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Abstract— Objective: A major concern with wearable

devices aiming to measure the seismocardiogram (SCG)

signal is the variability of SCG waveform with the sensor

position and a lack of a standard measurement proce-

dure. We propose a method to optimize sensor position-

ing based on the similarity among waveforms collected

through repeated measurements. Method: we design a

graph-theoretical model to evaluate the similarity of SCG

signals and apply the proposed methodology to signals

collected by sensors placed in different positions on the

chest. A similarity score returns the optimal measurement

position based on the repeatability of SCG waveforms.

We tested the methodology on signals collected by using

two wearable patches based on optical technology placed

in two positions: mitral and aortic valve auscultation site

(inter-position analysis). 11 healthy subjects were enrolled

in this study. Moreover, we evaluated the influence of the

subject’s posture on waveform similarity with a view on

ambulatory use (inter-posture analysis). Results: the high-

est similarity among SCG waveforms is obtained with the

sensor on the mitral valve and the subject laying down.

Conclusions: our approach aims to be a step forward in the

optimization of sensor positioning in the field of wearable

seismocardiography. We demonstrate that the proposed al-

gorithm is an effective method to estimate similarity among

waveforms and outperforms the state-of-the-art in compar-

ing SCG measurement sites. Significance: results obtained

from this study can be exploited to design more efficient

protocols for SCG recording in both research studies and

future clinical examinations.

Index Terms— seismocardiogram (SCG), SCG waveform,

wearables, fiber optic sensors, graph theory, cardiovascu-

lar monitoring

I. INTRODUCTION

Seismocardiography has proven to be a promising tool for
a non-invasive monitoring of cardiac mechanics. Compared
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to traditional methods, e.g., electrocardiogram (ECG) and
photoplethysmogram (PPG), this technique has the potential of
providing direct information on hemodynamic parameters, car-
diac time intervals and mechanical events related to the cardiac
cycle [1]–[3]. This is particularly important for future clinical
use [4]–[6]. Seismocardiogram (SCG) essentially amounts to
a signal that measures minute thorax vibrations produced by
the beating heart on the chest wall surface [7], [8]. This signal
can be recorded in different modalities, which include contact
and contactless measurement methods. Contactless techniques
include laser doppler vibrometers, microwave doppler radars,
and airborne ultrasound surface motion camera [9]. For what
concerns contact-based methods, these microscopic vibrations
can be recorded in the form of accelerations, angular velocities
or deformations using accelerometers, gyroscopes or Fiber
Bragg Grating (FBGs) sensors, respectively [10]. FBGs, being
immune to electromagnetic interferences, broaden the clinical
application scenarios of seismocardiography. For instance,
they are allowed to be used in harsh environments like
Magnetic Resonance room, where their electrical counterparts
are forbidden. Contact-based methods are catching on fast
with the growing popularity of wearable devices, that allow
a prolonged and remote monitoring of cardiac function with
the lowest discomfort for the patient. A critical concern in
wearable seismocardiography is the lack of a global standard
for sensor positioning. Indeed, SCG waveform is characterized
by a variability that depends on different factors, including
sensor positioning. The measurement areas investigated in the
literature change slightly depending on the type of sensor unit
embedded in the wearable device and on the overall design and
dimensions of the system [10]. To date, the most investigated
positions are the mitral valve, the 4 valves auscultation sites,
the space between the second and third rib, the middle of the
sternum, and the left lower border of the sternum [9].

In the literature, very few attempts have been made to assess
the optimal position on the chest for SCG recording [11],
[12]. For instance, Lo Presti et. al. investigated the accuracy
in heart rate (HR) estimation of an FBG-based wearable
with respect to 3 different positions on the chest [12]. In
this study, the most promising position for SCG recording
on the basis of HR estimation resulted to be the mitral
valve. However, the literature is lacking in definitive studies
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comparing the performance of wearable systems in different
sensor positions in terms of measurement repeatability. Indeed,
one of the major issues with wearable devices is that the signal
waveform may change slightly depending on the subject and
over repeated wearings of the same subject. Thus, an optimal
sensor positioning should be identified also on the basis of
a good measurement repeatability: the best sensor position
should allow obtaining the most similar waveform for different
subjects and even for repeated wearings of the same subject.
Furthermore, for what concerns SCG signals collected using
FBG-based wearables, the state of the art is focused on the
HR estimation alone. Indeed, this technology is far less mature
than magneto-inertial units to be used for SCG recording.

In this paper, we propose the use of a graph theory approach
to evaluate the most promising position for SCG recording on
the basis of the similarity among signals collected from two
different positions on the chest: mitral valve and aortic valve
auscultation site. We use graph mining to compare signals on
the basis of the similarity among their waveforms. In other
words, the proposed algorithm extracts a graph from each
signal, compares the graphs belonging to the same group
of signals and returns a Group Similarity Score (GSS) for
the signals collected in the two sensor positions. The higher
the GSS, the better the agreement among its members and
the repeatability of the measure. Indeed, guaranteeing a good
measurement repeatability means finding the sensor position
that ensures to obtain the most similar waveform over multiple
measurements. The proposed algorithm was tested on SCG
signals collected simultaneously from the two sensor positions
using two custom made wearable patches based on FBGs.
Subsequently, the influence of the subject’s posture on SCG
waveforms was evaluated to find the optimal protocol for
future ambulatory use.

HR values were also extracted by the captured SCG signals
and compared to the reference ECG considering both the two
measuring sites and different body postures to evaluate the
ability of the wearable system to accurately detect physiolog-
ical information and compare sensor performance in the two
measurement sites. Our graph-theoretical methodology was
designed to tackle two important open challenges in the field of
wearable seismocardiography: i) optimizing sensor positioning
for SCG recording from the chest based on the SCG waveform
similarity and repeatability of the measure; ii) make a step
forward in the validation of wearable systems based on FBG
sensors for SCG recording.

The outline of the paper is as follows: in Section Model

and Analysis Framework we introduce the graph-theoretical
methodology we propose to compare SCG waveforms, in
Section Experimental Study we illustrate the experimental
trials performed, in Section Sensor Positioning and waveform

similarity Analysis using Graph Theory Approach we explain
the implementation of the proposed methodology on the
collected data and the results obtained from the comparison
analyses. To support the conclusions drawn, in Section Sensor

Positioning and Physiological Information using HR Analysis

we illustrate HR estimation from SCG recordings and the re-
sults obtained from the comparison analysis with the reference
instrument (i.e., ECG). Finally, in Section Comparison with

accelerometer-based SCG measurement system we compare
the performance of the novel FBG-based wearable patches
with the one of accelerometer-based systems which are con-
sidered the gold standard in this field.

II. MODEL AND ANALYSIS FRAMEWORKS

A. Graph Mining background

In this subsection, we briefly present the background of
graph mining. The proposed graph theory approach will be
discussed in detail in the following subsection. A graph is by
definition a set of nodes, which can be connected by edges
in pairs. Data mining aims at discovering interesting and/or
useful patterns that are hidden in a given set of data. This
innovative approach allows retrieving information on a dataset
by processing the graph structures that can extracted from it.
Such a novel method finds application in various and diverse
scientific fields, such as bioinformatics, chemoinformatics, and
computer/social networks. Different data mining approaches
can be used for mining the graph-based data and performing
useful analyses on these mined data. [13], [14], [15]

To the best of our knowledge, graph mining has been
applied to seismocardiography only once in the literature.
Indeed, Inan et al. devised a method to compare the structure
of graphs derived from SCG signals collected after exercise
and at rest in both compensated and decompensated heart
failure (HF) patients [16]. In particular, in [16] the authors
assessed the patients’ state on the basis of a custom defined
graph similarity score based on the number of links present in
the graphs corresponding to two different signals. Moreover,
they noted a significant change in graph similarity score from
admission (decompensated) to discharge (compensated). These
promising results revealed that graph mining is a sensitive
enough methodology to compare SCG waveforms in order to
assess their similarity.

Here, we propose a different graph-theoretical approach
based on the construction of weighted graphs and on the
computation of a fine-grained measure of graph similarity.
This measure is based on a graph-theoretical analogue of the
energy associated to an ensemble of particles. In particular,
our approach differs from [16] in that we aim to construct a
similarity score that provides a more granular information on
the difference between two vectors of features. In fact, in our
approach the weights correspond to the absolute value of the
difference of the two endpoint features. Moreover, rather than
counting the number of edges that are present in both graphs as
in [16] (a measure that, thus, follows an on/off perspective) we
provide a more nuanced and quantitative index based on the
complete spectrum of the adjacency matrix of the intersection

graph, in which each edge is weighted by the minimum of the
weights of the edges in the two original graphs.

B. Proposed graph theory approach

Let G = {V,E,W} be a weighted graph with n nodes
V = {v1, v2, . . . , vn}, e edges E ✓ V ⇥V , where (vi, vj) 2 E

captures the existence of a link from node vi to node vj and
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weights encoded by the n⇥ n matrix W , where

Wij =

(
wij , if (vj , vi) 2 E,

0, otherwise,

wij 2 R being the weight associated to the link (vi, vj).
A graph is said to be undirected if the existence of an edge

(vi, vj) 2 E implies the presence of (vj , vi) 2 E, while it is
said to be directed otherwise. In the following, we consider just
undirected graphs. For undirected graphs we assume wij =
wji, i.e., the weight matrix W is symmetric. An undirected
graph is connected if each node can be reached by each other
node via the edges in E. In the following, we consider graphs
that are not necessarily connected. Let the neighborhood of a
node vi be the set of nodes vj such that (vi, vj) 2 E.

Given a weighted graph G = {V,E,W}, the associated
energy [17] is defined as the sum of the absolute values of
the eigenvalues of the weight matrix W , i.e.,

�(G) =
nX

i=1

|eigi(W )|,

where eigi(W ) is the eigenvalue of W with i-th largest
magnitude.

Let us now consider weighted graphs G1 = {V,E1,W1}
and G2 = {V,E2,W2} and let us define the intersection graph

G1\G2 as the graph over the same set V of nodes with edges
that are the intersection of the two edge sets E1 and E2 and
with weights that are the minimum of the weights over the
two graphs, i.e.,

G1 \G2 = {V,E1 \ E2,min {W1,W2}} ,

where min {W1,W2} is the entrywise minimum of the two
matrices W1 and W2.

In the following we use the energy

�(G1 \G2) =
nX

i=1

|eigi(min {W1,W2})|,

as a measure of similarity between the graphs G1 and G2,
i.e., the larger is �(G1\G2) the more G1 and G2 are similar,
while �(G1\G2) = 0 when the edge sets E1, E2 are disjoint,
i.e., when E1 \ E2 = ;.

C. Proposed measure of similarity

Let x 2 Rn denote a vector and let us construct a graph
Gx via the k-nearest neighbor technique. In other words, let
us associate a node vi 2 V to each component i of the vector
x and let us create a link (vi, vj) connecting each node vi

with the k nodes having closest values of xi. In particular, we
assume the weight wij associated to a link (vi, vj) is |xi�xj |.
As a result, we obtain a weighted graph Gx = {V,Ex,Wx}.

At this point, let us consider x,y 2 Rn and let Gx =
{V,Ex,Wx} and Gy = {V,Ey,Wy} denote the two graphs
obtained via the k-nearest neighbor approach.

We evaluate the similarity of x and y in terms of the sim-
ilarity of Gx and Gy , i.e., we assume �(Gx \Gy) represents
a measure of similarity of x and y.

III. EXPERIMENTAL STUDY

A. Wearable system working principle

The wearable system used in the experimental study consists
of two biopatches, each one integrating an FBG sensor. The
FBG sensor is essentially a grating inscribed in a narrow seg-
ment of an optical fiber whose elements are stretches of fiber
with an altered refractive index. Such a grating results from the
exposure of the fiber core to a periodic pattern of intense laser
light and leads to a fixed index modulation with a periodic
variation along the propagation axis of the core. Hence, when a
broad spectrum of wavelengths is passed through the FBG, its
grating acts as a wavelength-specific dielectric mirror that back
reflects a narrow bandwidth of wavelengths ad transmits all
the others. The central wavelength of the reflected component
is referred to as the Bragg wavelength, �B , and satisfies the
Bragg condition [18], [19]:

�B = 2⌘eff⇤,

where ⌘eff is the refractive index and ⇤ is the period of
the refractive index variation in the grating. Due to the
temperature and strain dependence of the parameters n and
⇤, the wavelength of the reflected component changes also as
a function of temperature change (�T ) and/or applied strain
(✏). This dependency allows determining the temperature or
strain change from the shift in the reflected wavelength, which
is given by:

��B

�B
= �TkT + ✏k✏,

where the first term expresses the temperature effect on the
fiber while the second term expresses the strain effect on the
grating. Indeed, the coefficient kT is determined by the thermal
expansion and thermal-optic coefficients of the fiber, while the
coefficient k� is determined by the physical elongation of the
grating pitch and strain-optic coefficient of the fiber:

��B

�B
= �T (↵⇤ + ↵n) + ✏(1� ⇢✏),

with ⇢✏ the strain optic coefficient, ↵⇤ the thermal expansion
coefficient, and ↵n the thermo-optic coefficient of the optical
fiber. When FBGs are embedded within a coating matrix,
the values of k✏ and kT are different from the ones of the
bare fiber, since they are affected by the mechanical and
thermal properties of the material used to fabricate the external
protective coating. However, the new values of k✏ and kT can
be easily determined by a sensor calibration process. In this
application, FBGs undergo a strain of a few µ✏ causing a �B

shift in the magnitude of pm. On the contrary, the temperature
contribute can be considered negligible. The experimental
sessions were performed at constant room temperature and
the fiber grating was not in direct contact with the subjects’
skin, but it was placed within a silicone-based matrix which
was itself layered between two liners of kinesiological tape,
which create a thermal insulation for the sensitive element.
All these factors considered, the �B shift is given by the ✏

contribute only.
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Each FBG sensor was encapsulated into a flexible matrix of
silicone rubber, obtained by casting an appropriate amount of
Dragon SkinTM 20 (Smooth-On, USA) inside a 3D printed
mould, previously designed in Solidworks. Silicones are cer-
tified as skin safe materials (ISO 10993-10), and they are
highly suitable for use in sensors with biomedical applications
due to their properties of elasticity and resistance to high
temperatures.

The flexible matrix, embedding the FBG, was layered
between two liners of kinesiological tape (Alpidex, Germany)
to ensure a better mechanical coupling between the patch and
the chest surface. The bottom layer, which gets in contact with
the surface of the rib cage, shows a slit in correspondence
of the sensing element in order to guarantee a direct contact
between the sensitive part of the biopatch and the skin.

When the wearable patch is attached to the subject’s chest,
its volumetric expansions/contractions and microscopic defor-
mations caused by the air inhalation/exhalation and pumping
action of the heart, respectively, induce a strain on the patch
surface, which leads to a shift in �B . More in detail, �B

shifts to higher wavelength values in case of an expansion
and to lower wavelength values in case of a compression
of the patch and, consequently, of the embedded FBG. It
must be considered that the perturbations caused by the heart
beating are smaller than, and thus partially hidden by, the ones
caused by the overlapping respiratory activity. Although this
significant difference between the contribution of breathing-
related and heart-related movement on the FBGs output,
we have already demonstrated the possibility to perform a
simultaneous monitoring of these two activities using FBG-
based approach [20]. Moreover, the microscopic vibrations
induced on the chest surface by the mechanical activity of
the heart can be stressed in the absence of the respiratory
contribution (for instance, working in the apnoea phase).

B. Wearable system design and fabrication

In this study, a wearable system consisting of 2 identical
patches (each of dimensions 40mm ⇥ 25mm ⇥ 2mm) was
custom designed and fabricated. The system takes advantage
of the multiplexing capability of FBGs, which allows them
to be integrated in an array configuration for quasi-distributed
measurements.

1) Wearable system design: The proposed solution amounts
to a single optical fiber, housing two FBG sensors. In cor-
respondence of the sensing elements of the fiber, two “dog-
bone" shaped polymer housings of Dragon SkinTM 20 were
fabricated to confer a higher robustness to the sensory parts of
the system and placed in between two fabric liners to guarantee
a better adherence to the skin. This flexible casing makes the
FBG easy to be stretched repetitive times without tearing and
it rebounds to its original form without distortion. Dragon
SkinTM silicones are certified skin safe (ISO 10993-10) and
due to their superior physical properties and flexibility are used
in a variety of medical applications (e.g., prosthetic implants).

This configuration allows obtaining two simultaneous
recordings of the SCG signal from two different locations

on the chest via a single channel of the optical spectrum
interrogator (see Figure 2.a). The individual elements of the
wearable system are nominally identical to the one fabricated
in [20], that we tested for respiratory and HR monitoring. Both
the fabrication process and metrological characteristics of the
single patch are described in more detail in [20].

2) Wearable system fabrication: In order to obtain the outer
flexible shell, a mold was custom designed using a 3D CAD
program (Solidworks) and 3D printed in polylacticacid (PLA)
by Ultimaker 2 (Ultimaker, Utrecht, The Netherlands). The
FBG sensor was placed at the centre of the 3D-printed mold
before the polymer preparation and a pretension was applied
to the extremities of the fiber to keep the cable tight. Then,
Part A of the silicone was equally mixed with part B, and
the mixture was degassed and poured into the mould in a
single spot and with a uniform flow to minimize air entrapment
while dispensing. Before demoulding, the rubber was let to
cure at room temperature (⇠ 23 �C) for 4 h. During the
fabrication process, the power spectrum of the pretensioned
FBG sensor was collected before the silicone pouring and
after vulcanization. No spectrum changes occurred in central
wavelength (�B) and shape. Finally, two fabric liners were
applied were applied to both sides of the flexible matrix
obtained by the curing process. The fabric liners allow to
enlarge the flexible matrix contact surface with the skin and
facilitate the skin-sensor coupling.

3) Wearable-based measurement set-up: SCG signals were
recorded from the volunteers by connecting the wearable
system to an optical interrogator (si255 Hyperion Platform,
Micron Optics Inc., Atlanta, GA, USA) at 1000 Hz. The
interrogator functions as both a light source and a data ac-
quisition system, since the content-rich output is the reflected
wavelength. The measured data are sent to a laptop PC via
cable connection. Data post-processing was executed in the
MATLAB environment (MathWorks Inc., Natick, MA, USA).

C. Experimental protocol and setup

An experimental session on 11 healthy volunteers with no
history of cardiorespiratory diseases was conducted to collect
an adequate number of SCG signals in 2 positions for the
waveform similarity analysis. The preclinical trial, entitled
Smart Textile - Università Campus Bio-Medico di Roma, with
protocol number ST-UCBM 27.2(18).20 OSS was granted by
the Ethical Committee of the Università Campus Bio-Medico
di Roma (Rome, Italy). In particular, 11 subjects (70 % males
and 30 % females) were enrolled in the experimental study.
The volunteers were all adults with an age of 28 ± 5 years old
and a body mass index (BMI) of 24.2 ± 2.6 (both expressed
as mean ± standard deviation). During the trials, the two
wearable patches were attached in correspondence of two
anatomical landmarks: the mitral valve (xp) and the aortic
valve auscultation site (av) (Figure 1.a and 1.b). We chose
the mitral valve because it is very near to the xiphoid process
which is the most used position in the literature. Indeed, being
the heart located in the middle of the sternum slightly moved to
the left of the breastbone, this measurement site is the point at

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3264940

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SANTUCCI et al.: WAVEFORM SIMILARITY ANALYSIS IN WEARABLE SEISMOCARDIOGRAPHY (AUG 2022) 5

Fig. 1: a) Dimensions and picture of the sensor patch. b) Positions
of the two wearable patches during SCG acquisition.

which vibrations are most intense [11]. As a counterpart for
the comparison we chose the aortic valve auscultation site.
The reason for this choice is that, according to the literature,
this position has a number of interesting properties that make
it a promising location for SCG measurement. Indeed, this
is the area on the chest where the sounds of aortic valve
opening (AO) and closure are loudest. This phenomenon is
very important in SCG-related analyses, because the fiducial
point corresponding to aortic valve opening on SCG signal is
the reference point for HR extraction (i.e., the equivalent of
R-peak for ECG signal) and for the estimation of important
time intervals (e.g, Pre-ejection Pediod - PEP) [11], [21], [22],
[23].

Each volunteer was invited to perform the following pro-
tocol: 30 s of apnoea at full lungs, a variable recovery phase
of quiet breathing and 20 s of apnoea at empty lungs. Each
volunteer was asked to repeat the same trial in three body
postures: supine, sitting, and standing. Thus, at the end of
the second stage of apnoea, each volunteer was invited to
change the body position (the first time from laying down
to sitting up and the second time from sitting to standing
up) with a variable pause between the trials depending on
the single subject need for resting time. During the testing
procedure, ECG was collected as a reference using a commer-
cially available chest strap (ZephyrTM performance systems,
Medtronic, The Netherlands) at the sampling frequency of 250
Hz. Simultaneously, the outputs of the two wearable patches
(i.e., the �B of the two FBGs which represent the SCG)
were recorded using an optical spectrum interrogator (si255,

Hyperon platform, LUNA Inc., Roanoke, VA, USA) at the
sampling frequency of 1 kHz (see Figure 2).

D. Data set

For the analysis on the waveform similarity and opti-
mization of the sensor position, the data collected in the
experimental trials was organized in a private dataset. To only
focus on the heart-related signal (i.e., the SCG), we decided
to carry out the analysis on the signal parts collected during
apnoea, where the breathing-related movements are absent.

The dataset includes 4 signals per volunteer in each posture:
the signal relative to the apnoea phase with loaded lungs and
the patch on mv, the signal relative to the apnoea phase with
empty lungs and the patch on mv, the signal relative to the
apnoea phase with loaded lungs and the patch on av, the signal
relative to the apnoea phase with empty lungs and the patch on
av. Considering that the volunteers enrolled were 11 and the
postures assumed during the trials were 3 (i.e., lying, sitting
and standing), the dataset contains in total 132 signals.

In order to remove the settling phase of the apnoea, cor-
responding to the initial peaks, raw data were pre-processed
by cutting the signals from the thousandth sample onwards.
Finally, all the signals were cut in order to have the same
length, equal to the length of the shortest of the signals in the
dataset. The final version of the signals is 14 s long.

IV. SENSOR POSITIONING AND WAVEFORM SIMILARITY
ANALYSIS USING GRAPH THEORY APPROACH

The proposed approach based on graph mining was imple-
mented on this private dataset to evaluate waveform similarity
with respect to the position of the sensor (i.e., mv, and av).
The aim was to assess whether the collected signals were more
similar to each other when the sensor was positioned on mv

or when the sensor was placed on av. A higher degree of
similarity implies a higher repeatability of the measurement:
if SCG signals are more similar to each other, it means that
repeated fits of the same subject or different subjects with the
sensor in that position result in more similar signals, all other
conditions being equal. This translates into the guarantee of
having a more similar waveform over multiple measurements
by placing the sensor in a specific position.
A correct sensor positioning can be guaranteed and assisted by
newly proposed algorithms for detecting and localizing SCG
sensor misplacement [24], [25], [26], [27].

A. Implementation of the graph-theoretical approach

1) Inter-position analysis: The dataset was divided into 2
groups with respect to the sensor position (i.e., mv, and av).
Each group contains 66 signals. For each vector x 2 Rn

containing the signal samples, a graph Gx was computed
via the k-nearest neighbor technique with the parameter k

set to 1000. As in [16], to find the adequate value of k,
results were computed for k=3, k=10, k=30, k=100, k=300,
k=1000 and k=3000. Energy values appeared to grow with
increasing k-value and with substantial difference in the final
results. However, the increase in the GSS value comes at the
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Fig. 2: Experimental setup and SCG signals collected during apnoea by means of two wearable patches from the mitral valve and aortic
valve auscultation sites together with simultaneous ECG tracing.

expense of a greater computational cost and time (see Table I
and Table II). For this reason we chose a value of k=300. In
other words, a node vi 2 V was associated to each sample
value i of the signal vector x 2 Rn. A link (vi, vj) was
created to connect each node vi with the k nodes having
closest values of xi. In this study, we assumed the weight
wij associated to a link (vi, vj) as given by |xi � xj |. As
a result, we obtained a weighted graph Gx = {V,Ex,Wx}
for each signal. At this point, let us consider x and y 2 Rn

which are two signals belonging to the same group and let
Gx = {V,Ex,Wx} and Gy = {V,Ey,Wy} denote the two
graphs corresponding to x and y respectively, obtained via
the k-nearest neighbor approach. We evaluate the similarity
of x and y in terms of the similarity of their graphs Gx and
Gy , using as similarity score �(Gx\Gy) (see Figure 3). Thus,
the energy of the intersection of the two graphs Gx and Gy

is the measure of the similarity of the original signals that we
wanted to compare (i.e., x and y). This process is reiterated
for all the pairs of signals in each group taken once. At the
end of the iteration, a similarity score is given for each of
the two groups relative two the two sensor positions (mv and
av), expressed as mean ± standard deviation. The proposed
algorithm was implemented in Matlab environment that allows
a semi-automated data processing.

2) Inter-posture analysis: The same analysis was performed
on SCG signals collected on av and mv, divided into 3 groups
depending on the subjects’ posture. This analysis was ad-
dressed to detect changes in waveforms similarity with respect

TABLE I: Similarity scores (expressed as mean ± standard deviation)
computed using raw data for sensor positions mv and av with respect
to different values of k (3,10,30,100,300,1000,3000).

Similarity score
k value (considering all postures) mv av

k=3 1.9956⇥ 10�4 ± 9.0756⇥ 10�4 4.2066⇥ 10�5 ± 2.6570⇥ 10�4

k=10 0.0070± 0.0203 0.0017± 0.0053
k=30 0.1198± 0.2259 0.0369± 0.0758

k=100 1.7578± 1.9797 0.5627± 0.7903
k=300 12.5174± 10.1060 4.3794± 4.3723

k=1000 70.4898± 47.3937 25.9990± 20.3499
k=3000 280.7313± 173.5818 99.1031± 65.5401

TABLE II: Simulation time and standard deviation for different values
of k expressed in seconds and computed using two signals for each
simulation test.

Simulation time for three pair of signals at different k values
k value (considering all postures) mv av

mean and std k=3 781.92± 497.93 797.56± 505.07
mean and std k=10 909.90± 566.46 916.50± 589.52
mean and std k=30 1117.90± 704.05 1106.60± 691.35

mean and std k=100 1575.20± 12.46 1563.30± 3.84
mean and std k=300 1617.40± 19.70 1615.90± 22.29

mean and std k=1000 1618.50± 1.14 1635.6± 17.26
mean and std k=3000 1671.00± 22.96 1674.70± 23.28

to the posture assumed by the subject. This investigation will
show which posture returns most similar SCG waveforms for
repeated measurements. This finding is particularly useful in
order to theorize a protocol for an eventual medical examina-
tion to be included in the clinical practice.
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At the end of this analyses, the optimal sensor position and
posture of the subject for SCG measurement are given. The
proposed algorithm was implemented in Matlab environment
that allows a semi-automated data processing.

B. Statistical Analysis

The calculated mean values for the GSS between mv and
av sensor positions were compared using Student’s t-test. A
significant difference was found between the groups in the
GSS metric (i.e., 12.5174 ± 10.1060 for mv sensor position,
while the result was 4.37945± 4.3723 for av sensor position,
with significance value p < 0.05).

C. Results

1) Results of the inter-position analysis: The similarity score
�(Gx\Gy) of SCG signals divided into 2 groups with respect
to the sensor position (i.e., mv and av) revealed that SCG
signals collected in mv position are more similar among each
other than the ones collected on av. Indeed, the similarity
score for mv position expressed as mean ± standard deviation
is 12.5174 ± 10.1060, while the similarity score for av is
4.37945± 4.3723.

These findings provide evidence that support the conclusion
that the mitral valve is the most promising sensor position
based on the proposed similarity score against the aortic valve
auscultation site. Thanks to the algorithm design, this means
that by placing the sensor on several people in mv position,
SCG signals obtained are more similar among each other
than the ones obtained by placing the sensor in av. In view
of a future clinical examination, taking the mitral valve as
a reference for sensor positioning, both the inter- and intra-
subject variability of the SCG signal could be reduced with
respect to the aortic valve auscultation site.
In a way, these results confirm what can be found in the
literature about the lower left sternum being a promising
measuring point for SCG signal. However, in this study we
demonstrated that at this specific location the repeatability of
the signal waveform is good and better than another promising
point (i.e., av). Therefore, in view of a clinical examination it
would be appropriate to place the SCG sensor on mv because
the signal has a high intra-subject repeatability and a low inter-
subject variability.

2) Results of the inter-posture analysis: The similarity
scores of SCG signals divided into 3 groups with respect to the
subjects’ posture (i.e., laying, standing and sitting), reported in
Table III, revealed that SCG signals collected in mv position
are more similar among each other when the subject is laying
down. On the one hand, these findings confirm that the mv

position is the best one in all 3 postures. On the other hand,
they suggest that in mv position the highest similarity score is
obtained in laying position.

Thus, in view of a clinical examination it would be appro-
priate to record the SCG signal with the sensor attached on mv

while the subject is in laying position. These considerations
ensure so far that the SCG waveform has the best intra-subject
repeatability and the lowest inter-subject variability using this
protocol.

TABLE III: Similarity scores (expressed as mean ± standard devia-
tion) computed using raw data for sensor positions mv and av with
respect to the subject’s posture (i.e., laying, sitting, standing).

Similarity score
Posture mv av
Laying 16.12± 14.08 4.08± 3.68
Sitting 12.69± 8.25 4.63± 4.75

Standing 9.31± 7.91 4.15± 3.82

V. SENSOR POSITIONING AND PHYSIOLOGICAL
INFORMATION USING HR ANALYSIS

A. HR extraction

SCG and ECG raw data collected using the wearable system
and Bioharness were synchronized. All signals were processed
to preserve 14 s of trace as explained in more detail in Section
Dataset. Traces relative to the apnoea at full lungs and apnoea
at empty lungs were considered as separate signals until final
error computation.

1) Signals pre-processing: SCG signals were extracted from
raw data recorded by the wearable system using a first-order
Butterworth bandpass filter (BPF) with lower cut-off frequency
of 10 Hz and higher cut-off frequency of 30 Hz. ECG traces
were pre-processed using a first-order Butterworth BPF with
lower cut-off frequency of 5 Hz and higher cut-off frequency
of 26 Hz.

2) PSD analysis: The estimation of HR by SCG signals
was performed considering the peaks related to the aortic
valve opening. This event was detected on the SCG envelope
considering the output of each wearable patch. The reference
HR values were estimated by identifying the R peaks of the
ECG signal.

At first, the upper and lower envelopes of the input SCG
were determined using the magnitude of its analytic signal
computed using the discrete Hilbert Transform. Then, the
lower envelope was filtered using a third-order Butterworth
filter with lower cut-off frequency of 0.7 Hz and upper cut-off
frequency of 2 Hz. The extraction of HR values from filtered
SCG envelopes was performed in the frequency domain using
PSD estimation.
Absolute ECG traces were filtered in the HR range using
a first-order Butterworth BPF with lower cut-off frequency
of 0.7 Hz and higher cut-off frequency of 2 Hz. PSD was
computed for each signal and the dominant frequency of
each spectrum was found as the frequency value at which
the maximum peak of the spectrum occurs. On the basis of
the PSD dominant frequency value, the number of beats per
minute (bpm) is estimated for each signal.

B. Statistical analysis

The agreement between the HR values measured by the
wearable system (i.e., HRSCG) and those measured by the
gold standard (i.e., HRECG) was evaluated in terms of
percentage error (err). To estimate the err values for HR

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3264940

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2022

Fig. 3: Visual representation of the steps for computing the similarity score.

Fig. 4: Processing steps in HR analysis.

monitoring, the percentage error was computed as the ratio
between the absolute error and the magnitude of the reference
value percent:

err(%) =
(HRSCG �HRECG)

HRECG
⇥ 100

An err value for each subject in each posture and sensor
position was computed considering apnoea at full lungs and
apnoea at empty lungs as separate traces. Then, a final err
value for each subject by averaging the err value obtained in
each sensor position during apnoea at full lungs and apnoea at
empty lungs, considering each posture separately. Final errors
are shown schematically in IV. Negative values express the
FBG sensor tendency to underestimate the reference while
positive values express the FBG sensor tendency to overes-
timate the reference.

C. Results

The overall trend of err values is very low, confirming the
reliability of recorded SCG signals and thus the validity of the
wearable system for an accurate measurement of HR. Results
of err computation show that the lowest err values are obtained
for the patch in mv position and with the subject in the laying
posture (err values for subject 1, 2, 3, 4 and 9). For what
concerns the subject’s posture, lower err values are obtained
in laying posture, followed by sitting posture and standing
posture respectively.

For what concerns the measurement sites considered, it
can be stated that the lower err values are obtained for mv

measurement site. Mean error values show that the lowest
errors are obtained in mv position in all laying (-0.0055 %),
sitting (0.8609 %) and standing (-0.1273 %) postures.
These findings validate results obtained in the waveform
similarity analysis, confirming that the best measurement site
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for SCG recording is in correspondence of the mitral valve
auscultation site and the best posture is lying down.

TABLE IV: final err values for each subject in each posture and sensor
position.

Error values (%)
Subject Laying posture Sitting posture Standing posture

mv av mv av mv av
s1 -0.06 -0.06 0.3 -0.01 0.7 0.1
s2 -0.05 -0.8 0.2 0.5 -0.2 0.5
s3 0.07 0.2 -0.5 -0.7 -2.0 2.1
s4 0.04 -0.3 0.1 0.2 -1.6 -3.5
s5 -2.0 -2.3 -0.7 0.7 0.2 0.3
s6 3.6 0.7 0.4 0.3 0.7 0.6
s7 0.5 -0.03 11 43 0.7 3.9
s8 -2.4 -2.4 -2.4 -2.4 0.5 -1.8
s9 -0.04 -5 -0.4 0.3 -0.6 -0.3
s10 -0.2 -0.2 -0.03 3.2 0.7 2.9
s11 0.5 0.6 1.6 1.3 -0.5 -0.2

Mean error values (%)
-0.01 -0.87 0.86 4.2 -0.13 0.42

VI. COMPARISON WITH ACCELEROMETER-BASED SCG
MEASUREMENT SYSTEM

To better investigate the capability of the proposed wearable
patches based on FBG technology in monitoring SCG signal,
we carried out an additional experimental test to compare the
SCG retrieved by the FBG with the one obtained using an
accelerometer (traditionally used as SCG benchmark).

A. Experimental protocol and setup

In order to compare the proposed FBG-based wearable to a
more standard accelerometer-based SCG measurement system,
we carried out an experimental session on a single subject em-
ploying both systems simultaneously. For this purpose, a male
volunteer of age 24 and BMI of 23.2 was enrolled. Similarly
to the previous experimental session, the male volunteer was
asked to perform a protocol that sequentially included three
postures: laying down, sitting, and standing. In each posture,
the subject was asked to perform 2 apnoea phases of 30
seconds each, at loaded and empty lungs respectively. Despite
the challenging demand, the subject managed to maintain 30
seconds of apnoea and therefore the signals considered were
all 30 s long.
The accelerometer-based system assumed as a gold standard
is a small (36 ⇥ 30 ⇥ 11mm) IMU sensor (Xsens DOT,
by Xsens), embedding a tri-axial accelerometer (standard full
range of ±16g and sensitivity of 2048 LSB/g) and a tri-axial
gyroscope (full scale ±2000�/s). Two Xsens DOT devices
were fixed in correspondence of the two sensor positions
considered (i.e., mv and av) just above the corresponding
FBG-based wearable patch (see Figure 5). The Xsens DOT
wearable is small in size and light in weight (11.2g), but
the rigid housing containing the inertial sensors allows a
worse adherence to the skin compared to the soft wearable
patch. Moreover, the external housing makes the whole sensor
larger than the "point" accelerometer it embeds, worsening the
sensitivity of the bare sensor, just as in the case of the FBG

sensor once it is encapsulated within a larger polymer matrix.
Accelerometers data were collected at 60 Hz and saved in
the internal memories of the devices. Although information
content was present in all 3 axis, we chose to use the z-axis
SCG signal as the most promising for this type of analysis
[28], [7], [29]. The wearable Zephyr Bioharness TM device
(Zephyr Technology Corporation, Annapolis, MD, USA) was
used to record the simultaneous ECG waveform at 250 Hz and
the respiratory waveform at 25 Hz. The respiratory signal was
used to identify and cut out the apnoea parts on the other
signals. FBG-derived signals were collected at a sampling
frequency of 1 kHz. Before further processing, ECG and
respiratory data were re-sampled at 100 Hz.

B. Comparison based on physiological information using

HR analysis

All SCG and ECG signals were synchronized. All apnoea
signals were 30 s long. Traces relative to the apnoea at full
lungs and apnoea at empty lungs were considered as separate
signals until final error computation. For HR extraction the
same processing steps described in Section V and resumed in
Figure 4 were adopted. The error committed in HR estimation
with respect to the reference ECG was estimated in terms
of percentage error for both SCG measurement systems in
all apnoea phases. The final err values for each system in
each subject posture and sensor position were computed by
averaging the err values obtained during apnoea at full and
empty lungs, considering each posture separately (see Table
V). The small entity and similarity of errors committed by
the FBG and accelerometer-based systems demonstrate the
validity of the novel FBG-based wearable system for SCG
measurement as well as its high sensitivity, which is only
minimally affected by encapsulation in a polymer matrix.

VII. LIMITATIONS

The illustrated graph-theoretical approach was proposed to
tackle a fundamental open challenge in the field of wearable
seismocardiography: optimizing sensor positioning for SCG
recording from the chest. This methodology aims at finding
the best sensor position based on the SCG waveform similarity
and repeatability of the measure. In the literature, very few
attempts have been made to assess the optimal position on the
chest for SCG recording [11], [12], [30] and none of these
has focused on waveform similarity. The literature is lacking
in definitive studies comparing the performance of wearable
systems in different sensor positions in terms of measurement
repeatability. In our experimental study we considered the two
measurement sites that seem to be the most promising sensor
positions for SCG recording. A limiting factor of this study
could be that we only considered the two most promising
positions.
The proposed methodology was tested on 11 healthy volun-
teers with age of 28 ± 5 years old and a BMI of 24.2 ± 2.6
(expressed as mean ± standard deviation), were enrolled. The
population sample comprises both female and male subjects.
A lower BMI would likely allow a better adherence of the
sensor to the point of interest on the chest, leading to a cleaner
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Fig. 5: Experimental setup for the comparison analysis.

TABLE V: final err values for the FBG-based and accelerometer-based SCG measurement systems in each posture and sensor position.

Error values (%)
Laying posture Sitting posture Standing posture

FBG-based wearable Accelerometer-based system FBG-based wearable Accelerometer-based system FBG-based wearable Accelerometer-based system
mv av mv av mv av mv av mv av mv av

-1.15 -1.00 -0.01 -1.58 -3.16 -3.23 -0.15 1.88 7.23 7.26 -6.31 -0.33

SCG signal. For instance, in children, the SCG morphology
is similar to that of adults with comparable amplitude for
the mitral opening (MO) feature, higher amplitudes for other
features and a little shortening in time parameters [31].
Subjects with a high BMI (i.e., obese people, BMI: 30 - 34.9
kg/m2) represent a more critical issue when it comes to SCG
recording. However, Inan et al. [5] proved that graph mining is
a sensitive enough methodology to compare SCG waveforms
in order to assess their similarity even on people bordering
on obesity. In this view, further developments of our study
could be devoted to the application of the proposed method
on subjects with very different BMIs.
Although the proposed methodology helped in providing the
optimal sensor position for a reproducible SCG recording,
a correct sensor positioning on the subject’s chest by the
clinician must be ensured in order to obtain a clean SCG
signal. However, in this regard, a few algorithms for detecting
and localizing SCG sensor misplacement have been proposed
recently [24], [25], [26], [27]. For instance, Ashouri et al.
devised a method to automatically detect when the sensor
is placed in any position other than the desired one based
on the fact that the regression curve for estimating PEP
from SCG signals differs significantly as the position of the
sensor changes [24]. Alternatively, Etemadi et al. in [26]
proposed the use of a machine learning (ML) algorithm to
detect sensor misplacement. Multiple features were extracted
from SCG signals measured on healthy subjects in 5 different
chest positions representing locations at which a user may
accidentally misplace the hardware. Instances were labeled as
correct position (midsternal position) and incorrect positions (4

other locations). A boosted J48 decision tree classifier with an
Adaptive Boosting algorithm was then trained to automatically
determine sensor misplacement on the basis of signal changes
associated with sensor location. An overall precision of 0.83
and recall of 0.82 were achieved with this classifier. This
performance was estimated sufficient to reduce the error in
PEP estimation by 10 ms in unsupervised settings.
Additionally, using ML techniques, Zia et al. managed to
detect and localize SCG sensor misplacement with ensembled
quadratic discriminant classifiers [27]. In view of this, a correct
sensor positioning can be guaranteed and assisted by newly
proposed algorithms for sensor misplacement.

VIII. CONCLUSION

We used graph mining to evaluate the most promising
position for SCG recording on the basis of waveform similarity
among signals collected from two sensor positions: mv and av.

For each signal a graph was computed via the k-nearest
neighbor technique: a node was associated to each sample
and a weighted link was created to connect the pair of closest
nodes. Graphs were used to compare signals belonging to the
same group. The energy of the intersection of two graphs
was used as a measure of the similarity between signals.
This process was iterated for all the pairs of signals in each
group. A GSS expresses the repeatability of the measurement
in each position. The same analysis was performed on signals
with respect to posture. Results demonstrated that the higher
measurement repeatability is obtained with the sensor on mv

and the subject laying down. These results were confirmed by
the physiological information analysis and are independent of
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the system used: a comparison analysis was carried out on a
single subject using FBGs and accelerometers simultaneously.
The accelerometer is smaller and lighter, but its rigid housing
impacts the sensitivity of the bare sensor and its adherence to
the skin.
HR analysis returned err values broadly similar for both
systems.

These findings are a step forward in the optimization of
sensor positioning in wearable seismocardiography and can be
exploited to design more efficient protocols. These conditions
appear applicable in clinics: the mv is a well-identifiable
anatomical landmark that facilitates sensor positioning, and the
laying position is comfortable during medical examinations.

Future studies may be devoted to applying the methodol-
ogy to real patients’ data. Being this algorithm designed to
elaborate raw data, it could be implemented on signals from
HF patients for identifying cardiovascular dysfunctions on the
basis of SCG tracings.
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