance. 
This mismatch generates pain without nocicep-
tion and is responsible for PLP.

Accordingly, with a static representation hy-
pothesis, both the quality and location of the 
phantom pain are the same of the pre-amputa-
tion pain in 60% of subjects who reported pain 
around the time of amputation.47

However, the predictive value of pre-operative 
pain for postamputation pain has been debated3 
and recent studies found no correlation between 
pre-amputation pain and PLP.48

Nonetheless, memory seems to play a crucial 
role in the perception of PLP. It has been suggest-
ed that pain is encoded prior to the amputation 
and can later be triggered by external stimuli,47 
and that phantom sensations are effect of pro-
prioceptive memories which associated specific 
limb positions with the pain felt before the am-
putation.49 Following the amputation, memories 
of motor and sensory information for a limb may 
be recalled,50 as when during regional anesthesia 
patients refer to perceive limb position different 
from the actual one.51, 52 Visuo-proprioceptive 
incongruence is due to proprioceptive memories 
of the lost limb and visual awareness that the 
limb is missing.

Finally, the stochastic entanglement model is 
a recent attempt to explain PLP.24 Previous ideas 
on the genesis of PLP lack of a direct relationship 
between observed phenomena (e.g., cortical reor-
ganization) and the neural circuitry generating the 
experience of pain. Amputation drastically dis-
rupts cortical, sub-cortical, and spinal motor and 
somatosensory circuits, potentially allowing for 
maladaptive wiring with pain processing circuits. 
If under ordinary circumstances pain perception 
network are solely activated because of noxious 
stimuli, a stochastic entanglement between sen-
sorimotor and pain networks following deaffer-
entation could cause pain without nociception.

However, existing – and apparently contra-
dicting – theories might not be mutually exclu-
sive: the remapping and persistent representation 
models could coexist in a scenario in which a 
partial cortical reorganization occurs while a part 
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Key messages

•  Peripheral-origin models attribute PLP 
to neuroma, damaged somatosensory recep-
tor, or to vascular deterioration in the stump.

•  Alteration of bidirectional nervous flow 
and substitution of lost functions trigger cor-
tical plasticity, which “invades” the hand ter-
ritory (cortical remapping model) or enlarges 
the hand representation and its activity (per-
sistent representation model).

•  Mismatch between damaged body and 
its preserved representation (neuromatrix 
model) or harmful association of specific 
limb position with pre-amputation pain (pro-
prioceptive memories) are further possible 
PLP causes, but maladaptive rewiring of 
sensorimotor and pain circuits directly links 
plasticity and pain (stochastic entanglement 
model).

•  All those apparently contradicting theo-
ries might not be mutually exclusive and 
involve intertwined mechanisms by which 
high-interacting hand prostheses could coun-
teract PLP.
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Conclusions

The utility of a model relies on its ability to ac-
curately predict empirical data, while avoiding 
unnecessary complexity. We are still far from 
grasping a full understanding of the PLP phe-
nomenon, for instance, there is contradicting 
reports on congenital and acquired deafferenta-
tions,65-67 which PLP models should be challenge 
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