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ABSTRACT 
 

Paralleling the epidemics of obesity and type 2 diabetes, non-alcoholic fatty liver disease 

(NAFLD) is now the leading cause of chronic liver disease worldwide. Most individuals 

remain asymptomatic for long periods of time with slowly progressive disease, but a 

minority progress to cirrhosis, liver failure, and hepatocellular carcinoma. In this 

scenario, the identification of risk factors for liver disease progression is crucial. 

Additionally, given the huge number of individuals at high risk for NAFLD and the 

invasiveness of liver biopsy, accurate and affordable non-invasive strategies to screen for 

liver disease are urgently needed. 

In Paper I, we investigated the individual contribution of inborn and acquired risk factors 

for the development of severe liver disease (cirrhosis, decompensated liver disease, 

hepatocellular carcinoma, liver transplantation) in 22,812 Europeans with type 2 diabetes 

from the prospective UK Biobank study. Abnormal AST, decrease in serum albumin and 

platelet count, cardiovascular disease, microalbuminuria, and genetic variants in PNPLA3 

and TM6SF2 genes were found to be the major independent risk factors for incident 

severe liver disease. 

In Paper II, we developed and validated the Fibrotic NASH Index (FNI), an accurate, 

simple, and affordable non-invasive score based on routine laboratory tests (AST, HDL 

cholesterol, HbA1c) to screen for fibrotic NASH in individuals with metabolic risk 

factors in primary healthcare and diabetology/endocrinology clinics. The derivation 

cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in 

Rome, Italy. External validation was assessed in three independent European cohorts 

(Finland, n=370; Italy n=947; England n=5,368) of individuals at high risk for NAFLD. 

The model was developed using a bootstrapping stepwise logistic regression analysis. 

Performance was satisfactory in both derivation and external validation cohorts 

(AUROCs 0.78 and 0.80-0.95, respectively). 

In conclusion, these findings may contribute in clinical care to identify individuals at risk 

for severe liver disease, in turn leading to personalised risk prediction and prevention 

strategies. 

 

Keywords: non-alcoholic fatty liver disease, NAFLD; human genetics; non-invasive 

tests; biomarkers; risk stratification. 
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ABBREVIATIONS 

 
ALP Alkaline phosphatase 

ALT Alanine aminotransferase 

APOE Apolipoprotein E 

AST Aspartate aminotransferase 

AUROC Area under the receiver operating characteristic curve 

BMI Body mass index 

CAP Controlled attenuation parameter 

CI Confidence interval 

cT1 Iron-corrected T1 

eGFR Estimated glomerular filtration rate 

FAST FibroScan-AST 

FIB-4 Fibrosis-4 index 

FLD Fatty liver disease 

FNI Fibrotic NASH index 

GGT Gamma glutamyltransferase 

GCKR Glucokinase regulator 

GPAM Glycerol-3-phosphate acyltransferase 1, mitochondrial 

GWAS Genome-wide association studies 

HbA1c Hemoglobin a1c 

HDL High-density lipoprotein 

HR Hazard ratio 

HSD17B13 Hydroxysteroid 17-beta dehydrogenase 13 

ICD-10 International Classification of Diseases 10th edition 

INR International normalized ratio 

LDL Low-density lipoprotein 

LSM Liver stiffness measurement 

MARC1 Mitochondrial Amidoxime Reducing Component 1 

MBOAT7 Membrane-bound O-acyltransferase domain-containing 7 

MRE Magnetic resonance elastography 

MRI Magnetic resonance imaging  
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MRS Magnetic resonance spectroscopy 

NAFLD Non-alcoholic fatty liver disease 

NAS NAFLD activity score 

NASH Non-alcoholic steatohepatitis 

NPV Negative predictive value 

PDFF Proton density fat fraction 

PNPLA3 Patatin-like phospholipase domain-containing 3 

PPV Positive predictive value 

PRO-C3 Pro-collagen III 

PRS Polygenic risk score 

SLD Severe liver disease 

TIMP1 Tissue inhibitor of metalloproteinase 1 

TM6SF2 Transmembrane 6 superfamily member 2 

VCTE Vibration-controlled transient elastography 
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INTRODUCTION 

NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) 

Paralleling the epidemics of obesity and type 2 diabetes, non-alcoholic fatty liver disease 

(NAFLD) is now the leading cause of chronic liver disease worldwide, affecting up to 

30% of the global population [1]. NAFLD encompasses a broad spectrum of conditions, 

from isolated hepatic fat accumulation (non-alcoholic fatty liver, NAFL) to the 

development of hepatocellular damage and inflammation (non-alcoholic steatohepatitis, 

NASH), leading to fibrosis and adverse liver-related outcomes, namely cirrhosis and 

hepatocellular carcinoma [2]. Over the past two decades, NASH has become one of the 

major causes of cirrhosis in adults, and NASH-related cirrhosis is currently the second 

leading indication for liver transplantation in the United States [3]. 

Most individuals remain asymptomatic for long periods of time (years/decades) with 

slowly progressive disease, but a minority progress to cirrhosis, liver failure, and 

hepatocellular carcinoma [4]. 

 

INBORN AND ACQUIRED RISK FACTORS FOR NAFLD 

NAFLD is a complex and heterogenous trait deriving from the interaction between 

genetic, epigenetic, and environmental factors [5, 6] (Figure 1). However, the exact 

contribution of each component is unknown and may be influenced by ethnicity, 

geography and the interplay between these components (gene-environment interactions) 

[6-8]. NAFLD inheritance is substantially varying between 20% and 70% [9]. In the past 

few years, genome-wide association studies (GWAS) and candidate-gene studies have 

identified several genetic loci implicated in hepatic lipid handling and contributing to 

NAFLD, including PNPLA3, TM6SF2, MBOAT7, GCKR, and HSD17B13 [6] (Figure 2). 

To date, the single nucleotide polymorphism rs738409 in PNPLA3 (p.I148M), encoding 

for a substitution of an isoleucine with a methionine at position 148 of the protein, is the 

strongest genetic determinant of NAFLD and the entire spectrum of its adverse clinical 

outcomes [10]. Within this context, a recent GWAS including more than 400,000 

Europeans identified a locus in MARC1 as a novel protective factor for fatty liver and all-

cause cirrhosis [11]. Along this line, novel genetic common variants in GPAM and APOE 

have been recently associated with steatosis and liver damage at an exome-wide level in 
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European participants from the UK Biobank [12]. Finally, the rs71519934 at the 

Pleckstrin and Sec7 domain-containing 3 (PSD3) gene, resulting in a leucine to threonine 

substitution at position 186 of the protein (L186T), was recently found to reduce 

susceptibility to the entire spectrum of NAFLD in at-risk individuals [13].   

 

Figure 1. Inborn and acquired risk factors for NAFLD. 

 

Adapted from Tavaglione F et al. Endocrinol Diabetes Metab. 2020 

 

Obesity and type 2 diabetes are the strongest environmental risk factors for developing 

NAFLD. Indeed, up to 65% of individuals with type 2 diabetes have NAFLD and this 

rate becomes even higher in individuals with morbid obesity [14]. However, despite the 

very large number of individuals with NAFLD, only a minority progress to cirrhosis and 

hepatocellular carcinoma [2]. Acquired risk factors and environmental triggers 

predisposing to NAFLD also include alcohol consumption, dietary habits, lack of 

exercise, and familial disorders (e.g., hypobetalipoproteinemia or lipodystrophy) [2, 6, 7, 

15]. Finally, the crosstalk between liver and gut may also contribute to metabolic 

aberrations occurring in NAFLD, as evidenced by studies reporting changes in gut 

microbiota compositions in individuals with NAFLD [16-18]. 
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Figure 2. Metabolic pathways of common genetic determinants of NAFLD.  

 

Image is courtesy of Dr. Oveis Jamialahmadi, University of Gothenburg, Sweden. 

 

INVASIVE ASSESSMENT OF NAFLD 

Currently, the gold standard for diagnosing NASH and liver fibrosis is still a histological 

assessment by liver biopsy, an invasive and costly procedure which is not devoid of 

complications [19, 20]. Indeed, liver biopsy carries potential risks of pain, bleeding, 

infection, and extremely rarely, even death [21]. Additionally, liver biopsy is able to 

assess a small proportion of the liver, and interpretation and scoring of liver specimen are 

affected by significant inter- and intra-observer variability. Thus, liver biopsy is not 

suitable for screening at the general population level, and it’s recommended to be 

performed only in selected individuals [19, 20]. 

 

NON-INVASIVE ASSESSMENT OF NAFLD 

Blood-based biomarkers 

The presence of advanced fibrosis is considered a clinically relevant milestone in the 

natural history of NAFLD, being positively correlated with the occurrence of liver-related 

complications and mortality [22, 23]. Therefore, much attention has been focused on 
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developing non-invasive biomarkers able to detect advanced fibrosis [24]. Currently, the 

fibrosis-4 index (FIB-4, non-patented) and the enhanced liver fibrosis test (ELF, patented) 

are the most widely adopted serum biomarkers. Overall, non-invasive scores are highly 

effective at ruling out advanced fibrosis, showing high negative predictive values (NPVs 

>90%). However, their positive predictive values (PPVs) are often modest, and they are 

unable to accurately discriminate the different fibrosis stages [25]. The FIB-4 score (age, 

AST, ALT, platelet count) was originally developed in individuals with HCV/HIV co-

infection with an AUROC of 0.74 and 0.77 in the derivation and validation cohorts, 

respectively [26]. Subsequently, FIB-4 was found to be one of the best performing and 

simple score for advanced fibrosis in individuals undergoing liver biopsy for suspected 

NAFLD, with an AUROC of 0.86 (0.78–0.94) [27]. Values <1.3 effectively rule out 

advanced fibrosis in NAFLD, while those >2.67 (or >3.25 in some studies) identify 

individuals with advanced fibrosis. In clinical practice, the lower (high-sensitivity) 

threshold is the most used given that the NPV is most robust [25]. 

In addition to FIB-4, the NAFLD fibrosis score (NFS: age, type 2 diabetes, BMI, 

AST/ALT, albumin, platelet count) was found to be the other best-performing simple 

biomarker for advanced fibrosis. NFS was developed in an international cohort of 

individuals with biopsy-proven NAFLD with an AUROC of 0.81 (0.71–0.91) [28]. 

Values <-1.455 exclude advanced fibrosis with high accuracy and values >0.676 diagnose 

advance fibrosis with improved PPV. This score has been independently validated in 

several studies [25]. 

Other non-invasive scores for liver fibrosis include the AST/ALT ratio (AAR) [29], AST-

to-platelet ratio index (APRI: AST expressed as ratio of the upper limit of normal, platelet 

count) [30], BARD score (BMI, AST/ALT, type 2 diabetes) [31], and FORNS (age, 

cholesterol, GGT, platelet count) [32]. 

The ELF test is a panel of direct markers of fibrosis and matrix turnover, namely 

hyaluronic acid, pro-collagen III (PRO-C3), and tissue inhibitor of metalloproteinase 1 

(TIMP1). It was first developed in individuals with HCV, and subsequentially validated 

in NAFLD with an AUROC of 0.90 (0.84-0.96) [33]. The ELF threshold <7.7 (low 

threshold recommended by the manufacturer) demonstrated high sensitivity of 0.93 

(0.82-0.98) but low specificity of 0.34 (0.13-0.65), whereas the ELF threshold >9.8 (high 

threshold recommended by the manufacturer) showed a specificity of 0.86 (0.77-0.92) 
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and sensitivity of 0.65 (0.49-0.77). A specificity of 0.93 (0.85-0.96) and sensitivity of 

0.51 (0.31-0.70) were observed at the ELF threshold of >10.51 (high threshold 

recommended by the UK NICE guideline). Importantly, the NPV was good when the 

prevalence of advanced fibrosis ranged from 5-10%, while the PPV was less strong [34]. 

Additional scores that comprise direct biomarkers of liver fibrosis are FibroTest (total 

bilirubin, GGT, α2-macroglobulin, apolipoprotein A1, and haptoglobin, corrected for age 

and gender) [35], FIBC3 (PRO-C3, platelet count, age, BMI, type 2 diabetes) [36], and 

ADAPT (PRO-C3, platelet count, age, type 2 diabetes) [37]. 

Alongside with liver fibrosis, a body of evidence shows that fibrotic NASH, the 

inflammatory form of NAFLD associated with significant activity (NAS ≥4) and fibrosis 

(F ≥2) (also classified as “at risk” NASH), is a key driver for developing advanced liver 

disease [8]. Up to date, three non-invasive scores have been generated to assess fibrotic 

NASH, namely the blood-based MACK-3 (hoMa, Ast, CK18) [38] and NIS4 (miR-34a-

5p, alpha-2 macroglobulin, YKL-40, HbA1c) [39], and the transient elastography-based 

FibroScan-AST (FAST) score (AST, controlled attenuation parameter [CAP], liver 

stiffness measurement [LSM]) [40].  

Notably, polygenic risk scores (PRSs) are emerging as promising non-invasive clinical 

tools to estimate the risk of NAFLD development and progression [41]. In this scenario, 

the PRS of hepatic fat (PRS-HFC) was developed by combining four common steatogenic 

risk loci in PNPLA3-TM6SF2-MBOAT7-GCKR weighted by their effect size on hepatic 

fat [42]. The PRS-HFC was found to predict the full spectrum of histological liver damage 

in patients with NAFLD [42]. Additionally, PRS-HFC and PRS-5 (i.e., PRS-HFC 

integrated with the HSD17B13 locus) predicted hepatocellular carcinoma better than 

single genetic risk variants either in at-risk individuals or in Europeans from the general 

population [43]. Specifically, positive PRS (defined as PRS-HFC ≥0.532 and PRS-5 

≥0.495, prevalence ~10%) conferred ~3-fold increased risk of hepatocellular carcinoma. 

Despite a limited sensitivity, PRSs showed a good specificity (~90%) to discriminate 

hepatocellular carcinoma in the general population and performed better in the subset of 

individuals with dysmetabolism [43]. Gellert-Kristensen et al. [44] proposed an 

unweighted PRS based on the number of at-risk alleles in PNPLA3-TM6SF2-HSD17B13 

and demonstrated that higher score values were associated with a higher risk of non-viral 

liver disease progression in large cohorts of Europeans. Specifically, individuals with the 
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highest PRS had ~12-fold and ~29-fold increased risk of cirrhosis and hepatocellular 

carcinoma, respectively, as compared to those with the lowest score in a population-based 

cohort in Europeans. Advantages of this approach are the easy score calculation, the ease 

of applicability and the use of variants robustly associated with FLD. On the other hand, 

PRSs have a normal distribution with the majority of individuals in the general population 

bearing an average to low risk, thereby limiting their predictive ability [41]. 

Finally, lipidomics, proteomics, metabolomics, metagenomics, and genomics 

technologies have been developed to identify novel biomarkers for NAFLD. However, 

currently none of the available biomarkers are able to diagnose and stage NAFLD with 

high sensitivity and specificity [45]. 

 

Imaging-based biomarkers 

Several non-invasive imaging procedures have been developed to assess liver fibrosis by 

measuring liver stiffness as a surrogate, including ultrasound-based elastography 

techniques (e.g., point-shear wave elastography [pSWE] and bidimensional shear wave 

elastography [2D-SWE]), vibration-controlled transient elastography (VCTE) by 

FibroScan® (Echosens, Paris, France), and more recently, magnetic resonance 

elastography (MRE) [46] (Figure 3).  

Ultrasound-based elastography techniques use high-frequency ultrasound impulses to 

generate sheer waves and require the operator to obtain a series of liver stiffness 

measurements in the region of interest. There are limited studies demonstrating good 

diagnostic accuracy of these techniques for detecting advanced fibrosis in individuals 

with NAFLD. Moreover, additional data on the optimal cut-offs and quality criteria are 

needed [47].  

VCTE is the most widely adopted and validated elastography technique to estimate liver 

fibrosis in clinical care [25]. VCTE measures the speed of a mechanically induced shear 

wave in liver tissue using ultrasound and provides an estimate of the degree of liver 

fibrosis with LSM [48]. Examinations with at least 10 valid measurements of which 

>60% should be valid and with an interquartile range/median of LSM ≤30% are deemed 

valid [24].  
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Figure 3. Non-invasive tests for liver fibrosis.  

 

Boursier J and Tsochatzis EA. JHEP Rep. 2020 

 

The diagnostic performance of VCTE has been extensively validated in individuals with 

NAFLD [48, 49]. Limitations of VCTE in NAFLD include unclear optimal cut-offs, 

invalid or unreliable exams particularly in morbidly obese individuals or with 

inexperienced operators, and limited diagnostic accuracy for diagnosing earlier stages of 

fibrosis [47]. In addition to obesity, results of LSM can overestimate fibrosis in case of 

congestive heart failure, inflammation, and recent food ingestion [25]. According to the 

latest EASL guidelines, values ≥8 kPa might be used to identify individuals at 

intermediate-high risk for advanced fibrosis, requiring a referral to liver clinic for further 

investigation and follow-up [50]. More recently, VCTE by FibroScan® equipment has 

been implemented by the ability to quantify hepatic steatosis by measuring the CAP, an 

ultrasound-based tool which measures the ultrasound attenuation of the echo wave and is 

obtained simultaneously to LSM [48, 51]. As previously detailed regarding LSM, there 

are no consensual CAP cut-offs for identifying hepatic steatosis. According to the latest 

EASL guidelines, values above 275 dB/m might be used to diagnose steatosis at a 

sensitivity >90% [50]. 

VCTE-based biomarkers have also been combined with blood-based biomarkers to non-

invasively identify individuals with fibrotic NASH and advanced fibrosis. The FAST 
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score (LSM, CAP, AST) showed satisfactory diagnostic accuracy for detecting fibrotic 

NASH in individuals with NAFLD from secondary/tertiary international care centers 

with an AUROC of 0.80 (0.76-0.85) and 0.85 (0.83-0.87) in derivation and external 

validation cohorts, respectively. A FAST score ≤0.35 (rule-out threshold) is associated 

with a lower likelihood of having fibrotic NASH, while a FAST score ≥0.67 (rule-in 

threshold) is associated with a higher likelihood of having fibrotic NASH [40].  

Along this line, two new transient elastography-based scores, Agile 4 and Agile 3+ (LSM, 

AST/ALT ratio, platelet counts, age, sex, diabetes status), were recently developed to 

identify cirrhosis and advanced fibrosis, respectively, in individuals with NAFLD in 

secondary/tertiary care liver clinics. Substantially, both Agile 4 and Agile 3+ showed a 

higher performance than FIB-4 and LSM for cirrhosis or advanced fibrosis with an 

AUROC of 0.91 (0.89-0.92) and 0.90 (0.88-0.91), respectively, in the training cohorts 

[52]. 

MRE has been shown to be the most accurate technique to quantify and stage liver fibrosis 

in NAFLD. By assessing a larger proportion of the liver than ultrasound-based 

elastography techniques, MRE is less prone to sampling error and is less affected by 

obesity with excellent interobserver agreement [47, 50]. MRE cut-off of 3.63 kPa showed 

excellent diagnostic accuracy for advanced fibrosis (c-statistic >0.90) [53]. However, 

given its cost and limited availability, MRE is more suited for use in tertiary referral 

centers and for research purposes [50].  

Conventional ultrasound and computed tomography can be used in clinical practice for 

assessing hepatic steatosis. However, these methods are not quantitative and have poor 

sensitivity for detecting mild grades of steatosis in NAFLD. Additionally, computed 

tomography exposes subjects to ionizing radiations, thereby limiting its use to assess 

repeated measurements of liver fat over time [47].  

Within this context, the gold-standard technique for the non-invasive quantification of 

liver fat content is magnetic resonance spectroscopy (MRS). However, MRS requires 

specialized expertise and is not easily available in clinical settings [47]. Conversely, 

magnetic resonance imaging-derived proton-density-fat-fraction (MRI-PDFF) is 

emerging as an accurate and reproducible biomarker of liver fat content which is widely 

available in commercial MRI systems. PDFF estimates fat content over the entire liver 
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and represents a suitable surrogate to liver biopsy for assessing longitudinal changes in 

liver fat content, especially in NASH clinical trials [47, 54].  
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AIMS 

The overall aims of this thesis were:  

1) To elucidate risk factors associated with NAFLD progression in at-risk individuals. 

2) To develop novel and reliable non-invasive biomarkers for NAFLD screening in at-

risk individuals. 

The aim of Paper I was to investigate the independent contribution of the main inborn 

and acquired risk factors for NAFLD to the development of severe liver disease in 

individuals with type 2 diabetes from the large UK Biobank. 

The aim of Paper II was to generate a simple and affordable blood-based biomarker for 

fibrotic NASH to screen for liver disease in high-risk individuals (obesity, type 2 diabetes, 

metabolic syndrome) in primary care and general population settings. 
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PAPER I 
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ABSTRACT 

Background & Aims: Type 2 diabetes is a major driver of fatty liver disease and its long-

term complications. Aim of this study was to investigate the individual contribution of 

inborn and acquired risk factors for severe liver disease in individuals with type 2 diabetes 

from the UK Biobank study. 

Methods: A total of 22,812 UK Biobank participants of European descent without 

clinical history of liver disease and liver cancer were prospectively followed for the 

development of severe liver disease, defined as a composite diagnosis of cirrhosis, 

decompensated liver disease, hepatocellular carcinoma and/or liver transplantation from 

the National Health Service records. The contribution of inborn and acquired risk factors 

to the risk of incident severe liver disease was assessed by Cox proportional hazards 

models. 

Results: During a median follow-up of 8.9 years (interquartile range 8.1-9.6), there were 

279 individuals with severe liver disease, including 255 with cirrhosis and/or 

decompensated liver disease, 47 with hepatocellular carcinoma and 5 with liver 

transplantation; death from severe liver disease occurred in 83 individuals. Risk factors 

independently associated with increased risk of incident severe liver disease included 

abnormal aspartate aminotransferase (adjusted hazard ratio [aHR] 4.85, 95%CI 2.76-

8.54), decrease in serum albumin (aHR 2.39, 95%CI 1.76-3.24) and platelet count (aHR 

1.12, 95%CI 1.09-1.16), cardiovascular disease (aHR 1.86, 95%CI 1.23-2.79), 

microalbuminuria (aHR 1.55, 95%CI 1.04-2.30), PNPLA3 rs738409 (aHR 1.67, 95%CI 

1.27-2.18) and TM6SF2 rs58542926 (aHR 1.63, 95%CI 1.12-2.39), while the net effect 

of male gender was protective (aHR 0.49, 95%CI 0.26-0.94). 

Conclusions: These findings may help in clinical care to identify individuals with type 2 

diabetes at risk of severe liver disease, in turn leading to personalized risk prediction and 

prevention strategies. 
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INTRODUCTION 

The growing epidemic of diabetes is a serious global public health issue with nearly half 

a billion individuals living with diabetes and approximately 90% of them suffering from 

type 2 diabetes [1]. An overwhelming body of evidence supports that type 2 diabetes is a 

key risk factor for fatty liver disease (FLD) that is the most common chronic liver disease 

worldwide [2, 3]. The global prevalence of FLD in individuals with type 2 diabetes is 

more than 2-fold higher than in the general population (55% vs 25%, respectively), with 

the highest rate reported in Europe (68%) [2, 4]. 

Strikingly, among FLD comorbidities (e.g. obesity, hypertension and dyslipidemia), type 

2 diabetes seems to be the strongest risk factor for the progression of liver disease to its 

long-term complications, namely cirrhosis and hepatocellular carcinoma, and for 

mortality [2]. The risk of life-threatening liver-related complications increases with the 

increase in the number of features of metabolic syndrome [5]. Harmful alcohol 

consumption is the other major cause of non-viral cirrhosis and hepatocellular carcinoma 

in Europe and worldwide [6-8]. In addition to the well-established metabolic and 

environmental risk factors, in recent years common genetic variants in several genes were 

found to robustly contribute to FLD and the entire spectrum of its complications [9, 10]. 

Within this context, to identify and closely monitor those who are at risk of progressive 

liver disease, it will be key to identify drivers and predictors of liver damage and fibrosis 

in individuals with type 2 diabetes. Björkström et al. have recently examined the 

contribution of clinical risk factors for developing severe liver disease in a very large 

cohort of individuals with type 2 diabetes from the Swedish National Diabetes Register 

[11]. They found older age, male gender, higher body mass index (BMI), hypertension, 

lower kidney function, microalbuminuria and smoking as independent risk factors while 

statins were protective against severe liver disease. However, the predictive value of 

biochemical proxies of liver damage and function was not examined. Moreover, the 

contribution of human genetics and alcohol use in this context remains to be investigated. 

Therefore, aim of this study was to examine the major inborn and acquired independent 

risk factors contributing to severe liver disease among participants with type 2 diabetes 

from the prospective UK Biobank study. 
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METHODS 

Study population and data collection 

Study design and methods of the UK Biobank have been described in detail previously 

[12]. Briefly, the UK Biobank is a large prospective cohort study with approximately 

500,000 participants aged 40-69 years, recruited between 2006-2010 from 22 assessment 

centers across the UK. The UK Biobank study has been approved by the North West 

Multicenter Research Ethics Committee (reference number 11/NW/0382). All 

participants provided informed consent to the study. 

Potential participants were identified from the National Health Service patient registers 

and invited to attend the local assessment center. At the baseline assessment visit, they 

completed a touch-screen self-administered questionnaire and a computer-assisted 

interview regarding medical history, current pharmacological therapy, sociodemographic 

characteristics, smoking status, alcohol consumption, dietary habits, physical activity and 

family history of major diseases. Baseline anthropometric measures (e.g. height, weight 

and waist circumference) were assessed by trained staff using standardized procedures. 

Blood samples were collected for genome-wide genotyping and biochemical analyses, 

including glycated hemoglobin (HbA1c) (VARIANT II TURBO Hemoglobin Testing 

System, Bio-Rad), serum glucose, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), albumin and creatinine (AU5800, Beckman Coulter), and urine 

albumin (AU5400, Randox Bioscience) and creatinine (AU5400, Beckman Coulter). The 

protocol for samples collecting, processing and storage was developed using a highly 

automated and validated approach [13]. Further information about the study protocol and 

methods is available in the UK Biobank website (https://www.ukbiobank.ac.uk/). 

 

Definition of baseline exclusion criteria 

Baseline exclusion criteria were as follows: 1) self-reported history of liver disease; 2) 

hospital diagnosis of chronic viral hepatitis, severe liver disease (SLD, see definition later 

in this article) and/or other causes of liver disease occurred before the baseline assessment 

visit and defined according to the International Classification of Diseases 10th edition 

(ICD-10 B18, B19, C22.0, E83.0, E83.1, I85.0, I85.9, K70.3, K70.4, K70.9, K71, K72.1, 

K72.9, K74.1, K74.2, K74.3, K74.4, K74.5, K74.6, K75.2, K75.3, K75.4, K75.8, K75.9, 

K76.6, K76.7, K76.8, K76.9, R18, Z94.4); 3) self-reported history of liver cancer; 4) 

https://www.ukbiobank.ac.uk/
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diagnosis of liver cancer based on cancer register occurred before the baseline assessment 

visit (ICD-10 C22); 5) self-reported non-European ancestry (i.e. all ethnic groups other 

than white British, white Irish and any other white background); 6) participants with 

withdrawn consent. A total of 466,783 participants were included for the final analyses. 

Details of baseline exclusion criteria have been provided in supplementary material 

(Supplementary Tables S1-S3). 

 

Definition of baseline type 2 diabetes 

Baseline previously diagnosed type 2 diabetes was defined by at least one of the following 

criteria: 1) self-reported history of type 2 or unspecified diabetes; 2) hospital diagnosis of 

type 2 or unspecified diabetes occurred before the baseline assessment visit (ICD-10 E11, 

E14); 3) current insulin treatment and/or use of oral hypoglycemic drugs. Among 

individuals without a prior diagnosis of diabetes, undiagnosed type 2 diabetes was defined 

by at least one of the following criteria: 1) serum glucose level ≥ 11.1 mmol/L (200 

mg/dL); 2) HbA1c ≥ 48 mmol/mol (6.5%). The threshold of 11.1 mmol/L (200 mg/dL) 

for serum glucose was chosen to avoid false positives, since blood samples were collected 

not necessarily fasting. The final baseline population included 22,812 participants with 

type 2 diabetes. 

 

Definition of covariates and comorbidities 

Baseline anthropometric measures were assessed by trained staff using standardized 

procedures. Height and weight were measured using the Seca 202 height measure (Seca, 

Hamburg, Germany) and the Tanita BC-418 MA body composition analyser (Tanita 

Europe, Amsterdam, Netherlands), respectively. BMI was calculated by dividing the 

weight (kg) by the square of the height (m2). Waist circumference was measured at the 

umbilicus level using the Wessex non-stretchable sprung tape measure (Wessex, UK). 

Socioeconomic status was defined using the Townsend deprivation index [14]. Data on 

family history of diabetes, smoking, alcohol consumption and physical activity were 

collected through a baseline touch-screen questionnaire. A positive family history of 

diabetes was defined as participants who had one or more first-degree relatives (i.e. 

parents and/or siblings) diagnosed as having diabetes. Smoking status was categorized 

into two groups: current smoking and never/former smoking. Frequency of daily alcohol 
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consumption (g/day) was quantified based on the average weekly alcohol intake or on the 

average monthly alcohol intake (when the average weekly data was missing). Alcohol 

grams for each type of drink (i.e. red wine, white wine or champagne, beer or cider, 

spirits, fortified wine and other alcoholic drinks) were derived from the corresponding 

reference alcohol content reported in the National Health Service UK guidelines (1 unit 

of alcohol = 8 g of alcohol, https://www.nhs.uk/live-well/alcohol-support/calculating-

alcohol-units/. Accessed on January 2020). Excessive alcohol consumption was defined 

when daily alcohol intake was ≥ 30 g and ≥ 20 g for men and women, respectively [15]. 

A detailed explanation of alcohol consumption pipeline has been provided in 

supplementary material. Regarding physical activity, participants were categorized into 

two groups if they underwent or not physical exercise according to the UK physical 

activity recommendations (i.e. ≥ 150 minutes/week and ≥ 75 minutes/week for moderate 

and vigorous physical activity, respectively; UK Biobank data-field 22035). 

Estimated glomerular filtration rate (eGFR) was calculated from serum creatinine using 

the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [16]. 

Albuminuria categories were defined based on a single sample spot urinary albumin-to-

creatinine ratio (UACR) (i.e. 3-29 mg/mmol and ≥ 30 mg/mmol for micro- and macro-

albuminuria, respectively) [17]. 

Baseline dyslipidemia was defined as self-reported history of high cholesterol or use of 

lipid-lowering drugs. Similarly, baseline hypertension was defined as self-reported 

history of hypertension or use of anti-hypertensive drugs. Baseline cardiovascular disease 

was defined as self-reported history or hospital diagnosis of angina, myocardial 

infarction, stroke or transient ischemic attack (ICD-10 I20–I25, I60–I64, I69, G45). 

 

Genotyping 

Detailed information about genotyping and arrays used in the UK Biobank study has been 

provided elsewhere [18]. Genotype data were available for approximately 490,000 

participants. PNPLA3 rs738409 C>G (p.I148M), TM6SF2 rs58542926 C>T (p.E167K), 

MBOAT7 rs641738 C>T, GCKR rs1260326 C>T (p.P446L) and HSD17B13 

rs72613567:TA were assayed using two similar genotyping arrays (i.e. Affymetrix UK 

BiLEVE and UK Biobank Axiom arrays) and coded as 0, 1 or 2 for non-carriers, 

heterozygous carriers and homozygous carriers of the minor allele, respectively. For 

https://www.nhs.uk/live-well/alcohol-support/calculating-alcohol-units/
https://www.nhs.uk/live-well/alcohol-support/calculating-alcohol-units/
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PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR rs1260326 the 

minor allele (i.e. G allele, T allele, T allele and T allele, respectively) was the risk-

increasing allele, while for HSD17B13 rs72613567 the minor TA allele had a protective 

effect [19-23]. 

 

Follow-up outcome 

Follow-up data on health-related events and mortality were obtained through linkage of 

the National Health Service records, including in-hospital admissions, death register and 

cancer register (UK Biobank data-fields 41270, 40001, 40002 and 40006). Detailed 

information regarding the linkage procedure is available in the UK Biobank website 

(https://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf. 

Accessed on January 2020). The study outcome was incident SLD, defined as a composite 

diagnosis of cirrhosis, decompensated liver disease (i.e. esophageal varices with or 

without bleeding, portal hypertension, hepatorenal syndrome, liver failure), 

hepatocellular carcinoma and/or liver transplantation (ICD-10 C22.0, I85.0, I85.9, K70.3, 

K70.4, K72.1, K72.9, K74.1, K74.2, K74.6, K76.6, K76.7, Z94.4) in any of the 

aforementioned records. A list of all the diagnoses used to define SLD is presented in 

supplementary material (Supplementary Table S3). Among those with SLD, individuals 

were excluded if they received hospital diagnosis of chronic viral hepatitis or other causes 

of liver disease (ICD-10 B18, B19, E83.0, E83.1, K71, K74.3, K74.4, K74.5, K75.2, 

K75.3, K75.4, K75.8, K75.9) before the diagnosis of the outcome of interest. The length 

of follow-up for each participant was calculated from the date of baseline assessment visit 

up to the first date of SLD diagnosis, the date of death or the date of end of follow-up for 

the assessment center attended (31 January 2018), whichever occurred first. The study 

flowchart has been provided in supplementary material (Supplementary Figure S1). 

 

Statistical analysis 

Continuous variables were shown as mean ± standard deviation if normally distributed or 

median (interquartile range) if skewed. Categorical variables were shown as number 

(percentage). 

In UK Biobank participants with type 2 diabetes, the following risk factors for SLD were 

tested: age (continuous), gender, family history of diabetes, duration of diabetes 

https://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
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(continuous), hypertension, dyslipidemia, BMI ≥ 30 kg/m2, waist circumference ≥ 94 cm 

and ≥ 80 cm (for men and women, respectively [24]), alcohol consumption (complete 

abstinence, low-moderate intake and excessive intake [i.e. ≥ 30 g/day and ≥ 20 g/day for 

men and women, respectively [15]]), current smoking status, physical activity ≥ 150 

minutes/week and ≥ 75 minutes/week (for moderate and vigorous physical activity, 

respectively), HbA1c (continuous), ALT > 30 U/L and > 19 U/L (for men and women, 

respectively [25]), AST > 30 U/L and > 19 U/L (for men and women, respectively), serum 

albumin (continuous), platelet count (continuous), eGFR < 60 mL/min/1.73 m2, micro- 

and macro-albuminuria (i.e. UACR 3-29 mg/mmol and ≥ 30 mg/mmol, respectively 

[17]), PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7 rs641738, GCKR rs1260326, 

HSD17B13 rs72613567, use of oral hypoglycemic drugs, insulin treatment and use of 

statins. The association of the above-mentioned risk factors with incident SLD was 

assessed by Cox proportional hazards models, including age, gender, BMI, duration of 

diabetes, alcohol intake and all predictor variables with a P value < 0.05 in the univariate 

model. The contribution of genetic factors was estimated by assuming additive or 

recessive model, separately. Missing data for any of the covariates were removed from 

the analyses. 

Two sensitivity analyses were performed: 1) excluding participants with excessive 

alcohol consumption at baseline; 2) stratifying by gender. 

Cumulative incidence curves were computed using Aalen-Johansen estimator, with 

mortality and liver diagnoses other than FLD entered as the competing events for SLD 

and analyzed according to the different genetic variants. Comparisons were carried out 

by means of the log-rank test. 

All analyses were performed using R statistical software, version 3.6.1 (R Foundation for 

Statistical Computing, Vienna, Austria). 
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RESULTS 

Baseline characteristics, genotyping and incidence of severe liver disease 

A total of 22,812 participants of European descent from the UK Biobank with type 2 

diabetes was included in the analyses (see Supplementary Figure S1 for selection criteria). 

We defined SLD as diagnosis of cirrhosis and its complications, namely hepatic 

decompensation, hepatocellular carcinoma and liver transplantation. The baseline 

characteristics of the study participants stratified by incident SLD status are shown in 

Table 1 (see Supplementary Table S4 for baseline characteristics of the entire UK 

Biobank population stratified by type 2 diabetes status). In the overall cohort, two out of 

three participants were men and approximately half of them had a positive family history 

of diabetes. The mean ± standard deviation age was 60.1 ± 7 years and BMI was 31.6 ± 

5.9 kg/m2, indicating that a large number of individuals with type 2 diabetes are obese 

and overweight. The median (interquartile range) duration of diabetes was 4.5 (2.5-9.4) 

years while HbA1c was 50.3 (43.2-59.7) mmol/mol. 

Individuals with development of SLD during follow-up were older, had higher BMI and 

waist circumference, higher alcohol intake, higher transaminases, lower serum albumin, 

lower platelet count and higher prevalence of cardiovascular disease compared to those 

without. Moreover, they were more likely to be treated with metformin, 

thiazolidinediones and sulfonylureas. There were no differences in glycemic control, 

duration of diabetes, family history of diabetes and use of insulin therapy between the 

two groups. 

Minor allele frequencies (MAF) of known genetic variants associated with SLD in the 

general population were consistent with previous reports in Europeans [19, 21, 23, 26, 

27] and genotype frequency distribution of these variants was in Hardy-Weinberg 

Equilibrium. Genotype frequency stratified by incident SLD status is shown in Table 2. 

As expected, there was an enrichment of the minor allele for the PNPLA3 rs738409 and 

the TM6SF2 rs58542926 variants in individuals who developed SLD compared to those 

without, while the HSD17B13 rs72613567 variant was less common in this group. 

During a median (interquartile range) follow-up of 8.9 (8.1-9.6) years, there were 279 

individuals with SLD, including 255 with cirrhosis and/or decompensated liver disease, 

47 with hepatocellular carcinoma and 5 that underwent liver transplantation; death from 

SLD occurred in 83 individuals. 
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Cumulative incidence of SLD for the different genetic variants across genotypes in the 

entire cohort is displayed in Figure 1. 

 

Risk factors for severe liver disease 

Risk factors independently associated with increased risk of incident SLD in European 

participants with type 2 diabetes are shown in Table 3 and included: AST > 30/19 U/L 

(adjusted hazard ratio [HR] 4.85, 95% confidence interval [CI] 2.76-8.54), decrease in 

serum albumin (adjusted HR 2.39, 95% CI 1.76-3.24) and platelet count (adjusted HR 

1.12, 95% CI 1.09-1.16), cardiovascular disease (adjusted HR 1.86, 95% CI 1.23-2.79), 

microalbuminuria (adjusted HR 1.55, 95% CI 1.04-2.30), PNPLA3 rs738409 (adjusted 

HR 1.67, 95% CI 1.27-2.18 and adjusted HR 2.32, 95% CI 1.36-3.96 for additive and 

recessive model, respectively) and TM6SF2 rs58542926 (adjusted HR 1.63, 95% CI 1.12-

2.39 and adjusted HR 4.33, 95% CI 1.74-10.80 for additive and recessive model, 

respectively), while the net effect of male gender was protective (adjusted HR 0.49, 95% 

CI 0.26-0.94). In sensitivity analyses, after excluding participants with excessive alcohol 

consumption and stratifying by gender, results were substantially similar to the main 

model except that in women higher BMI was positively correlated with SLD (adjusted 

HR 1.41, 95% CI 1.03-1.93) (Supplementary Tables S5-S6). 
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Table 1. Baseline characteristics of UK Biobank participants of European descent 

with type 2 diabetes stratified by incident sever liver disease status 

 
Total 

(n = 22,812) 
 

No Severe Liver 

Disease 

(n = 22,533) 

Severe Liver 

Disease 

(n = 279) 

P value 

Age, years 60.1 ± 7  60.1 ± 7 61.5 ± 6.2 0.002 

Men, n (%) 14,273 (63%)  14,066 (62%) 207 (74%) <0.001 

Townsend deprivation 

index 

-1.5 (-3.3-1.7)  -1.5 (-3.3-1.7) -0.6 (-2.8-2.4) <0.001 

Family history of diabetes, 

n (%) 

9,692 (43%)  9,591 (43%) 101 (37%) 0.11 

Duration of diabetes, years 4.5 (2.5-9.4)  4.5 (2.5-9.4) 6.3 (2.5-9.5) 0.49 

BMI, kg/m2 31.6 ± 5.9  31.6 ± 5.9 33.7 ± 6 <0.001 

Waist circumference, cm 103.4 ± 14.6  103.4 ± 14.6 110.3 ± 13.7 <0.001 

      

Lifestyle      

Current smoking, n (%) 2,505 (11%)  2,472 (11%) 33 (12%) 0.61 

Alcohol intake, g/day 5.8 (0-19.4)  5.7 (0-19.4) 9.7 (0-30.9) <0.001 

Alcohol intake ≥30/20 

g/day, n (%) 

3,566 (16%)  3,491 (15%) 75 (27%) <0.001 

Physical activity ≥ 150/75 

min/week, n (%) 

7,980 (45%)  7,883 (45%) 97 (45%) 0.99 

      

Clinical chemistry      

HbA1c, mmol/mol 50.3 (43.2-59.7)  50.3 (43.2-59.7) 50 (42.5-60.1) 0.59 

ALT, U/L 25.3 (18.8-34.7)  25.2 (18.7-34.5) 36.4 (26-53.5) <0.001 

AST, U/L 25.2 (21-31.1)  25.1 (21-30.9) 41.8 (29.5-57.7) <0.001 

Albumin, g/dL 4.5 ± 0.3  4.5 ± 0.3 4.3 ± 0.3 <0.001 

Platelet count, *109/L 247.4 ± 65  248 ± 64.7 198.2 ± 71 <0.001 

eGFR, mL/min/1.73 m2 88.3 ± 16.5  88.3 ± 16.5 87.5 ± 19 0.48 

Microalbuminuria, n (%) 3,110 (27%)  3,052 (26%) 58 (37%) 0.004 

Macroalbuminuria, n (%) 488 (4%)  480 (4%) 8 (5%) 0.64 

      

Comorbidities      

Hypertension, n (%) 16,958 (74%)  16,734 (74%) 224 (80%) 0.18 

Dyslipidemia, n (%) 18,213 (80%)  17,996 (80%) 217 (78%) 0.082 

Cardiovascular disease, n 

(%) 

5,068 (22%)  4,972 (22%) 96 (34%) <0.001 

      

Drugs      

Metformin, n (%) 12,278 (54%)  12,105 (54%) 173 (62%) 0.005 

Thiazolidinediones, n (%) 1,726 (8%)  1,695 (8%) 31 (11%) 0.042 

Sulfonylureas, n (%) 4,584 (20%)  4,512 (20%) 72 (26%) 0.043 

Insulin, n (%) 4,530 (20%)  4,483 (20%) 47 (17%) 0.46 

Statins, n (%) 16,500 (72%)  16,304 (72%) 196 (70%) 0.13 

 

Continuous variables are shown as mean ± SD or median and (IQR) if normally distributed or skewed, 

respectively. Categorical variables are shown as number and (proportion). 

P values are from generalized linear models adjusted for age, gender and assessment center. 
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P values <0.05 were considered statistically significant. 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; 

eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin. 
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Table 2. Genotype frequency of PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7 

rs641738, GCKR rs1260326 and HSD17B13 rs72613567 in UK Biobank participants 

of European descent with type 2 diabetes stratified by incident severe liver disease 

status 

 
Total 

(n = 22,812) 

 No Severe Liver 

Disease 

(n =22,533) 

Severe Liver 

Disease 

(n = 279) 

P value 

PNPLA3 rs738409      

CC, n (%) 13,436 (61%)†  13,318 (61%) 118 (45%)  

CG, n (%) 7,540 (34%)  7,435 (34%) 105 (40%) <0.001 

GG, n (%) 1,133 (5%)  1,092 (5%) 41 (15%)  

      

TM6SF2 rs58542926      

CC, n (%) 18,626 (84%)†  18,425 (84%) 201 (76%)  

CT, n (%) 3,274 (15%)  3,219 (15%) 55 (21%) <0.001 

TT, n (%) 167 (1%)  160 (1%) 7 (3%)  

      

MBOAT7 rs641738      

CC, n (%) 6,869 (31%)†  6,797 (31%) 72 (28%)  

CT, n (%) 10,765 (49%)  10,629 (49%) 136 (52%) 0.30 

TT, n (%) 4,279 (20%)  4,226 (20%) 53 (20%)  

      

GCKR rs1260326      

CC, n (%) 8,556 (39%)†  8,455 (39%) 101 (38%)  

CT, n (%) 10,320 (47%)  10,200 (47%) 120 (46%) 0.61 

TT, n (%) 3,150 (14%)  3,109 (14%) 41 (16%)  

      

HSD17B13 rs72613567      

T/T, n (%) 11,525 (52%)†  11,365 (52%) 160 (61%)  

T/TA, n (%) 8,770 (40%)  8,682 (40%) 88 (34%) 0.004 

TA/TA, n (%) 1,738 (8%)  1,724 (8%) 14 (5%)  

      

 

P values are from generalized linear models adjusted for age, gender and assessment center. 

P values <0.05 were considered statistically significant. 

 

†Genotype distribution is in Hardy-Weinberg equilibrium. 
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Table 3. Risk factors for severe liver disease in UK Biobank participants of 

European descent with type 2 diabetes (n = 22,812) 

Variable HR (95% CI) P value  aHR (95% CI) P value 

Age, years 1.03 (1.02-1.05) <0.001  1.01 (0.98-1.05) 0.39 

Male gender 1.76 (1.35-2.31) <0.001  0.49 (0.26-0.94) 0.031 

Family history of diabetes 0.76 (0.60-0.98) 0.031  0.74 (0.50-1.10) 0.13 

Duration of diabetes, years 1.01 (0.99-1.03) 0.18  1.00 (0.97-1.03) 0.97 

      

Comorbidities      

Hypertension 1.44 (1.07-1.93) 0.016  0.70 (0.42-1.18) 0.18 

Dyslipidemia 0.89 (0.67-1.18) 0.42    

BMI ≥ 30 kg/m2 1.84 (1.42-2.38) <0.001  1.02 (0.64-1.64) 0.93 

Waist circumference ≥ 94/80 cm 2.80 (1.69-4.64) <0.001  1.19 (0.49-2.92) 0.70 

Cardiovascular disease 1.94 (1.52-2.49) <0.001  1.86 (1.23-2.79) 0.003 

      

Lifestyle      

Low-moderate alcohol intake* 0.71 (0.53-0.94) 0.018  0.80 (0.49-1.31) 0.38 

Excessive alcohol intake* 1.63 (1.19-2.23) 0.003  1.59 (0.93-2.71) 0.091 

Current smoking status 1.13 (0.79-1.63) 0.51    

Physical activity ≥ 150/75 min/week 1.00 (0.83-1.21) 0.99    

      

Clinical chemistry      

HbA1c, mmol/mol 1.00 (0.99-1.01) 0.74    

ALT > 30/19 U/L 2.26 (1.76-2.90) <0.001  1.37 (0.83-2.24) 0.22 

AST > 30/19 U/L 5.18 (4.09-6.55) <0.001  4.85 (2.76-8.54) <0.001 

Albumin, per 0.5 g/dL decrease 2.45 (2.01-2.99) <0.001  2.39 (1.76-3.24) <0.001 

Platelet count, per 10*109/L decrease 1.16 (1.13-1.18) <0.001  1.12 (1.09-1.16) <0.001 

eGFR < 60 mL/min/1.73 m2 1.68 (1.12-2.51) 0.012  1.22 (0.66-2.25) 0.52 

Microalbuminuria 1.70 (1.23-2.35) 0.001  1.55 (1.04-2.30) 0.03 

Macroalbuminuria 1.37 (0.67-2.79) 0.38    

      

Genetic risk factors      

PNPLA3 rs738409 genotype      

Additive model 1.92 (1.61-2.30) <0.001  1.67 (1.27-2.18) <0.001 

Recessive model 3.47 (2.49-4.84) <0.001  2.32 (1.36-3.96)† 0.002 

TM6SF2 rs58542926 genotype      

Additive model 1.69 (1.32-2.17) <0.001  1.63 (1.12-2.39) 0.011 

Recessive model 3.59 (1.70-7.62) <0.001  4.33 (1.74-10.80)† 0.002 

MBOAT7 rs641738 genotype      

Additive model 1.09 (0.92-1.30) 0.30    

Recessive model 1.05 (0.78-1.42) 0.75    

GCKR rs1260326 genotype      

Additive model 1.04 (0.87-1.24) 0.67    

Recessive model 1.12 (0.80-1.56) 0.52    

HSD17B13 rs72613567 genotype      
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Additive model 0.74 (0.60-0.91) 0.004  0.74 (0.54-1.03) 0.076 

Recessive model 0.66 (0.38-1.13) 0.13    

      

Drugs      

Metformin 1.40 (1.10-1.78) 0.006  1.46 (0.96-2.23) 0.076 

Thiazolidinediones 1.51 (1.04-2.20) 0.03  1.48 (0.82-2.67) 0.19 

Sulfonylureas 1.40 (1.07-1.83) 0.014  1.32 (0.87-1.99) 0.19 

Insulin 0.83 (0.61-1.14) 0.26    

Statins 0.91 (0.70-1.17) 0.45    

 

HRs with 95% CIs were calculated by Cox proportional hazards models. 

Age, gender, BMI, alcohol intake, duration of diabetes and all predictor variables with a P value < 0.05 in 

the univariate model were included in the multivariate model. 

*Low-moderate (<20/30 g/day) and excessive (≥20/30 g/day) alcohol intake tested against abstainers. 

†aHR calculated assuming recessive model instead of additive model. 

Abbreviations: aHR, adjusted HR; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, 

body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; HbA1c, glycated 

hemoglobin; HR, hazard ratio. 
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Figure 1. Cumulative incidence of severe liver disease for PNPLA3 rs738409, 

TM6SF2 rs58542926, MBOAT7 rs641738, GCKR rs1260326 and HSD17B13 

rs7261356 across genotypes in the entire cohort with type 2 diabetes Blue, green and 

red lines represent non-carriers, heterozygous carriers and homozygous carriers of the 

minor allele, respectively. P values are from log-rank test for trend. 

Abbreviations: SLD, severe liver disease. 
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DISCUSSION 

In this work we investigate for the first time in the UK Biobank the acquired and inborn 

independent risk factors for SLD among Europeans with type 2 diabetes. Among the 

acquired, we demonstrate that abnormal AST levels, decrease in serum albumin and 

platelet count, cardiovascular disease and microalbuminuria are independent markers of 

SLD. Among the inborn, genetic variants in PNPLA3 and TM6SF2 genes increase the 

risk of SLD in this population.  

In our analyses, we started by: a) selecting individuals with type 2 diabetes as those with 

diagnosis of type 2 or unspecified diabetes and/or self-reported history of these conditions 

and b) excluding at baseline those with diagnosis of all major causes of liver disease and 

liver cancer and/or self-reported history of these conditions. Then, we prospectively 

examined the incidence of SLD, defined as a composite diagnosis of severe chronic liver 

disease including non-viral cirrhosis, decompensated liver disease, hepatocellular 

carcinoma and liver transplantation. 

Our results provide several clues regarding the risk prediction of SLD in individuals with 

type 2 diabetes. Indeed, biochemical proxies of hepatocellular damage, i.e. transaminases, 

are the strongest predictor of SLD with an elevation above the upper normal limit 

associated with an approximately five-fold increased risk. Interestingly, abnormal AST 

seems to predict adverse liver outcomes more accurately than abnormal ALT. High AST 

levels may indicate mitochondrial damage due to alcohol abuse and they correlate with 

liver fibrosis better than ALT [28]. As a result, transaminases remain, also in individuals 

with type 2 diabetes, a main screening test to define the risk level of developing life-

threatening liver-related complications. However, it should be born in mind that chronic 

liver damage and advanced fibrosis may develop even with normal liver enzymes [29]. 

Biochemical proxies of reduced liver function (low albumin) and portal hypertension 

(low platelet count) are strong markers of SLD in individuals with type 2 diabetes. This 

is likely due to the fact that they mirror the presence of an underlying and unknown 

advanced liver disease. Consistent with the present study, where we have excluded at 

baseline only those with self-reported or diagnosed SLD, FLD may progress to advanced 

fibrosis without having being diagnosed [30, 31]. This may suggest that, during follow-

up of individuals with type 2 diabetes, special attention is required towards lowering of 
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platelet count and albumin levels. Indeed, in diabetic individuals low albumin levels may 

be more frequently attributed to proteinuria due to advanced chronic kidney disease. 

Excess in alcohol intake is well-known to cause liver damage and to exacerbate liver 

injury induced by other causes. Moreover, it is also associated with development of type 

2 diabetes and with worse glycemic control [32]. Here we find an almost doubling of the 

risk of SLD in individuals with type 2 diabetes and excessive alcohol consumption even 

if not statistically significant, which is consistent with the risk observed in the general 

population [33]. Notably, low-moderate alcohol intake appears not to increase the risk of 

SLD. Future studies are warranted to prove if a complete abstinence is not required to 

prevent liver disease progression among individuals with type 2 diabetes. 

Cardiovascular disease represents the first cause of death in individuals suffering from 

FLD [5]. Consistently, cardiovascular disease resulted as a strong risk factor for 

developing SLD in our cohort, as well as the presence of microalbuminuria. These data 

support the notion that individuals with type 2 diabetes and cardiovascular/kidney 

complications should be screened for liver disease. Taking all this together, liver disease 

may be considered among diabetes-related complications. 

Unfavorable genetics is a robust independent risk factor for SLD. Of note, this is the first 

prospective study specifically evaluating the impact of genetic risk variants on the risk of 

developing advanced liver disease in individuals of European descent with type 2 

diabetes. In particular, our data demonstrate that PNPLA3 rs738409 and TM6SF2 

rs58542926, the two strongest genetic variants increasing the risk of SLD in the general 

population [19, 20], confer also a strong susceptibility to SLD in those with type 2 

diabetes. Notably, unlike traditional risk factors that may vary over time, the risk 

conferred by genetic variants is very stable and constitutes a lifetime burden. As a 

consequence, a genetic testing for PNPLA3 rs738409 and TM6SF2 rs58542926 might be 

useful to identify individuals with type 2 diabetes at high-risk for progressive liver 

disease, thus requiring more intensive follow-up strategies or specific lifestyle changes 

(e.g. reduction in alcohol and fructose intake). 

Surprisingly, increased BMI was not associated with increase in the risk of SLD in the 

overall cohort. This may be due to the fact that the mean BMI of the cohort was in the 

range of class I obesity and the net contribution of obesity to SLD is likely diluted by the 

absence of normal weight individuals. Notably, obesity had a greater impact on SLD risk 
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in women than in men, supporting the presence of sexual dysmorphism underlying human 

disease. Indeed, this could be due to the complex interaction between genetic factors, 

gender and its related biological components. In agreement, data in literature report a 

stronger association between increased BMI and diabetes risk in women than in men [34]. 

However, tailored studies with larger sample size, specifically focusing on gender 

differences in liver disease, are needed to ascertain this issue. 

To date, there is a lack of prospective cohort studies evaluating the contribution of 

multiple risk factors for advanced liver disease in type 2 diabetes. In a large prospective 

cohort study of over 400,000 Swedish subjects with type 2 diabetes, Björkström et al. 

have recently shown that risk factors independently associated with SLD were older age, 

male gender, higher BMI, hypertension, lower eGFR, microalbuminuria and smoking, 

while use of statins conferred decreased risk [11]. However, in this study the contribution 

of biochemical proxies of liver function and damage, alcohol consumption and genetic 

variations was not investigated. 

We confirm the role of microalbuminuria as independent risk factor for SLD. 

Additionally, we show that microalbuminuria is correlated with increased risk of SLD 

especially in men, in line with the well-documented higher frequency of albuminuric 

renal impairment in men with type 2 diabetes compared to women [35]. Notwithstanding 

the significantly higher incidence of SLD in men, we find that male gender is protective 

against SLD. This is likely because we included the main mediators of the association 

between male gender and SLD in the multivariate Cox regression analysis. Further studies 

specifically aimed at evaluating the effect of gender on the risk of SLD are required to 

verify this finding. We do not find age, high BMI, hypertension, low eGFR and smoking 

associated with SLD. These results might be explained by the fact that we included in the 

multivariate model additional stronger risk factors for SLD, such as biochemical proxies 

of liver damage, harmful alcohol consumption and genetic variants. Alternatively, these 

data might be due to the different category of variables included in the multivariate model 

(binary vs continuous) or to the relatively lower sample size of our study compared to 

that by Björkström et al. 

Another major difference between the study by Björkström et al. and our study is that we 

included alcoholic-related diagnoses in the definition of SLD. This is because metabolic 

and alcoholic liver disease share similar molecular pathways [10, 19-21, 27, 36] and also 
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because a clear distinction is often difficult to assess in the real life. Moreover, the 

sensitivity analysis excluding participants with excessive alcohol consumption showed 

similar results to the main model. 

Additionally, in both studies HbA1c was found to be not related to increased risk of SLD. 

Since the well-established association of HbA1c with higher risk of chronic micro- and 

macro-vascular complications of type 2 diabetes [37], this finding might be explained by 

the fact that HbA1c does not accurately reflect glycemic control in individuals with 

diabetes and cirrhosis [38-40]. 

The major strengths of our study are the following: 1) the large sample size, including 

more than 20,000 individuals with type 2 diabetes from the general population; 2) the 

prospective study design; 3) the use of standardized procedures and centrally validated 

protocol for blood samples collecting, processing and storage of the UK Biobank. 

Furthermore, this is the first prospective study collectively examining the impact of 

indices of liver function and damage, alcohol consumption and genetic variants on the 

risk of developing SLD in European individuals with type 2 diabetes. 

This study also has limitations. First, some cases of asymptomatic liver disease (e.g. 

compensated cirrhosis or early stages of hepatocellular carcinoma) may have been 

underdiagnosed. Similarly, some cases of chronic viral hepatitis may be unknown or 

sometimes the viral etiology of cirrhosis may be not specified in hospital records. 

However, we tried to reduce this bias by linking liver-related diagnoses from multiple 

registers (i.e. hospital records, death register and cancer register). Second, we included 

participants with previous history and/or hospital diagnosis of unspecified diabetes, those 

treated with insulin and those with undiagnosed diabetes based on circulating glucose 

and/or HbA1c tests. As a result, although type 2 diabetes accounts for approximately 90% 

of diabetes cases [1], few participants may be affected by type 1 diabetes or latent 

autoimmune diabetes of adulthood. Third, since we had only one baseline urine sample 

to establish albuminuria categories, the diagnosis of moderately and severely increased 

albuminuria could be overestimated, although an Italian multicenter prospective cohort 

study of over 15,000 subjects with type 2 diabetes reported similar rates [41]. Finally, 

results were obtained in Europeans and further studies are needed to validate them in 

other ethnic groups. 
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In conclusion, we demonstrate that in Europeans with type 2 diabetes: a) abnormal AST 

levels, decrease in serum albumin and platelet count, cardiovascular disease and 

microalbuminuria are independent markers of SLD; b) genetic variants in PNPLA3 and 

TM6SF2 genes increase the risk of SLD. Our findings may help to identify individuals 

with type 2 diabetes at-risk for SLD by identifying acquired and inborn risk factors. This 

may contribute to estimate a personalized risk prediction and to implement strategies to 

prevent SLD. 
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SUPPLEMENTARY MATERIAL 

Daily alcohol consumption extraction pipeline 

To generate a continuous variable for alcohol consumption rate in UK Biobank, the 

following data-fields only at baseline (initial assessment visit (2006-2010), i.e. instance 

0) were employed: 

1. Alcohol intake frequency (data-field 1558) 

 

2. Average weekly alcohol consumption intake: 

2.1. Average weekly red wine intake (data-field 1568) 

2.2. Average weekly champagne plus white wine intake (data-field 1578) 

2.3. Average weekly beer plus cider intake (data-field 1588) 

2.4. Average weekly spirits intake (data-field 1598) 

2.5. Average weekly fortified wine intake (data-field 1608) 

2.6. Average weekly intake of other alcoholic drinks (data-field 5364) 

 

3. Average monthly alcohol consumption intake: 

3.1. Average monthly red wine intake (data-field 4407) 

3.2. Average monthly champagne plus white wine intake (data-field 4418) 

3.3. Average monthly beer plus cider intake (data-field 4429) 

3.4. Average monthly spirits intake (data-field 4440) 

3.5. Average monthly fortified wine intake (data-field 4451) 

3.6. Average monthly intake of other alcoholic drinks (data-field 4462)  

Below are the steps used for this purpose: 

1. Average weekly alcohol consumption intake was preferentially used and when data 

was missing (unknown, ‘do not know’ or ‘prefer not to answer’), average monthly 

alcohol consumption intake was used. The following table was used to convert the 

extracted values to grams per day (after dividing by 7 and 30.4375, for weekly and 

monthly data, respectively). Alcohol consumption guidelines from United Kingdom 

National Health Service were used to derive the Table below (United Kingdom 
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National Health Service. Alcohol units. https://www.nhs.uk/live- well/alcohol-

support/calculating-alcohol-units/. Accessed on January 2020). 

 

Type of drink  Alcohol units Alcohol grams 

Red wine, 1 glass 1.5 12 

White wine or champagne, 1 glass  1.5 12 

Beer/cider, 1 pint 2 16 

Spirits, 1 measure  1 8 

Fortified wine, 1 glass  1.5 12 

Other alcoholic drinks, 1 glass  1.5 12 

 

2. Missing values for individuals with alcohol intake frequency of “Never” (N = 40,641) 

or “Special occasions only” (N = 36,820), were replaced with 0 g/day 

(https://www.nature.com/articles/s41467-019-12424-x; 

https://doi.org/10.1093/ije/dyz064). 

 

3. Individuals who reported an alcohol intake frequency of "Once or twice a week", 

"Daily or almost daily", "Three or four times a week", but reported 0 g/day of alcohol 

intake (for all types of alcoholic drinks) were excluded (N = 1,044, 365 and 340, 

respectively). 

 

4. Individuals with an alcohol consumption value deviating from 5 s.d. from their 

gender-specific mean were excluded. For women and men these values were 70.86 

and 127.76 g/day, respectively (N = 930 and 610, for women and men, respectively) 

(https://www.nature.com/articles/mp2017153). 

 

5. For participants who had unknown g/day of alcohol but who reported one of these 

categories of overall alcohol intake frequency: "Once or twice a week" (N = 66), "One 

to three times a month" (N = 36,318), "Daily or almost daily" (N = 46), "Three or four 

times a week" (N = 35), the median value (g/day) from their category was assigned 

(https://doi.org/10.1093/ije/dyz064). 

https://www.nhs.uk/live-%20well/alcohol-support/calculating-alcohol-units/.%20Accessed%20on%20January%202020
https://www.nhs.uk/live-%20well/alcohol-support/calculating-alcohol-units/.%20Accessed%20on%20January%202020
https://www.nature.com/articles/s41467-019-12424-x
https://doi.org/10.1093/ije/dyz064
https://www.nature.com/articles/mp2017153
https://doi.org/10.1093/ije/dyz064
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6. Finally, all the remaining individuals with missing values were excluded and the 

continuous variable of alcohol consumption g/day was created (N = 497,717). 
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Supplementary Figure S1. Study flowchart HbA1c, glycated hemoglobin; HCC, hepatocellular carcinoma; SLD, severe liver disease. 

 

Baseline type 2 diabetes, n = 22,812

Self-reported history of type 2 or unspecified 
diabetes, n = 21,169

Hospital diagnosis of type 2 or unspecified 
diabetes (E11, E14), n = 527

Insulin and/or oral hypoglycemic drugs, n = 655

Glucose ≥ 11.1 mmol/L (200 mg/dL), n = 293

HbA1c ≥ 48 mmol/mol (6.5%), n = 168

SLD*, n = 279

Cirrhosis and/or decompensated liver disease 
(I85.0, I85.9, K70.3, K70.4, K72.1, K72.9, 

K74.1, K74.2, K74.6, K76.6, K76.7), n = 255

HCC (C22.0), n = 47

Liver transplantation (Z94.4), n = 5

*Hospital records, death and cancer registers

Baseline included

n = 466,783

Baseline UK Biobank 
population

n = 502,536

Follow-up excluded, n = 26

Hospital diagnosis of chronic viral hepatitis and/or 
other causes of liver disease (B18, B19, E83.0, 
E83.1, K71, K74.3, K74.4, K74.5, K75.2, K75.3, 

K75.4, K75.8, K75.9) prior to the diagnosis of SLD

Baseline excluded, n = 35,753

Self-reported history of liver disease, n = 4,671

Hospital diagnosis of chronic viral hepatitis, SLD and/or other causes of liver 
disease (B18, B19, C22.0, E83.0, E83.1, I85.0, I85.9, K70.3, K70.4, K70.9, K71, 
K72.1, K72.9, K74.1, K74.2, K74.3, K74.4, K74.5, K74.6, K75.2, K75.3, K75.4, 

K75.8, K75.9, K76.6, K76.7, K76.8, K76.9, R18, Z94.4), n = 1,584

Self-reported history of liver cancer, n = 31

Diagnosis of liver cancer from cancer register (C22), n = 15

Non-European ancestry, n = 29,422

Participants with withdrawn consent, n = 30
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Supplementary Table S1. Definition of self-reported history of liver disease (data-

field 20002) 

Code Description 

1136 liver/biliary/pancreas problem 

1141 oesophageal varices 

1155 hepatitis 

1156 infective/viral hepatitis 

1157 non-infective hepatitis 

1158 liver failure/cirrhosis 

1159 bile duct disease 

1408 alcohol dependency 

1506 primary biliary cirrhosis 

1507 haemochromatosis 

1578 hepatitis a 

1579 hepatitis b 

1580 hepatitis c 

1581 hepatitis d 

1582 hepatitis e 

1604 alcoholic liver disease / alcoholic cirrhosis 
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Supplementary Table S2. ICD-10 codes used to define baseline liver disease other 

than severe liver disease 

Diagnosis ICD-10 

Viral hepatitis, chronic B18 

Viral hepatitis, unspecified B19 

Disorders of copper metabolism E83.0 

Disorders of iron metabolism E83.1 

Alcoholic liver disease, unspecified K70.9 

Toxic liver disease K71 

Primary biliary cirrhosis K74.3 

Secondary biliary cirrhosis K74.4 

Biliary cirrhosis, unspecified K74.5 

Nonspecific reactive hepatitis K75.2 

Granulomatous hepatitis, not elsewhere 

classified 
K75.3 

Autoimmune hepatitis K75.4 

Other specified inflammatory liver diseases K75.8 

Inflammatory liver disease, unspecified K75.9 

Other specified diseases of liver K76.8 

Liver disease, unspecified K76.9 

Ascites R18 

 

  



 41 

Supplementary Table S3. ICD-10 codes used to define severe liver disease endpoint 

Diagnosis ICD-10 

Hepatocellular carcinoma C22.0 

Esophageal varices, bleeding I85.0 

Esophageal varices, not bleeding I85.9 

Alcoholic liver cirrhosis K70.3 

Alcoholic liver failure K70.4 

Liver failure, chronic K72.1 

Liver failure, unspecified K72.9 

Hepatic sclerosis K74.1 

Hepatic fibrosis with hepatic sclerosis K74.2 

Liver cirrhosis, other and unspecified K74.6 

Portal hypertension K76.6 

Hepatorenal syndrome K76.7 

Liver transplant status Z94.4 
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Supplementary Table S4. Baseline characteristics of the overall UK Biobank cohort 

stratified by type 2 diabetes status 

 
Total 

(n = 466,783) 
 

No Type 2 

Diabetes 

(n = 443,971) 

Type 2 

Diabetes 

(n = 22,812) 

P value 

Age, years 56.7 ± 8  56.6 ± 8 60.1 ± 7 <0.001 

Men, n (%) 212,105 (45%)  197,832 (45%) 14,273 (63%) <0.001 

Townsend deprivation index -2.3 (-3.7-0.3)  -2.3 (-3.7-0.2) -1.5 (-3.3-1.7) <0.001 

Family history of diabetes, n 

(%) 

98,463 (21%)  88,771 (20%) 9,692 (43%) <0.001 

BMI, kg/m2 27.4 ± 4.8  27.2 ± 4.6 31.6 ± 5.9 <0.001 

Waist circumference, cm 90.2 ± 13.5  89.6 ± 13.1 103.4 ± 14.6 <0.001 

      

Lifestyle      

Current smoking, n (%) 48,330 (10%)  45,825 (10%) 2,505 (11%) <0.001 

Alcohol intake, g/day 10.3 (2-21.1)  10.3 (2-21.1) 5.8 (0-19.4) <0.001 

Alcohol intake ≥30/20 g/day, n 

(%) 

91,902 (20%)  88,336 (20%) 3,566 (16%) <0.001 

Physical activity ≥ 150/75 

min/week, n (%) 

204,514 (54%)  196,534 (55%) 7,980 (45%) <0.001 

      

Clinical chemistry      

HbA1c, mmol/mol 35.1 (32.7-

37.7) 

 35 (32.6-37.3) 50.3 (43.2-

59.7) 

<0.001 

ALT, U/L 20.1 (15.4-

27.3) 

 19.9 (15.3-26.9) 25.3 (18.8-

34.7) 

<0.001 

AST, U/L 24.3 (21-28.8)  24.3 (21-28.7) 25.2 (21-31.1) <0.001 

Albumin, g/dL 4.5 ± 0.3  4.5 ± 0.3 4.5 ± 0.3 <0.001 

Platelet count, *109/L 253.4 ± 59.7  253.7 ± 59.4 247.4 ± 65 0.30 

eGFR, mL/min/1.73 m2 90.5 ± 13.2  90.7 ± 13 88.3 ± 16.5 <0.001 

Microalbuminuria, n (%) 20,906 (15%)  17,796 (14%) 3,110 (27%) <0.001 

Macroalbuminuria, n (%) 1,927 (1%)  1,439 (1%) 488 (4%) <0.001 

      

Comorbidities      

Hypertension, n (%) 138,878 (30%)  121,920 (27%) 16,958 (74%) <0.001 

Dyslipidemia, n (%) 101,914 (22%)  83,701 (19%) 18,213 (80%) <0.001 

Cardiovascular disease, n (%) 32,000 (7%)  26,932 (6%) 5,068 (22%) <0.001 

Incident severe liver disease, n 

(%) 

1,336 (0.29%)  1,057 (0.24%) 279 (1.22%) <0.001 

Follow-up time, years 9 (8.3-9.7)  9 (8.3-9.7) 8.9 (8.1-9.6) <0.001 

 

Continuous variables are shown as mean ± SD or median and (IQR) if normally distributed or skewed, 

respectively. Categorical variables are shown as number and (proportion). 

P values are from generalized linear models adjusted for age, gender and assessment center. 

P values <0.05 were considered statistically significant. 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; 

eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin. 
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Supplementary Table S5. Risk factors for severe liver disease in UK Biobank 

participants of European descent with type 2 diabetes excluding those with excessive 

alcohol consumption at baseline (n = 19,246) 

Variable HR (95% CI) P value  aHR (95% CI) P value 

Age, years 1.03 (1.01-1.05) 0.007  1.01 (0.98-1.05) 0.44 

Male gender 1.49 (1.11-2.00) 0.008  0.37 (0.18-0.76) 0.007 

Family history of diabetes 0.83 (0.62-1.10) 0.19    

Duration of diabetes, years 1.01 (0.99-1.04) 0.28  1.00 (0.96-1.03) 0.85 

      

Comorbidities      

Hypertension 1.42 (1.01-2.00) 0.044  0.60 (0.33-1.08) 0.087 

Dyslipidemia 0.90 (0.65-1.25) 0.53    

BMI ≥ 30 kg/m2 1.74 (1.29-2.34) <0.001  1.09 (0.62-1.91) 0.77 

Waist circumference ≥ 94/80 cm 2.47 (1.41-4.34) 0.002  0.96 (0.38-2.43) 0.93 

Cardiovascular disease 1.88 (1.41-2.50) <0.001  1.96 (1.21-3.18) 0.006 

      

Lifestyle      

Current smoking status 0.90 (0.56-1.45) 0.68    

Physical activity ≥ 150/75 min/week 1.02 (0.82-1.28) 0.84    

      

Clinical chemistry      

HbA1c, mmol/mol 1.00 (0.99-1.01) 0.98    

ALT > 30/19 U/L 2.22 (1.66-2.97) <0.001  1.13 (0.64-1.98) 0.68 

AST > 30/19 U/L 4.85 (3.68-6.38) <0.001  7.74 (3.93-15.26) <0.001 

Albumin, per 0.5 g/dL decrease 1.08 (1.06-1.11) <0.001  1.07 (1.03-1.11) <0.001 

Platelet count, per 10*109/L 

decrease 

1.13 (1.10-1.16) <0.001  1.10 (1.06-1.15) <0.001 

eGFR < 60 mL/min/1.73 m2 1.95 (1.26-3.01) 0.003  1.78 (0.95-3.33) 0.07 

Microalbuminuria 1.82 (1.24-2.67) 0.002  1.77 (1.11-2.82) 0.017 

Macroalbuminuria 1.45 (0.64-3.31) 0.37    

      

Genetic risk factors      

PNPLA3 rs738409 genotype      

Additive model 1.79 (1.45-2.21) <0.001  1.66 (1.19-2.30) 0.003 

Recessive model 3.00 (1.98-4.53) <0.001  2.20 (1.12-

4.32)† 

0.022 

TM6SF2 rs58542926 genotype      

Additive model 1.54 (1.14-2.09) 0.006  1.54 (0.96-2.49) 0.075 

Recessive model 2.06 (0.66-6.45) 0.21    

MBOAT7 rs641738 genotype      

Additive model 1.05 (0.86-1.29) 0.61    

Recessive model 0.91 (0.63-1.31) 0.61    

GCKR rs1260326 genotype      

Additive model 1.03 (0.84-1.27) 0.75    

Recessive model 1.10 (0.75-1.63) 0.63    

HSD17B13 rs72613567 genotype      
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Additive model 0.78 (0.61-0.99) 0.038  0.60 (0.40-0.91) 0.016 

Recessive model 0.52 (0.26-1.06) 0.073    

      

Drugs      

Metformin 1.26 (0.95-1.67) 0.11    

Thiazolidinediones 1.46 (0.95-2.25) 0.087    

Sulfonylureas 1.36 (0.99-1.85) 0.056    

Insulin 0.97 (0.69-1.37) 0.87    

Statins 0.97 (0.72-1.32) 0.86    

 

HRs with 95% CIs were calculated by Cox proportional hazards models. 

Age, gender, BMI, duration of diabetes and all predictor variables with a P value < 0.05 in the univariate 

model were included in the multivariate model. 

†aHR calculated assuming recessive model instead of additive model. 

Abbreviations: aHR, adjusted HR; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, 

body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; HbA1c, glycated 

hemoglobin; HR, hazard ratio. 
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Supplementary Table S6. Risk factors for severe liver disease in UK Biobank participants of European descent with type 2 diabetes 

stratified by gender 

 Men (n = 14,273)  Women (n = 8,539) 

Variable HR (95% CI) P value aHR (95% CI) P value  HR (95% CI) P value aHR (95% CI) P value 

Age, years 1.03 (1.01-1.05) 0.007 1.02 (0.99-1.05) 0.23  1.04 (1.00-1.08) 0.029 1.03 (1.00-1.05) 0.024 

Family history of diabetes 0.83 (0.62-1.10) 0.20    0.69 (0.42-1.11) 0.12   

Duration of diabetes, years 1.01 (0.99-1.03) 0.42 1.00 (0.97-1.03) 0.89  1.02 (0.98-1.06) 0.31 1.01 (0.98-1.03) 0.56 

          

Comorbidities          

Hypertension 1.32 (0.94-1.87) 0.11    1.58 (0.89-2.78) 0.12   

Dyslipidemia 0.89 (0.64-1.24) 0.50    0.81 (0.48-1.37) 0.44   

BMI ≥ 30 kg/m2 1.89 (1.41-2.54) <0.001 1.01 (0.64-1.59) 0.98  1.95 (1.14-3.32) 0.015 1.41 (1.03-1.93) 0.031 

Waist circumference ≥ 94/80 cm 3.28 (1.83-5.87) <0.001 1.28 (0.53-3.12) 0.58  2.09 (0.76-5.73) 0.15   

Cardiovascular disease 1.92 (1.45-2.54) <0.001 1.59 (1.08-2.34) 0.019  1.54 (0.88-2.68) 0.13   

          

Lifestyle          

Low-moderate alcohol intake* 0.73 (0.51-1.07) 0.11 0.79 (0.49-1.28) 0.34  0.48 (0.29-0.80) 0.005 0.74 (0.52-1.05) 0.091 

Excessive alcohol intake* 1.63 (1.10-2.42) 0.015 1.46 (0.87-2.45) 0.15  0.80 (0.36-1.78) 0.58 1.29 (0.87-1.90) 0.20 

Current smoking status 1.26 (0.85-1.87) 0.25    0.58 (0.21-1.58) 0.28   

Physical activity ≥ 150/75 min/week 1.01 (0.81-1.26) 0.92    0.96 (0.65-1.42) 0.83   

          

Clinical chemistry          

HbA1c, mmol/mol 1.00 (0.99-1.01) 0.61    1.01 (1.00-1.03) 0.13   

ALT > 30/19 U/L 2.76 (2.08-3.66) <0.001 1.66 (1.04-2.66) 0.035  2.03 (1.19-3.46) 0.009 1.64 (1.17-2.29) 0.004 

AST > 30/19 U/L 5.60 (4.16-7.54) <0.001 3.53 (2.26-5.50) <0.001  11.43 (4.96-26.38) <0.001 3.56 (2.58-4.90) <0.001 

Albumin, per 0.5 g/dL decrease 2.42 (1.94-3.02) <0.001 2.46 (1.85-3.28) <0.001  3.61 (2.36-5.54) <0.001 2.53 (2.06-3.09) <0.001 

Platelet count, per 10*109/L decrease 1.16 (1.13-1.19) <0.001 1.12 (1.09-1.16) <0.001  1.14 (1.10-1.19) <0.001 1.13 (1.10-1.16) <0.001 

eGFR < 60 mL/min/1.73 m2 1.95 (1.24-3.07) 0.004 1.29 (0.71-2.33) 0.41  1.12 (0.45-2.79) 0.80   
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Microalbuminuria 2.04 (1.42-2.92) <0.001 1.48 (1.01-2.17) 0.046  0.75 (0.33-1.71) 0.50   

Macroalbuminuria 1.16 (0.51-2.65) 0.72    2.11 (0.51-8.79) 0.30   

          

Genetic risk factors          

PNPLA3 rs738409 genotype          

Additive model 1.90 (1.55-2.34) <0.001 1.66 (1.28-2.16) <0.001  1.96 (1.38-2.78) <0.001 1.57 (1.28-1.91) <0.001 

Recessive model 3.44 (2.34-5.05) <0.001 2.32 (1.38-3.89) 0.001  3.44 (1.76-6.73) <0.001 2.21 (1.50-3.25)† <0.001 

TM6SF2 rs58542926 genotype          

Additive model 1.96 (1.49-2.57) <0.001 1.72 (1.20-2.47) <0.001  0.85 (0.43-1.67) 0.64   

Recessive model 4.43 (2.08-9.42) <0.001 4.87 (2.11-11.25) <0.001  NA‡ NA‡   

MBOAT7 rs641738 genotype          

Additive model 1.04 (0.85-1.27) 0.69    1.25 (0.89-1.75) 0.19   

Recessive model 1.03 (0.73-1.46) 0.87    1.09 (0.61-1.96) 0.77   

GCKR rs1260326 genotype          

Additive model 0.95 (0.77-1.16) 0.60    1.37 (0.97-1.93) 0.071   

Recessive model 0.84 (0.55-1.29) 0.43    2.05 (1.18-3.56) 0.011 1.29 (0.89-1.88) 0.18 

HSD17B13 rs72613567 genotype          

Additive model 0.71 (0.56-0.90) <0.001 0.73 (0.53-1.00) 0.05  0.83 (0.56-1.23) 0.36   

Recessive model 0.61 (0.32-1.15) 0.13    0.78 (0.29-2.15) 0.64   

          

Drugs          

Metformin 1.44 (1.09-1.91) 0.011 1.44 (0.96-2.15) 0.077  1.25 (0.78-2.00) 0.35   

Thiazolidinediones 1.50 (0.98-2.29) 0.064    1.45 (0.66-3.15) 0.35   

Sulfonylureas 1.35 (1.00-1.84) 0.052    1.32 (0.75-2.33) 0.34   

Insulin 0.72 (0.48-1.06) 0.095    1.24 (0.73-2.12) 0.43   

Statins 0.89 (0.66-1.20) 0.44    0.87 (0.53-1.42) 0.58   

 

HRs with 95% CIs were calculated by Cox proportional hazards models. 

Age, BMI, alcohol intake, duration of diabetes and all predictor variables with a P value < 0.05 in the univariate model were included in the multivariate model. 

*Low-moderate (<20/30 g/day) and excessive (≥20/30 g/day) alcohol intake tested against abstainers. 
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†aHR calculated assuming recessive model instead of additive model. 

‡Model failed to converge. 

Abbreviations: aHR, adjusted HR; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CI, confidence interval; eGFR, estimated 

glomerular filtration rate; HbA1c, glycated hemoglobin; HR, hazard ratio; NA, not applicable. 
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ABSTRACT 

Background and aims: Non-invasive assessment of histological features of non-

alcoholic fatty liver disease (NAFLD) has been an intensive research area over the last 

decade. Herein, we aimed to develop a simple non-invasive score using routine laboratory 

tests to identify, among individuals at high risk for NAFLD, those with fibrotic non-

alcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score (NAS) ≥4, 

and fibrosis stage ≥2. 

Methods: The derivation cohort included 264 morbidly obese individuals undergoing 

intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and 

internally validated using a bootstrapping stepwise logistic regression analysis (2000 

bootstrap samples). Performance was estimated by the area under the receiver operating 

characteristic curve (AUROC). External validation was assessed in three independent 

European cohorts (Finland, n=370; Italy n=947; England n=5,368) of individuals at high 

risk for NAFLD. 

Results: The final predictive model, designated as Fibrotic NASH Index (FNI), combined 

aspartate aminotransferase (AST), high-density lipoprotein (HDL) cholesterol, and 

hemoglobin A1c (HbA1c). The performance of FNI for fibrotic NASH was satisfactory 

in both derivation and external validation cohorts (AUROCs 0.78 and 0.80-0.95, 

respectively). In the derivation cohort, rule-out and rule-in cut-offs were 0.10 for 

sensitivity ≥0.89 (negative predictive value [NPV] 0.93) and 0.33 for specificity ≥0.90 

(positive predictive value [PPV] 0.57), respectively. In the external validation cohorts, 

sensitivity ranged from 0.87 to 1 (NPV 0.99-1) and specificity from 0.73 to 0.94 (PPV 

0.12-0.49) for rule-out and rule-in cut-off, respectively. 

Conclusion: FNI is an accurate, simple, and affordable non-invasive score which can be 

used in primary healthcare to screen for fibrotic NASH individuals with dysmetabolism. 
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INTRODUCTION 

Following the global burden of obesity and type 2 diabetes, non-alcoholic fatty liver 

disease (NAFLD) is now the major cause of chronic liver disease worldwide.[2] NAFLD 

encompasses a broad spectrum of conditions, from isolated hepatic fat accumulation to 

hepatocellular damage and inflammation (non-alcoholic steatohepatitis, NASH), leading 

to fibrosis and end-stage liver disease, namely cirrhosis and hepatocellular carcinoma.[5, 

6] Obesity and type 2 diabetes are the strongest environmental factors increasing the risk 

of NAFLD.[14] However, despite the very large number of individuals with NAFLD, 

only a minority progress to cirrhosis and hepatocellular carcinoma.[2] 

A body of evidence shows that individuals with fibrotic NASH, the inflammatory form 

of NAFLD associated with significant activity and fibrosis, are at risk of developing 

advanced liver disease.[8] The gold standard for diagnosing NASH and liver fibrosis is 

still a histological assessment by liver biopsy, an invasive and costly procedure which is 

not devoid of complications.[19, 20] 

The identification of individuals with fibrotic NASH in primary healthcare is crucial 

because these individuals will benefit the most from a referral to liver clinic for further 

investigation and follow-up. Moreover, these individuals are the ideal candidates for 

inclusion in NASH clinical trials.[55, 56]  

Therefore, due to the large number of individuals with NAFLD and the invasiveness of 

liver biopsy, non-invasive screening scores for fibrotic NASH are urgently needed. 

Indeed, existing scores are mainly focused on the assessment of liver fibrosis, the most 

relevant prognostic factor in NAFLD.[22, 24] Up to date, three non-invasive scores have 

been specifically generated to assess fibrotic NASH, namely MACK-3 (hoMa, Ast, 

CK18),[38] NIS4,[39] and FibroScan-AST (FAST) score.[40] However, these scores are 

based on blood tests available only in highly specialized liver clinics or require 

instrumental evaluation by vibration-controlled transient elastography.  

In this study, we aimed to develop a simple non-invasive score based on routine 

laboratory tests to screen for and identify fibrotic NASH in individuals at high risk for 

NAFLD in primary healthcare. 
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METHODS 

Derivation cohort 

MAFALDA cohort. A total of 264 participants from the “Molecular Architecture 

of FAtty Liver Disease in individuals with obesity undergoing bAriatric surgery 

(MAFALDA)” were included in the analyses.[57] Briefly, consecutive individuals with 

morbid obesity eligible for bariatric surgery, without history of alcohol abuse (≥30/20 

g/day in men/women), chronic viral hepatitis, and other causes of liver disease, were 

recruited from May 2020 to June 2021 at Campus Bio-Medico University Hospital, 

Rome, Italy. Preoperative clinical and laboratory data were collected using standardized 

procedures. Intraoperative liver biopsy was obtained and scored according to NAS 

classification.[58] NASH was diagnosed with at least grade one for steatosis, ballooning, 

and lobular inflammation.[59] Fibrotic NASH was defined as NASH, NAS≥4, and 

fibrosis stage ≥2. The MAFALDA study has been approved by the Local Research Ethics 

Committee (no. 16/20) and it was conducted in accordance with the principles of the 

Declaration of Helsinki. All participants gave written informed consent to the study. 

 

External validation cohorts 

Helsinki cohort. A total of 328 consecutive individuals with morbid obesity 

eligible for bariatric surgery and 42 consecutive individuals with body mass index (BMI) 

≥25 kg/m2 undergoing liver biopsy for suspected NASH were recruited between 2006 

and 2018 at Helsinki University Hospital, Helsinki, Finland. All participants were 18-75 

years old, without history of alcohol abuse (≥30/20 g/day in men/women), chronic viral 

hepatitis, and other causes of liver disease. A week before liver biopsy, participants 

underwent clinical examination and blood sampling as previously described.[60] Liver 

biopsies were scored according to NAS classification.[58] NASH was diagnosed when 

steatosis, lobular inflammation, and ballooning each had at least one grade.[61] Fibrotic 

NASH was defined as NASH, NAS≥4, and fibrosis stage ≥2. The study was approved by 

the Local Research Ethics Committee at Helsinki University Hospital. All participants 

gave written informed consent to the study. 

Liver Bible cohort. A total of 947 consecutive individuals with dysmetabolism 

(at least three criteria among overweight [BMI >25 kg/m2], hypertension [>130/85 mmHg 

or use of medication], hyperglycemia [>100 mg/dL], low high-density lipoprotein [HDL] 
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cholesterol [<45/55 mg/dL in men/women], and increased triglycerides [>150 mg/dL]) 

were recruited from July 2019 to July 2021 at the Transfusion Center, Fondazione Ca’ 

Granda Hospital, Milan, Italy.[43, 62] All participants were 18-65 years old, without 

history of alcohol abuse (≥30/20 g/day in men/women), chronic viral hepatitis, and other 

causes of liver disease, and were enrolled as part of a preventive medicine program among 

blood donors. Liver steatosis and fibrosis were non-invasively assessed by vibration-

controlled transient elastography and controlled attenuation parameter (CAP) with 

FibroScan® (Echosens, Paris, France), which was performed at the time of biochemical 

tests. Individuals at-risk of fibrotic NASH were defined as those with FAST score 

>0.35.[40] The study was approved by the Local Research Ethics Committee at the 

Fondazione IRCCS Ca’ Granda. All participants gave written informed consent to the 

study. 

UK Biobank cohort. The UK Biobank is a large prospective cohort study 

recruiting approximately 500,000 participants (age 40-69 years) between 2006-2010 

throughout the UK.[63] The UK Biobank study has been approved by the North West 

Multicenter Research Ethics Committee (no. 11/NW/0274). All participants gave written 

informed consent to the study. 

First, we selected unrelated UK Biobank participants of European ancestry based on our 

quality control pipeline which has been described in detail previously.[12, 43] Next, we 

included in our analyses only individuals with BMI ≥25 kg/m2 and/or with type 2 diabetes 

as defined elsewhere.[64] 

Then, to assess the performance of our score for fibrotic NASH, we selected 5,368 

individuals without chronic viral hepatitis and with liver magnetic resonance imaging 

(MRI) proton density fat fraction (PDFF) and iron-corrected T1 (cT1) measurements 

available.[65, 66] Fibrotic NASH was defined as steatosis by PDFF >5.5%,[65] NASH 

by cT1 >800 msec,[67] and significant fibrosis by Fibrosis-4 (FIB-4) index ≥1.3.[26] 

Finally, to assess the performance of our score for incident severe liver disease (SLD),[64] 

after excluding participants with MRI data available, we selected 305,745 individuals 

without liver disease at baseline and estimated those who developed SLD prospectively. 

Detailed information about the UK Biobank methods is provided in supplementary 

material. 
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Statistical analyses 

The score was developed based on 264 morbidly obese individuals in the derivation 

cohort and internally validated using a bootstrapping stepwise logistic regression model 

(2000 bootstrap samples). A total of 15 predictors were included in the model: age, 

gender, BMI, waist circumference, glucose, hemoglobin A1c (HbA1c), total cholesterol, 

HDL cholesterol, triglycerides, aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), gamma glutamyltransferase (GGT), platelet count, albumin, and 

total bilirubin. Logarithmic transformation was considered for continuous variables to 

improve the normality of distribution. Two (0.8%) individuals were removed from the 

analysis due to missing values. The score was derived based on the final predictors and 

the corresponding regression coefficients. Performance for fibrotic NASH was assessed 

by the area under the receiver operating characteristic curve (AUROC) in the derivation 

and validation cohorts. Rule-out and rule-in cut-offs were derived in the derivation cohort 

based on sensitivity ≥0.89 and specificity ≥0.90, respectively. Cut-off based on the 

maximal sum of sensitivity and specificity (Youden index) was also determined. At each 

cut-off, sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) were computed together with 95% confidence interval (CI). AUROCs were 

compared using the DeLong test. Calibration was assessed in the derivation cohort using 

Hosmer-Lemeshow goodness of fit test and calibration plot. Performance for incident 

SLD in the UK Biobank was estimated by AUROC of Cox proportional hazards models. 

Statistical analyses were performed using the software R, version 4.0.4 (R Foundation for 

Statistical Computing, Vienna, Austria). 
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RESULTS 

Clinical characteristics of derivation and external validation cohorts  

Clinical characteristics of derivation and external validation cohorts are shown in Table 

1. The two histological cohorts (MAFALDA and Helsinki cohorts) were well matched 

for age and gender, while the Liver Bible and UK Biobank cohorts had higher mean age 

and higher rate of men. Biochemical parameters were similar across the cohorts.  The 

Liver Bible cohort had the highest rate of hypertension (74% vs 41-63%), whereas the 

Helsinki cohort had the highest rate of type 2 diabetes (38% vs 4-16%). Biopsy-proven 

NASH was diagnosed in 42% individuals of the derivation cohort and in 12% individuals 

of the Helsinki cohort. Fibrotic NASH was reported in 20% individuals of the derivation 

cohort and in 2-5% individuals of the external validation cohorts. 

 

Development of a prediction model for fibrotic NASH 

Bootstrapping stepwise logistic regression analysis identified three final independent 

predictors of fibrotic NASH: AST, HDL cholesterol, and HbA1c. Based on the 

corresponding regression coefficients, the following index−the Fibrotic NASH Index 

(FNI)−was derived: 

 

𝐹𝑁𝐼 =  
𝑒(−10.33+2.54×ln 𝐴𝑆𝑇 [𝑈/𝐿] +3.86×ln HbA1c [%]−1.66×ln HDL [𝑚𝑔/𝑑𝐿])

1 + 𝑒(−10.33+2.54×ln 𝐴𝑆𝑇 [𝑈/𝐿] +3.86×ln HbA1c [%]−1.66×ln HDL[𝑚𝑔/𝑑𝐿])
 

 

The FNI is a predicted probability score and ranges from 0 to 1. As an example, an 

individual with a FNI of 0.10 would have a 10% predicted probability of fibrotic NASH 

(NASH + NAS≥4 + F≥2). The FNI can be easily calculated on the following website: 

https://fniscore.github.io/. 

In the derivation cohort, the performance of FNI for fibrotic NASH estimated by AUROC 

was 0.78 (95% CI 0.71-0.85) with satisfactory calibration of predicted probabilities 

(Figure 1). In the external validation cohorts, AUROCs ranged from 0.80 to 0.95 (Table 

2). In the derivation cohort, cut-off for sensitivity ≥0.89 (rule-out zone) was 0.10, with a 

NPV of 0.93. Cut-off for specificity ≥0.90 (rule-in zone) was 0.33, with a PPV of 0.57 

(Table 2). When applying these cut-offs to the external validation cohorts, at the rule-out 

cut-off of 0.10, sensitivity ranged from 0.87 to 1, with a NPV between 0.99 and 1; at the 

https://fniscore.github.io/
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rule-in cut-off of 0.33, specificity ranged from 0.73 to 0.98, with a PPV between 0.12 and 

0.49 (Table 2).  

The performance of FNI and FIB-4 for fibrotic NASH was compared in derivation and 

two external validation cohorts (Figure 2, Table 2). Corresponding AUROCs were higher 

for FNI in the derivation and Liver Bible cohorts (p=0.001 and 3.08x10-08, respectively), 

whereas no difference was found between the two scores in the Helsinki cohort (p=0.85). 

 

Performance for incident severe liver disease 

During a median (interquartile range) follow-up of 9.0 (8.3-9.7) years, there were 1,054 

individuals who developed SLD, including 928 with cirrhosis and/or decompensated liver 

disease, 126 with hepatocellular carcinoma, and 18 that underwent liver transplantation. 

Death from SLD occurred in 542 individuals. 

The AUROC of FNI for incident SLD was 0.77 (95% CI 0.75-0.79) which was higher 

than the AUROC of FIB-4 (0.75, 95% CI 0.73-0.77; p=0.03) (Figure 3). At the FNI cut-

off of 0.10 (rule-out zone), sensitivity was 0.81 vs 0.75 of FIB-4 cut-off of 1.3, with a 

NPV of 1 for both scores (Table 3). A FNI >0.10 conferred a nearly four-fold increased 

risk of incident SLD (adjusted hazard ratio [HR] 3.55, 95% CI 2.96-4.25; p<0.001), which 

was higher than the increase in risk conferred by a FIB-4 ≥1.3 (adjusted HR 3.0, 95% CI 

2.54-3.54; p<0.001) (Table 3). 
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Table 1. Clinical characteristics of derivation and external validation cohorts. 

 MAFALDA   Helsinki  Liver Bible   MRI UK Biobank  

n 264  370  947  5,368 

        

Clinical data        

Age, years 43.4 (10.1)  49.1 (9.5)  53.9 (6.3)  55.3 (7.3) 

Women, n (%) 195 (74%)  262 (71%)  157 (17%)  2,406 (45%) 

BMI, kg/m2 41.6 (4.4)  42.3 (7.7)  28.5 (3.1)  28.8 (3.4) 

        

Metabolic profile        

Glucose, mg/dL 98 (92-106)  105 (96-114)  94 (87-103)  88 (83-95) 

HbA1c, % 5.5 (5.3-5.9)  5.7 (5.4-6.2)  5.4 (5.2-5.6)  5.3 (5.1-5.6) 

Cholesterol, mg/dL 179.1 (31.2)  163.8 (41.6)  202.1 (32.3)  224 (43) 

HDL cholesterol, mg/dL 45.8 (9.8)  46.2 (12.1)  45.3 (10.1)  54 (12) 

LDL cholesterol, mg/dL 121.3 (30.1)  99.1 (35.1)  123.3 (28.9)  143 (35) 

Triglycerides, mg/dL 122 (90.8-164.2)  108 (80-145)  159 (114-199)  142 (106-204) 

        

Liver function tests        

ALT, U/L 30.5 (20-41)  32 (22-46)  26 (21-35)  22.1 (16.7-30) 

AST, U/L 26 (22-32)  29 (24-36)  23 (19-27)  24.8 (21.3-29.2) 

GGT, U/L 25 (17.5-34)  31 (20-52)  23 (17-32)  28.2 (19.9-42.8) 

Bilirubin, mg/dL 0.5 (0.4-0.7)  -  -  0.5 (0.4-0.6) 

Albumin, g/dL 4.2 (0.3)  3.8 (0.4)  -  4.5 (0.3) 

Platelets, 10e3/uL 282.7 (63.4)  252.7 (63.0)  234.7 (51.5)  250.8 (56.6) 
        

Comorbidities        

Hypertension, n (%) 109 (41%)  232 (63%)  699 (74%)  2,236 (42%) 

Type 2 diabetes, n (%) 41 (16%)  141 (38%)  35 (4%)  405 (8%) 

        

Liver histology        

Steatosis grade, n (%)     NA  NA 



 57 

0 

1 

2 

3 

88 (33%) 

93 (35%) 

48 (18%) 

35 (13%) 

135 (37%) 

153 (41%) 

51 (14%) 

31 (8%) 

Lobular inflammation grade, n (%) 

0 

1 

2 

3 

 

108 (41%) 

143 (54%) 

13 (5%) 

0 (0%) 

 

 

312 (84%) 

  48 (13%) 

10 (3%) 

0 (0%) 

 

 

 

 

Ballooning grade, n (%) 

0 

1 

2 

 

22 (8%) 

176 (67%) 

66 (25%) 

 

 

318 (86%) 

    39 (11%) 

  13 (4%) 

 

 

 

 

NASH, n (%) 110 (42%)  45 (12%)     

NAS ≥4, n (%) 109 (41%)  42 (11%)     

NASH + NAS≥4 +F≥2, n (%) 54 (20%)  17 (5%)     

Fibrosis staging, n (%) 

0 

1 

2 

3 

4 

 

80 (30%) 

117 (44%) 

59 (22%) 

7 (3%) 

1 (0%) 

 

 

215 (58%) 

121 (33%) 

18 (5%) 

10 (3%) 

6 (2%) 

 

 

 

 

 

Continuous variables are shown as mean (SD) or median (IQR) as appropriate. Categorical variables are shown as number (percentage). 

 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; GGT, gamma glutamyltransferase; HbA1c, hemoglobin A1c; 

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MRI, magnetic resonance imaging; NA, not available; NAS, NAFLD Activity Score; NASH, non-alcoholic 

steatohepatitis. 
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Table 2. Diagnostic performance of FNI and FIB-4 for fibrotic NASH and cut-off values in derivation and external validation cohorts. 

  MAFALDA  Helsinki  Liver Bible  MRI UK Biobank 

N  264  370  947  5,368 

Fibrotic NASH definition  NASH + NAS≥4 + F≥2  NASH + NAS≥4 + F≥2   FAST score >0.35  PDFF>5.5% + cT1>800 msec + FIB-

4≥1.3 

Fibrotic NASH, n (%)  54 (20%)  17 (5%)   37 (4%)  118 (2%) 

FNI AUROC (95% CI)  0.78 (0.71-0.85)  0.83 (0.72-0.95)   0.95 (0.92-0.98)  0.80 (0.75-0.83) 

FIB-4 AUROC (95% CI)  0.63 (0.54-0.71)  0.82 (0.72-0.92)   0.68 (0.58-0.78)  NA 

FNI ≥0.30 (Youden index)          

n (%)  59 (22.3%)  124 (33.5%)   52 (5.5%)  433 (8.1%) 

Sensitivity  0.57  0.88   0.62  0.39 

Specificity  0.87  0.69   0.97  0.93 

PPV  0.53  0.12   0.44  0.11 

NPV  0.89  0.99   0.98  0.99 

FNI ≤0.10 (Rule-out zone)          

n (%)  83 (31.4%)  77 (20.8%)   464 (50%)  2,526 (47.1%) 

Sensitivity  0.89  0.94   1  0.87 

Specificity  0.37  0.22   0.51  0.54 

PPV  0.27  0.06   0.08  0.04 

NPV  0.93  0.99   1  0.99 

FNI ≥0.33 (Rule-in zone)          

n (%)  49 (18.6%)  109 (29.4%)   41 (4.3%)  337 (6.3%) 

Sensitivity  0.52  0.82   0.54  0.34 

Specificity  0.90  0.73   0.98  0.94 

PPV  0.57  0.13   0.49  0.12 

NPV  0.88  0.99   0.98  0.98 

FIB-4 ≥1.3          

n (%)  21 (8.0%)  111 (30.0%)   216 (22.8%)  NA 

Sensitivity  0.11  0.76   0.53  NA 

Specificity  0.93  0.72   0.78  NA 

PPV  0.29  0.12   0.09  NA 
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NPV  0.80  0.98   0.98  NA 

 

Optimal cut-offs for fibrotic NASH were obtained in the derivation cohort based on the maximal sum of sensitivity and specificity (Youden index), on sensitivity ≥89% 

(rule-out zone), and on specificity ≥90% (rule-in zone). 

 

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; cT1, iron-corrected T1; FAST, FibroScan-AST score; FIB-4, 

fibrosis-4 index; FNI, fibrotic NASH index; MRI, magnetic resonance imaging; NA, not applicable; NAS, NAFLD activity score; NASH, non-alcoholic steatohepatitis; 

NPV, negative predictive value; PDFF, proton density fat fraction; PPV, positive predictive value; NA, not applicable. 
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Table 3. Diagnostic performance of FNI and FIB-4 for incident severe liver disease 

in the UK Biobank (n=305,745). 

 
 

 FNI  FIB-4 

AUROC (95% CI)  0.77 (0.75-0.79)  0.75 (0.73-0.77) 

Cut-off  >0.10  ≥1.3 

n (%)  127,460 (51.1%)  119,658 (43.0%) 

HR (95% CI)  4.21 (3.55-5.01)*  4.10 (3.54-4.75)# 

aHR (95% CI)  3.55 (2.96-4.25)*  3.0 (2.54-3.54)# 

Sensitivity  0.81  0.75 

Specificity  0.49  0.57 

PPV  0.01  0.01 

NPV  1  1 

 

HRs with 95% CIs were calculated by Cox proportional hazards models. 

Age, gender, and alcohol intake (g/day) were included in the multivariable models. 

 

*p<0.001 vs FNI ≤0.10 

#p<0.001 vs FIB-4 <1.3 

 

Abbreviations: aHR, adjusted HR; AUROC, area under the receiver operating characteristic curve; CI, 

confidence interval; FIB-4, fibrosis-4 index; FNI, fibrotic NASH index; HR, hazard ratio; PPV, positive 

predictive value. 
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Figure 1. Diagnostic performance of FNI for fibrotic NASH in the MAFALDA cohort (n=264). (A) ROC curve. Numbers in brackets 

are 95% CI. (B) Calibration plot. The solid line represents the ideal calibration. The dashed line represents the calibration estimated using 

locally estimated scatterplot smoothing (Loess). The shaded area indicates 95% CI. Triangles represent sextiles of participants grouped by 

similar predicted risk. P value is calculated using Hosmer-Lemeshow goodness of fit test. Abbreviations: AUROC, area under the receiver 

operating characteristic curve; FIB-4, Fibrosis-4 index; FNI, fibrotic NASH index. 

 

  



 62 

Figure 2. ROC curves for fibrotic NASH by FNI and FIB-4 in the (A) MAFALDA cohort (n=264), (B) Helsinki cohort (n=370), and 

(C) Liver Bible cohort (n=947). Numbers in brackets are 95% CI.  P values are calculated using the DeLong test. P values <0.05 are 

considered statistically significant. Abbreviations: AUROC, area under the receiver operating characteristic curve; FIB-4, Fibrosis-4 index; 

FNI, fibrotic NASH index. 
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Figure 3. ROC curves for incident severe liver disease by FNI and FIB-4 in the UK 

Biobank (n=305,745). Numbers in brackets are 95% CI. P values are calculated using 

the DeLong test. P values <0.05 are considered statistically significant. 

Abbreviations: AUROC, area under the receiver operating characteristic curve; FIB-4, 

Fibrosis-4 index; FNI, fibrotic NASH index. 
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FNI website: https://fniscore.github.io/ 

https://fniscore.github.io/
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DISCUSSION 

In this study, we develop and validate the FNI, a novel and simple non-invasive score for 

detecting fibrotic NASH among individuals at high risk for NAFLD, namely those with 

overweight/obesity, type 2 diabetes, and metabolic syndrome. Notably, this is the first 

score tailored for fibrotic NASH based on routine laboratory tests, namely AST, HDL 

cholesterol, and HbA1c. 

We started by examining the MAFALDA, a cross-sectional cohort of morbidly obese 

individuals in whom the diagnosis of fibrotic NASH was assessed by histology. In 

MAFALDA, we generated and internally validated a prediction model for fibrotic NASH 

by using a bootstrapping stepwise regression analysis. We found that AST, HDL 

cholesterol, and HbA1c were the best independent predictors of this condition. 

Consistently, elevated AST is a well-known biomarker of liver fibrosis,[68] whereas 

HbA1c and HDL cholesterol are both flagging the presence of dysmetabolism, given their 

correlation with insulin resistance and impaired glucose tolerance.[69, 70] In the 

derivation cohort, this model showed good success in predicting fibrotic NASH with an 

AUROC of 0.78 (0.71-0.85). 

Next, we validated our prediction model in three independent external cohorts comprising 

individuals with overweight/obesity, type 2 diabetes, and metabolic syndrome. In these 

cohorts, irrespective of the methodology used to assess fibrotic NASH (liver biopsy, 

vibration-controlled transient elastography including CAP, or liver MRI), the 

performance of our score was very good with an AUROC range of 0.80-0.95. Notably, 

one of the external validation cohorts included more than 5,000 high-risk individuals from 

the UK Biobank. 

Existing non-invasive clinical scores are focused on detecting advanced fibrosis, the most 

relevant predictor of mortality in NAFLD.[22] However, the degree of liver inflammation 

is a crucial driver of liver damage.[71] In this scenario, the presence of NASH with 

significant activity (NAS≥4) has been identified as an essential condition for enrollment 

in NAFLD clinical trials.[56] This is mainly due to two reasons: 1) the histological 

response to drug therapy is higher in individuals with an active disease,[72] and 2) the 

inclusion of individuals with fibrotic NASH is more likely to ensure that the estimated 

number of clinical events will occur during the study observation period. Along this line, 

the presence of an active liver disease is expected to be included among the prescribing 
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criteria of new emerging pharmacotherapies once they become available. Within this 

context, FNI may also be used as a longitudinal biomarker to non-invasively monitor the 

effectiveness of interventional strategies for NASH. 

Very recently, three non-invasive scores have been generated to detect fibrotic NASH: 

two blood-based, MACK-3[38] (AST, glucose, insulin, cytokeratin 18) and NIS4[39] 

(miR-34a-5p, alpha-2 macroglobulin, YKL-40, HbA1c), and the transient elastography-

based FAST score (AST, CAP, liver stiffness measurement).[40] The accuracy of these 

scores for fibrotic NASH was good and comparable to that of FNI, with AUROCs ranging 

from 0.80 to 0.85. However, these scores are based on blood/instrumental tests relatively 

expensive and/or not widely available in primary care. Consequently, although 

FibroScan® is increasingly used worldwide, the screening for fibrotic NASH in large at-

risk populations in primary care using these scores appears to be impractical and costly. 

Would the FNI score be a viable option to screen for fibrotic NASH in large at-risk 

populations? Within this context, the risk stratification pathway recently proposed by the 

European Association for the Study of the Liver (EASL) recommended a FIB-4 cut-off 

<1.3 to rule out those not needing a referral to the liver specialist.[50] In individuals with 

metabolic risk factors from the general population, a FNI value ≤0.10 (rule-out zone) 

would exclude the presence of fibrotic NASH with high sensitivity and high NPV. 

Importantly, in both derivation and external validation cohorts, at least one out five 

individuals belonged to the rule-out zone, thus avoiding further referral to the liver 

specialist. Notably, the FNI cut-off of 0.10 had a higher sensitivity for fibrotic NASH as 

compared to the FIB-4 cut-off of 1.3. Consequently, in the general population with 

metabolic risk factors, the risk stratification using FNI as opposed to FIB-4 would allow 

to miss fewer individuals with fibrotic NASH. Importantly, these individuals may require 

and benefit the most from a prompt intervention in liver clinics due to the presence of an 

active disease at higher risk of liver-related outcomes. Consistently, we found that, during 

a median follow-up of 9 years, FNI was more accurate than FIB-4 for predicting incident 

SLD. However, it is fair to say that FIB-4 has been generated to assess liver fibrosis and 

the 1.3 cut-off is used to rule out advanced fibrosis rather than progressive NASH.[50] 

Conversely, PPV for fibrotic NASH was rather low in the FNI rule-in zone. This is mainly 

due to the low prevalence of fibrotic NASH in the cohorts used in our study. Indeed, the 

performance of any disease predictive model is highly dependent on the prevalence of the 
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disease in the referral population.[50] Indeed, although FNI was generated and validated 

in individuals at high risk for NAFLD, the prevalence of fibrotic NASH in these 

individuals was relatively low. However, the performance of the FNI rule-in cut-off is 

expected to be higher in individuals from secondary/tertiary care centers where the 

prevalence of advanced fibrosis is higher. Further studies are warranted to assess the 

performance of FNI in these settings. 

Collectively, our data support that FNI may be useful for ruling out rather than diagnosing 

fibrotic NASH in at-risk individuals in primary healthcare and diabetology/endocrinology 

clinics. Individuals with indeterminate and positive results would deserve referral to liver 

clinic for further investigations and follow-up. 

The present study has several strengths. First, we used a large and well-characterized 

derivation cohort with liver biopsy data available. Second, we developed for the first time 

a predictive model for fibrotic NASH based on routine and widely available laboratory 

tests which are commonly evaluated in individuals with metabolic risk factors. Third, we 

validated our findings in three independent and large external validation cohorts. Among 

them, one included more than 5,000 individuals from the UK Biobank.  

Our study has also some limitations. First, FNI has been specifically designed and 

validated in individuals with dysmetabolism and not in those referred for NAFLD in liver 

secondary/tertiary care settings. Therefore, its performance should be further verified 

before being used in this context. Second, we could not compare FNI with other non-

invasive blood-based scores for fibrotic NASH, such as MACK-3, because they were not 

available in most cohorts. 

In conclusion, we developed and validated the FNI, an accurate, simple, and affordable 

non-invasive score for fibrotic NASH based on routine laboratory tests, namely AST, 

HDL cholesterol, and HbA1c. This score may help clinicians identify at-risk individuals 

in primary healthcare and diabetology/endocrinology clinics who require a referral to the 

liver specialist.  
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SUPPLEMENTARY MATERIAL 

UK Biobank 

The UK Biobank is a large prospective cohort study recruiting approximately 500,000 

participants (age 40-69 years) between 2006-2010 from 22 assessment centers throughout 

the UK.[63] Clinical information and laboratory data were collected using highly 

standardized procedures. Medical diagnoses were obtained through linkage of hospital 

admissions, death register, and cancer register from the National Health Service records 

(data-fields 41270, 40001, 40002, and 40006). 

MRI UK Biobank cohort. To assess the performance of our score for fibrotic 

non-alcoholic steatohepatitis (NASH), we selected a total of 5,368 European individuals 

with overweight/obesity and/or type 2 diabetes, without chronic viral hepatitis 

(International Classification of Diseases 10th edition [ICD-10] B18-B19) from hospital 

admissions and death register, and with liver magnetic resonance imaging (MRI) proton 

density fat fraction (PDFF) and iron-corrected T1 (cT1) measurements available. 

Participants were scanned at the UK Biobank Imaging Centre in Cheadle (UK) using a 

Siemens 1.5T MAGNETOM Aera as described in detail elsewhere.[65, 66] Briefly, a 

shortened modified look locker inversion (ShMOLLI) was used to quantify liver T1 and 

a multi echo-spoiled gradient-echo was used to quantify liver iron and fat. Data were 

analyzed using LiverMultiScan© Discover 4.0 software. 

Prospective UK Biobank cohort. To assess the performance of our score for 

incident severe liver disease (SLD), we selected a total of 305,745 European individuals 

with overweight/obesity and/or type 2 diabetes, after excluding those with PDFF and cT1 

measurements available. Baseline exclusion criteria were: 1) self-reported history or 

hospital diagnosis of chronic viral hepatitis, SLD, or other causes of liver disease (ICD-

10 B18, B19, C22.0, E83.0, E83.1, I85.0, I85.9, K70.3, K70.4, K70.9, K71, K72.1, K72.9, 

K74.1, K74.2, K74.3, K74.4, K74.5, K74.6, K75.2, K75.3, K75.4, K75.8, K75.9, K76.6, 

K76.7, K76.8, K76.9, R18, Z94.4); 2) self-reported history or diagnosis from cancer 

register of liver cancer (ICD-10 C22); 3) missing data for any score variable. SLD was 

defined as a composite diagnosis of cirrhosis, decompensated liver disease, hepatocellular 

carcinoma, and/or liver transplantation from hospital admissions, death register, and 

cancer register (ICD-10 C22.0, I85.0, I85.9, K70.3, K70.4, K72.1, K72.9, K74.1, K74.2, 

K74.6, K76.6, K76.7, Z94.4). Follow-up length was calculated from the date of baseline 
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assessment visit up to the first date of SLD diagnosis, the date of death, or the date of end 

of follow-up for the assessment center attended (31 January 2018), whichever occurred 

first. Participants were excluded from the analyses if they received hospital diagnosis of 

competing liver diseases (ICD-10 B18, B19, E83.0, E83.1, K71, K74.3, K74.4, K74.5, 

K75.2, K75.3, K75.4, K75.8, K75.9) before the diagnosis of SLD. 
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CONCLUSION AND FUTURE PERSPECTIVES 

NAFLD is a complex and heterogenous entity, deriving from the interplay between 

genetic, metabolic, and environmental risk factors. Given the high prevalence of the 

disease and its usually benign nature, it’s becoming increasingly important to have simple 

and accurate non-invasive diagnostic tests to identify in routine clinical practice the 

minority of individuals evolving to NASH and advanced fibrosis. Indeed, the 

identification of individuals with advanced liver disease is crucial because these 

individuals are those who will benefit the most from a prompt referral to liver clinic for 

further investigation and follow-up. Moreover, these individuals are the ideal candidates 

for inclusion in clinical trials with novel pharmacotherapies for NASH. 

The main objectives of this thesis were 1) to investigate the independent contribution of 

the most relevant risk factors for NAFLD severity and 2) to generate a simple blood-

based score to screen for fibrotic NASH in high-risk individuals in general population 

settings. 

In Paper I, we demonstrated that risk factors independently associated with increased 

risk of incident severe liver disease were abnormal AST, decrease in serum albumin and 

platelet count, the coexistence of cardiovascular disease and microalbuminuria, and 

genetic variants in PNPLA3 and TM6SF2. 

In Paper II, we developed and validated the FNI, a novel, simple, and accurate non-

invasive blood-based score to identify fibrotic NASH in high-risk individuals in primary 

care and diabetology/endocrinology clinics. 

These findings may help in clinical care identify individuals at risk for progressive liver 

disease, in turn leading to personalized risk prediction and prevention strategies. Further 

longitudinal population-based studies are required to confirm the performance of FNI for 

detecting at-risk NAFLD, alone or in combination with additional non-invasive NAFLD 

biomarkers. Finally, histologically characterized cohort studies are required to test the 

performance of FNI in individuals with NAFLD in secondary/tertiary care settings. 
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