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Abstract: Delineation of resected brain cavities on magnetic resonance images (MRIs) of epilepsy
surgery patients is essential for neuroimaging/neurophysiology studies investigating biomarkers of
the epileptogenic zone. The gold standard to delineate the resection on MRI remains manual slice-
by-slice tracing by experts. Here, we proposed and validated a semiautomated MRI segmentation
pipeline, generating an accurate model of the resection and its anatomical labeling, and developed a
graphical user interface (GUI) for user-friendly usage. We retrieved pre- and postoperative MRIs from
35 patients who had focal epilepsy surgery, implemented a region-growing algorithm to delineate the
resection on postoperative MRIs and tested its performance while varying different tuning parameters.
Similarity between our output and hand-drawn gold standards was evaluated via dice similarity
coefficient (DSC; range: 0–1). Additionally, the best segmentation pipeline was trained to provide an
automated anatomical report of the resection (based on presurgical brain atlas). We found that the
best-performing set of parameters presented DSC of 0.83 (0.72–0.85), high robustness to seed-selection
variability and anatomical accuracy of 90% to the clinical postoperative MRI report. We presented
a novel user-friendly open-source GUI that implements a semiautomated segmentation pipeline
specifically optimized to generate resection models and their anatomical reports from epilepsy
surgery patients, while minimizing user interaction.

Keywords: brain resection; epilepsy surgery; MRI; region growing; image segmentation

1. Introduction
1.1. Epilepsy Surgery and Resected Brain Cavity

Brain surgery is the best available treatment for patients suffering from drug-resistant
epilepsy (DRE) [1] who represent between 20–30% of all the epilepsy cases [2–4]. The
objective of resective epilepsy surgery is the complete resection or disconnection of the
epileptogenic zone, which is defined as “the area of cortex indispensable for the generation
of clinical seizures” [5]. Delineating the epileptogenic zone, therefore, is key to the success of
epilepsy surgery; yet, this zone is a fully theoretical concept: no diagnostic modality, that is
currently available, can measure the entire epileptogenic zone directly. Prior to the surgery,
we cannot exclude the presence of a potential epileptogenic zone that would only become
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clinically apparent postoperatively (once the patient continues to have epileptic seizures,
coming for a spared part of the brain). The more recent concept of the epileptogenic
zone as “the minimum amount of cortex that must be surgically resected (or completely
disconnected) to produce seizure freedom” apparently provides a more objective definition
of this zone [6]. This provides an objective and practical criterion for the testing of this
theoretical concept. It means that seizure-freedom after surgery is evidence that the whole
epileptogenic zone was included in the resected area [5]. Therefore, delineating the exact
margins of the resected brain tissue epileptogenic zone postoperatively is a key step to
study the epileptogenic zone and understand what characterizes it.

In patients with DRE, neuroimaging techniques, and particularly magnetic resonance
imaging (MRI) coupled with electroencephalography (EEG) or magnetoencephalography
(MEG) data, represent the techniques of choice to carefully plan the intervention and
evaluate its effectiveness [4,7,8]. Many research efforts are dedicated to extricating the
associations between specific characteristics of the resected brain tissue and patients’ post-
surgical outcome [2,9–14]: identifying which properties of the resected tissue (also relative
to the non-resected tissue) are associated with postsurgical seizure freedom constitutes
the first step towards the identification and validation of epilepsy biomarkers or outcome
predictors in epilepsy surgery. Recent studies on DRE have showed how the presence of
specific biomarkers–such as EEG or MEG high-frequency oscillations [2,10,15–18], EEG
phase-amplitude coupling [19], MEG discharges [9,20–22], multi-feature intracranial EEG
patterns [23,24]–in the resected tissue, relative to that in non-resected tissue, is associated
with high probability of good outcome.

Therefore, the accurate segmentation of the resected brain cavity in neuroimaging data
represents a crucial step for testing the epileptogenic zone concept as well as improving
epilepsy surgery outcome prediction that is key for clinical decision-making.

1.2. Technical Aspects, Cons and Pros of Existing Methods

A wealth of different algorithms for automated, semiautomated and interactive seg-
mentation of brain structures or abnormalities (such as tumors or lesions) have been de-
veloped in the last 20 years [7,25–30], but none of them have been specifically designed to
investigate neurosurgical resections [31]. This task is typically performed manually through
a slice-by-slice tracing of MR images [7,8,26,31], which is a time-consuming procedure,
requires an expert and is still prone to inter- and intra-rater errors.

An ideal medical image-segmentation process of a specific region of interest (ROI; e.g.,
a generic anatomical structure, a tumor, or in our case, a resection cavity) is characterized
by: (i) minimum user interaction, (ii) fast computation, (iii) accurate and robust results [28],
(iv) quantitative data on different sizes, shapes and location [8]. Only one study, to the best
of our knowledge, investigated the accuracy of different segmentation methods for resected
brain areas [31]: In this study, Gau et al. showed how the semiautomated (boundary-
based) segmentation of the ITK-SNAP software [8] outperformed the fully automated
(statistical-based) approach of the lesion_GNB software [32]. Statistical-based fully auto-
mated methods rely on parametric models of intensity distribution, usually available for the
healthy brain: these algorithms delineate the brain regions by tuning such parameters and
effectively address the problem of segmentation when intensity distributions of different
tissues are a priori known [26]; yet in real cases, especially for pathological brains, no prior
knowledge about the data distribution is available [28]. On the other hand, the semiau-
tomated segmentation method used by Gau et al. [31] was not specifically developed to
delineate resection cavities and requires substantial inputs by the user, who must manually
initialize the starting contour in several layers of the image, which can be both inaccurate
and tedious, and could lead to errors caused by local gradients [27,28]. This is due to the
fact that boundary-based segmentation methods [8] use local image features (i.e., edges) to
attract an evolving contour delineating the ROI onto the target edges. The most common
limitations of this class of algorithms are the long computation time, and the necessity to
manually initialize the starting contour. Therefore, there is an evident need for a semiauto-
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mated user-friendly tool to accurately delineate resection cavities on patients’ MRIs. This
tool should be conceived to be used to any nonexpert user without requiring fine tuning of
multiple unintuitive parameters as in the currently available systems. While the specific
segmentation of surgical resections has not been largely investigated yet, several semiauto-
mated approaches have been developed for other medical applications, such as tumors,
vessels or lesion segmentation [33–35]. Semiautomatic approaches have the advantage
of combining the efficiency and repeatability of automatic segmentation with the sound
judgement that can only come from human expertise, resulting in higher overlaps between
the outcome of the algorithm and the human segmentation compared to fully automated
approaches (0.78 vs. 0.58 [31]). Among this type of approaches, region-growing-based
methods have been largely explored [27,36–38]. These methods provide a simpler way to
delineate a ROI on an image, since they require the user to manually select only one seed
(whose value falls in an interval that is representative for the segmentation task), which
then typically grows (growing region) until the difference between its intensity and that of
the next candidate voxels is higher than a predefined threshold. Region-growing methods
can be successfully applied to segment ROIs with homogeneous intensity, in which the
seed placement is relatively easy, as in the case of neurosurgical resections (whose intensity
is homogenous and markedly different from the surrounding voxels). Lack of homogeneity
may otherwise produce inaccurate segmentations that leak outside the ROI; besides this,
if the ROI has an intensity level that is similar to other regions or to the background, the
growing process may leak into them as well [27]. When delineating a surgical resection in
the brain, while the lack of homogeneity does not represent an issue, the possible leakage
into the MRI background does.

1.3. Our Contribution

Based on all these considerations and on the results from previous neuroimaging
studies, in the present work we aimed at developing a semiautomated segmentation
pipeline to delineate brain resections on the MRI of patients who had epilepsy surgery.
We used a hybrid approach that integrates a region-growing process on the patient’s
postoperative MRI with the definition of a patient-specific mask through preoperative
MRI segmentation in order to overcome leakage into the background. We tested a variety
of settings for image processing and region growth and identified the most appropriate
configuration to optimize the output, thus reducing the considerable amount of human
expertise otherwise needed for accurate tuning. Finally, we developed a semiautomated,
user-friendly graphical user interface (GUI) for brain MRI segmentation, specifically tuned
and optimized to generate an accurate model of the resection and its neuroanatomical
labeling, while requiring minimal user interaction and image-processing expertise. The
GUI source code is freely available as a MATLAB-based application (https://github.com/
rbillardello/BrainResectionApp (accessed on 14 April 2022)).

2. Materials and Methods

Data from 35 patients who underwent focal epilepsy surgery at the Epilepsy Center
of Boston Children’s Hospital (Boston, MA, USA) were included. Patients who had hemi-
spherectomy, corpus callosotomy or thermal ablation were excluded. For each patient, we
retrieved the pre- and postoperative MRIs (T1-weighted volumetric MRI), which had been
acquired as part of their routine pre- and postsurgical evaluation.

The segmentation algorithm we propose here integrates a region-growing approach,
which grows on the postoperative MRI, and the definition of a patient-specific mask through
the preoperative MRI segmentation. Thus, it requires the following inputs: (1) postoperative
MRI (where the resection cavity is present); (2) patient-specific preoperative brain mask (to
define the initial brain space), and (3) the location of one initial seed within the resection
cavity (to initiate the region-growing process).

https://github.com/rbillardello/BrainResectionApp
https://github.com/rbillardello/BrainResectionApp
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2.1. Preprocessing of Input Images

Preoperative and postoperative MRI were co-registered in Brainstorm [39] using the
statistical parametric mapping (SPM12) toolbox with reslice [40]. Postoperative MR images
were then exported from Brainstorm to MATLAB (The MathWorks Inc., Natick, MA, USA)
and converted to uint8 type. We performed the FreeSurfer [41] cortical reconstruction
process (recon-all) on the preoperative MRIs to extract each patient’s brain mask (skull
stripping) and also obtain a cortical parcellation (based on the Desikan–Killiany atlas) [42].
The brain mask was needed to limit the region-growing to the brain space (see Section 2.2),
while cortical parcellation was needed to provide a neuroanatomical report of the resection
(see Section 2.5).

To identify the optimal segmentation pipeline, we assessed the performance of the
region-growing output when using different standardization methods as well as when
setting threshold or smoothing parameters to different possible values. Regarding the
standardization process used to treat the input image (postoperative MRI), we chose to use
and test two built-in MATLAB normalization methods for image contrast, which remap
the intensity distribution according to the image class range: the linear contrast stretch
adjustment (ADJ) and the max-min normalization (NORM). The ADJ linearly remaps the
intensity distribution of the image over the limits derived by saturating the top and bottom
voxel values from the whole MRI. The NORM remaps the image intensity according to
the intensity span (max-min) measured in the whole MRI. In addition, we also decided
to implement the ”local” version of these two methods (meaning that the normalization
was performed slice by slice rather than by the whole image) since this would favor the
region-growing process to grow intra-slice before moving to the next. Thus, we ended up
testing the following four methods: (1) Global ADJ (ADJ-G); (2) Local ADJ (ADJ-L); (3)
Global NORM (NORM-G); (4) Local NORM (NORM-L).

We varied the values of three or four threshold parameters (when using NORM or
ADJ, respectively) to identify the best-performing set of values, so that we could design
an optimized segmentation pipeline that reduces the user interaction and need for tuning.
Table 1 reports details about the parameters and their values that were tested to optimize
the segmentation pipeline depending on the standardization process (ADJ and NORM,
whether global or local). Section 2.3 describe how we tested the performance of all the
possible segmentation pipelines. Figure 1 shows a schematic of how the parameters’ tuning
modifies the inputs or output of the segmentation pipeline. To preprocess the patient’s
brain mask, we used a 3D Gaussian smoothing kernel filter to smooth its margins and then
we binarized the output to again obtain a logical brain mask (including all the voxels with
values > 0.01) where to confine the region-growing algorithm: Figure 1A shows how we
varied the values of standard deviation (STD) for the brain-mask smoothing, starting from
low (STD = 0.5, resulting in a more conservative brain mask) to higher values (STD = 3,
resulting in a more extended and smoothed brain mask). To preprocess the postoperative
MRI using the ADJ method, we varied the saturation threshold (Figure 1B). We also used
the preoperative cortical-surface-parcellation file from Freesurfer to obtain a logical map
of the brain ventricles and exclude them from the logical brain mask (although this only
improves the algorithm performance if the resection is in the proximity of the ventricle
space; it is not needed otherwise).
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Table 1. Parameters and tested values.

Parameter Applied to Tested Values
Standardization

ADJ-G
ADJ-L

NORM-G
NORM-L

Smoothing Brain Mask 0.5; 1; 3 3 Values
Tolerance Threshold Region-Growing 2%; 5%; 8%; 11%; 14%; 17%; 20% 7 Values
Saturation Threshold Post-op MRI 0.1%; 0.5%; 1%; 5%; 10%; 15% 6 Values n/a

Smoothing Output 0.1; 0.5; 1; 1.5 4 Values
Total Number of Combinations (Segmentation Pipelines) 504 84

Smoothing: applied to the brain mask or final resection output, it is the standard deviation of the Gaussian filter
for smoothing; Tolerance Threshold: applied to region-growing algorithm, it is the maximum difference that a
voxel can have from the average of the growing region to be included in it; Saturation Threshold: applied to
postoperative MRI, contrast adjustment saturates bottom and top percentage of all pixels.
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Figure 1. Results from low (2nd column) to high (4th column) parameter values. Mask Smoothing
(A-1st row): original preoperative MRI brain mask (left) and three different binarized smoothed
masks (right); Saturation Threshold (B-2nd row): low-contrast original postoperative MRI (left) and
three contrast-adjusted images (right); Tolerance Threshold (C-3rd row): manual traced resection
(left) and three examples of resections obtained with increasing tolerance value (right); and Final
Smoothing (D-4th row): manual traced resection (left) and three different values of smoothing.
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2.2. Region-Growing Algorithm

The proposed segmentation algorithm requires the placement of a seed within the
resected cavity on the postoperative MRI by the human user. Such a user-based initialization
was thus performed by a human user who was instructed to manually place the initial seed
for each patient based on the following instructions: (i) the initial seed must be in the center
of the cavity rather than on the border; (ii) the initial seed must be one of the darkest voxels
in the cavity (i.e., have low intensity values). Different slices and views were presented
to the user, who was left free to select any point. The user was asked to select a new seed
whenever he chose a point outside the gold standard or an outlier with a high intensity
value (where “high” means above the mean intensity value of the gold standard).

Starting from the initial seed, neighbor voxels (6-Neighboring) that are in the brain
map were added to a “neighbors list”. Then, the difference between the intensity value of
each element in this list and the mean intensity of voxels in the evolving resection region
was calculated. If the minimum difference was below a tolerance threshold (see Table 1 for
the definition of this parameter), the corresponding voxel was moved from the neighbors
list to the growing region, and its neighbor voxels were then analyzed. The region-growing
algorithm stopped when there were no more neighbor voxels or the minimum intensity
difference between the growing region and the neighbors list was higher than the tolerance
threshold. As Table 1 reports, seven values of tolerance threshold were tested. Finally, the
outcome of the region-growing algorithm was smoothed using a 3D Gaussian smoothing
kernel filter, for which we tested and compared four different conditions (see Table 1).
Results were then again binarized (threshold equal to 10% of the maximum value) to have
a final logical map of the resection. Figure 1C,D show how the output changes when tuning
tolerance and final smoothing. Section 2.4 will also present how we simulated different
seed placements and compared their performance.

2.3. Performance Assessment

The gold standard we used to assess the performance of our segmentation was de-
fined through manual delineation of the resection cavity on the coregistered MRIs; this
was performed using Slicer 4.11 software by an experienced rater, who was blind to
the results of our algorithm. The segmentation outcome was compared with the hand-
drawn gold standard by calculating the dice similarity coefficient (DSC) [43]. DSC is
an efficient and robust metric of both overlap and reproducibility of MRI segmentation
outputs [7,8,25,26,31], calculated as:

DSC = 2× |X ∩ Y|
|X|+ |Y| (1)

where X and Y are the sets of voxels labeled as resected based on the gold standard and the
algorithm, respectively; “∩” represents the intersection of two sets, and the vertical bars
represent their cardinality (i.e., number of elements). DSC values above 0.6 are considered
as “good”, above 0.7 as “high”, and above 0.8 as “excellent” [31].

For each combination of parameters, we calculated the mean DSC across our cohort
and compared the results to identify the best sets of parameters. More precisely, for each
parameter in Table 1, we assessed whether and how the DSC changed when varying
the value of that parameter only (while keeping the others fixed): for each parameter,
Wilcoxon signed rank test was used between each pair of consecutive values to identify
the optimal value as the one maximizing the DSC, i.e., showing DSC significantly higher
than the others. Wilcoxon signed-rank test was also used to compare performance between
optimized pipelines within our cohort. Results are reported as median (inter-quartile
range, IQR); p-values below 0.05 were considered significant and Bonferroni correction was
applied for multiple comparisons.

By setting each parameter to its optimal value, we defined our optimized segmentation
pipeline, tested its inter-rater reliability and used it to generate the automated anatomical
report of the resection as described in the following sections. Furthermore, when we
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developed the GUI, we chose to leave the user the possibility to tune only one parameter,
while all the others were set to their optimal value with no possible user interaction. The
optimal values for each parameter were defined based on the results of the statistical
comparisons described above, which pointed out at the values maximizing the DSC in
our cohort. We gave the user the option to tune one parameter in order to take advantage
of human judgment and reasoning; thus, we left the tolerance threshold available for
tuning because of its intuitiveness: higher tolerances lead to more inclusiveness and thus
to larger resection volumes, while lower tolerances lead to less inclusiveness and thus
smaller resection volumes. To test if this setting allows a good performance to be reached,
we computed the maximum possible DSC that is obtainable by only leaving the tolerance
threshold to change (maximum selectable, MaxS, among seven options), with the maximum
possible (MaxP) DSC for each patient, which is obtainable by leaving all the parameters
to change (among 504 options). Then, we calculated a mean quadratic discard (MQD)
between the two:

MQD =

√
∑N

i=1(MaxSi−MaxPi)2

N
(2)

where MaxSi and MaxPi are the maximum selectable and maximum possible DSC for the
ith patient, and N is the number of patients.

We finally tested whether performance (MaxS) depended on factors such as resec-
tion volume or patient’s age through correlation (Pearson) analysis, or temporal versus
extratemporal cases through Wilcoxon rank-sum test.

2.4. Inter-Rater Reliability

To simulate the manual placement of the seed by different users, a human user hand-
picked 12 seeds per patient (i.e., 11 additional seeds in the proximity of the initial selected
seed), chosen from different MRI views and slices as Figure 2 shows: the user was asked to
place four seeds per view on slices that were two voxels apart. Since patients could have
thin resection cavities in one of the three directions, we chose to place the multiple, proximal
seeds no more than 2 voxels apart in all subjects (meaning that seeds were distributed
over a span of 6 voxels per direction); this ensured that we could be consistent across
our cohort, including subjects with small resections. Then, the optimized segmentation
pipelines were used to create a resection model from each of the 12 seeds per patient, and
we calculated inter-rater reliability via two metrics: DSC and volume ratio (ratio of number
of voxels) between the segmentation outputs obtained from different seeds. We only tested
initial seeds placed inside the resection cavity, and this is a prerequisite of the proposed
segmentation tool: the semiautomated tool we propose is meant to be used to facilitate
the human reader, who is able to identify the resection, in delineating the whole cavity (its
volume and margins) accurately and rapidly.

2.5. Automated Anatomical Report

To generate an anatomical report of the resection, we developed and tested two
approaches based on the comparison between each patient’s resection model and their
Desikan–Killiany atlas parcellation (obtained via Freesurfer). The parcellation file con-
tains a 3D image, where each voxel has an anatomical label that identifies a sublobe to
which it belongs, and to whom we assigned an anatomical area [44] among the following:
frontal, temporal, parietal, occipital, cingulate, hippocampus, amygdala. Figure 3 shows
the brain parcellation file for one of our patients and the automated report generated based
on the two different approaches that we implemented to assign the resection voxels to
an anatomical area. In the first approach, we coregistered the resection model with the
preoperative parcellation file and assessed its overlap with all the different anatomical areas
(overlap-based approach). Because of the lack of exact alignment between preoperative
and postoperative brain margins and gyrification, many voxels within the postoperative
resection model may erroneously overlap with an unknown label in the preoperative par-
cellation file (corresponding to background or cerebrospinal fluid, CSF). For this reason, we
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implemented a second approach to assign all the unknown voxels within the segmented
resection based on their neighbor voxels: we used the patient-specific preoperative parcel-
lation labels—different from “unknown”—to train a k-nearest-neighbor (KNN) classifier,
which was then used to label all the unknown voxels of the resection (meaning assigning
them to the nearest anatomical area).
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Figure 2. Seed positioning in different MRI views. We selected four seeds (indicated by red stars)
from different slices from each MRI view (first row: axial view, second row: coronal view, third row:
sagittal view), obtaining a total of 12 different seeds for each patient.

To assess the accuracy of the two approaches, we compared them with the ground truth
that consisted of the anatomical areas described as surgically resected in the postoperative
MRI clinical report. Thus, we calculated the resection percentage of each preoperative
anatomical area (as the number of resection voxels assigned to an area divided by the total
number of the area’s voxels) and classified an area as “resected” if showing a percentage
above a minimum threshold, or “nonresected” otherwise. Since the optimal threshold to
classify an area as resected was not known a priori, we varied the thresholds from 0%
(where all lobes with at least one voxel in the resection model are considered as “resected”)
to 100% (where all lobes are considered as “nonresected”). For each threshold, we assessed
true or false positives (resected areas present or not in the patient’s clinical report), and true
or false negatives (nonresected areas absent or not from the patient’s clinical report). Based
on this, the automated anatomical report of the resection of each patient was regarded as:

- Fully concordant: complete match between the resected areas of the automated and
clinical report (no false classifications).

- Partly concordant, including three scenarios: (i) the automated report points to all
the areas of the clinical report plus additional false-positive areas (clinical report is
a subset of the automated); (ii) automated report points to only some of the areas of
the clinical report, thus there are false negatives (automated report is a subset of the
clinical); or (iii) automated report points to only some of the areas of the clinical report
(there are false negatives) plus additional false positives.

- Discordant: no match between any of the areas reported in the automated and clinical
report (no true classifications).
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Figure 3. Automated generation of the resection anatomical report. Example of inputs (right:
segmentation of the resection cavity, preoperative Desikan–Killiany cortical parcellation) and outputs
(left: resection percentages of each anatomical area, and list of resected areas). Each cortical area of
the Desikan–Killiany is associated with one anatomical area (frontal, temporal, parietal, occipital,
cingulate, hippocampus, amygdala). Two approaches (overlap- and KNN-based) were used to
estimate the resection percentage of each anatomical area and then generate an anatomical report,
which was then validated by comparison with the ground truth (clinical MRI postsurgical report).
In this example, both automated reports indicate right parietal lobe resection, consistently with the
ground truth.

Furthermore, for each threshold, we estimated accuracy, sensitivity and specificity
across our entire cohort, and a leave-one-out cross-validation (LOOCV) was performed to
find the optimal threshold on the resection percentage (to classify an area as “resected”)
based on three different criteria: (i) maximizing the number of fully concordant reports
in our cohort while minimizing discordances; (ii) maximizing the overall accuracy of our
outputs; or (iii) optimizing the receiver operating characteristic (ROC) curve (optimal
operating point).

3. Results

Our cohort included 35 patients (11 females) with a median age at surgery of 12 years
(8.25–16.75); 16 of them had temporal resections (vs. 19 extratemporal) and 74% of them
(n = 26) became seizure-free (Engel scale 1) after resective epilepsy surgery. The average
volume of resected brain tissue per patient (based on the gold-standard manual definition)
was 18.89 (13.20–36.74) cm3 without difference (p = 0.75) between good (Engel 1; 17.7
(13.8–36.9) cm3) and poor outcomes (Engel > 1; 31.6 (9.6–38.4) cm3).

By varying all the parameter settings, we tested 504 different segmentation pipelines
for each ADJ method and 84 for each NORM method. Figure 4 shows for each standard-
ization method (ADJ-L, ADJ-G, NORM-L, NORM-G) how the DSC changed when using
different values of mask smoothing, tolerance threshold, final smoothing and saturation
threshold. The values that significantly improved the DSC are highlighted with green
boxes and summarized in Table 2, which reports the best-performing segmentation settings
(optimal values) for each standardization method. When two values did not show signifi-
cant difference in DSC across the set of tested pipelines, we identified the value giving the
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highest proportion of good DSC (>0.6) in our cohort, or for the final smoothing parameter,
we opted for the smoothest output (see Figure 4).
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Figure 4. DSC changes using different parameter values. Each boxplot shows the DSC of all the
pipelines where one parameter was set to a certain value. Significant increases and decreases are
indicated with a star and a triangle. Boxbplots corresponding to the optimal values are in green. Top
edges of the boxes indicate the 25th and 75th percentiles.

Table 2. Optimal parameter values and their associated DSC.

Parameter ADJ-G ADJ-L NORM-G NORM-L

Mask Smoothing 0.5 0.5 0.5 0.5
Tolerance Threshold 0.05 0.05 0.02 0.02

Final Smoothing 0.5 0.5 0.1 0.5
Saturation Threshold 10% 10% NA NA
DSC Median (IQR) 0.76 (0.68–0.85) 0.83 (0.72–0.85) 0.78 (0.68–0.83) 0.79 (0.66–0.86)

Overall, we obtained excellent performance for 15 pipelines (7.9%) of the ADJ-L
method (mean DSC across our cohort > 0.8) and 5 pipelines (4.2%) for the ADJ-G method,
while when using the NORM-L or NORM-G methods, no pipeline showed a median DSC
above 0.80.

Figure 5 shows the results when looking at the optimal pipeline for each standardiza-
tion method (obtained using the values indicated in Table 1): we obtained excellent DSC in
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60% of our patients with ADJ-L, 49% with NORM-L, 40% with NORM-G and 31% with
ADJ-G (see Figure 5). In addition, the ADJ-L segmentation pipeline presented higher DSC
than ADJ-G (p = 0.0034), NORM-G (p < 0.001) and NORM-L (p = 0.02 marginally significant)
as shown in Figure 5. Based on these findings, all the following analyses were conducted
on the optimized performing pipeline for the ADJ-L.
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Figure 5. DSC for the best-performing pipeline of each standardization method. Pies indicate the
percentage of patients with excellent similarity (yellow, DSC > 0.8%), high similarity (green, DSC from
0.7 to 0.8), good similarity (blue, DSC from 0.6 to 0.7), and poor similarity (DSC < 0.6). Significant
differences (Wilcoxon signed-rank test) between the standardization methods are indicated with
asterisks (* p < 0.05; ** p < 0.01). Data points beyond the boxplot whiskers are indicated with +.

3.1. Inter-Rater Analysis

The segmentation outputs we obtained when varying the initial seed were identical in
almost all cases. In the first scenario (two different seeds selected from same view), we had
excellent DSC (axial and sagittal: 1 (1–1); coronal: 1 (0.996–1)) and volume ratios (axial and
sagittal: 1 (1–1); coronal: 1 (0.992–1)) in our cohort. In the second scenario (two different
seeds selected from different views), we also found excellent DSC of 1 (0.999–1) and high
volume ratios of 1 (0.998–1).

3.2. Anatomical Report

We generated an automated anatomical report of the resection output for each patient
using the different approaches described in Section 2.5 and obtained the performance
showed in Figure 6. The LOOCV used to define the optimal threshold on the resection
percentage (to classify an area as “resected”) gave very similar threshold values (1.76–1.77%)
when using the three different optimization methods, although the performance varied
depending on them (as reported in Figure 6).
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By comparing the overlap-based and the KNN-based approach, we observed that
the KNN outperformed the overlap-based approach in terms of the overall number of
automated reports that were concordant with the gold standard: Figure 6 (left panel)
shows how the KNN approach did not produce any discordant report independently from
the LOOCV method used to define the threshold on the resection percentage; contrarily,
the overlap-based approach generated a discordant report in one (3%) or two cases (6%).
Moreover, Figure 6 also reports the results in terms of overall accuracy, sensitivity and
specificity of the automated output (resected versus non-resected anatomical areas) across
the entire cohort, showing how both approaches present very high performance (accuracy:
90–91%; sensitivity: 85–89%; specificity: 82–94%). Based on the highest number of fully
concordant automated reports, we identified the KNN approach, which used the threshold
computed via optimal ROC curve point, as the best-performing method for anatomical-
report generation; thus, this method was implemented in the GUI presented in this study.

3.3. Graphic User Interface (GUI)

The best-performing segmentation pipeline and anatomical-report approach were
finally integrated in a GUI, which is outlined and described in Figures 7 and 8, for a
user-friendly creation of the resection model. Given a preoperative brain mask and a
postoperative MRI, the GUI produces a 3D segmentation model of the resection with
minimum user intervention (that is needed for the seed placement only). The presented
GUI is a Matlab application, freely available on GitHub (https://github.com/rbillardello/
BrainResectionApp (accessed on 14 April 2022)).

https://github.com/rbillardello/BrainResectionApp
https://github.com/rbillardello/BrainResectionApp
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Figure 7. GUI for the resection segmentation. (A): Interface to select postoperative MRI and preoper-
ative brain-mask files, or the patient’s Brainstorm anatomy folder that contains them. (B): Slider to
select tolerance threshold (default: optimal value). (C): Interface to place the initial seed using an
MRI viewer (see Figure 8) or entering its coordinates. The user can set an additional ROI for region
growing by entering its ranges (this is optional, see Figure 8). (D): Options to exclude brain ventricles
and/or generate the anatomical report through a brain parcellation file, which must be selected. E
and F: the user can change the view (E) and slice (F) to visualize the postoperative MRI and resection
model shown in G. (G): Preview of results (left: postoperative MRI; middle: resection model, right:
automated report and resection volume in cm3). (H): Buttons to run the segmentation (“Calculate”),
or to export results to a file (NIfTI), MATLAB workspace, or directly to the initial Brainstorm anatomy
folder. Status LED turns red in case of error (green otherwise). “Show 3D” button shows the resection
model (see Figure 8), while “Reset” allows to reset all settings and run again.

To use the GUI, the user can manually select the inputs (i.e., the coregistered post-
operative MRI and preoperative brain-mask files) or, alternatively, the patient’s anatomy
folder of the Brainstorm software database containing them. As a preoperative brain
mask, the GUI accepts the mask generated through Freesurfer (the results reported above
were obtained using this type of input), but also through Brainstorm using SPM (http:
//www.fil.ion.ucl.ac.uk/spm/ (accessed on 10 January 2020)) or Fieldtrip [45]: in these
last two cases, the definition of the mask for the region-growing algorithm is obtained by
excluding all the voxels labeled as CSF fluid, skull, scalp or background.

Once the postoperative MRI is selected, the user can manually place the initial seed
on the Brainstorm MRI viewer (see Figures 7C and 8A), which can be directly opened
from our GUI (previous installation of the Brainstorm MATALB Toolbox is required). The
GUI then provides the user a preview of the result (see Figure 7G) that helps tune the
tolerance threshold that is set to the default optimal value, but can be modified by the user
(Figure 7B); all the other parameters instead are fixed to their optimal values.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Figure 8. GUI popup windows. (A) MRI viewer for seed placement (when “Place Manually” is
clicked). (B) Window for the definition of an optional ROI in which the region is free to grow (when
“Change Ranges” button is clicked). (C) 3D MRI viewer from Brainstorm software (if “Show 3D”
button is clicked) shows the 3D resection output (red). (D) If “Export to Workspace” is clicked, the
user can export the output in voxel coordinates and/or in Subject Coordinates System (SCS), as
well as the segmentation parameters and seed coordinates (Segmentation info). (E) Bar graph of the
anatomical report (when “Generate automated report graphs” is selected).

Finally, by using a preoperative cortical-surface-parcellation file, the GUI can also
provide an automated anatomical report of the resection, as previously described. The
segmentation output can be exported to the MATLAB workspace or as NIfTI file or directly
saved into the patient’s anatomy folder in the Brainstorm software database (if this was
selected as input to the GUI). Figure 9 shows three examples of the resection model from
three of our patients.
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Figure 9. Examples of segmentation from the presented GUI from three different patients: left frontal
resection (#1), left temporal resection (#2); right parietal resection (#3).

3.4. Single-Parameter Tuning

We estimated that the highest DSC that can be obtained through the GUI by varying
only the tolerance threshold (MaxS) was 0.84 (0.77–0.88). Compared with the maximum
possible values obtainable by modifying all the parameters of our algorithm, we estimated
an MQD of 0.05 (MaxP = 0.86 (0.82–0.91)). Such a low MQD is desirable, as it implies that
the user can reach by only varying one single parameter (from seven possible choices)—a
performance that is very similar to that of a user who can vary all of them (504 possible
combinations of choices).

Furthermore, our data show that the obtained performance (MaxS) for all standardiza-
tion methods did not depend on the patient’s age (ADJ-G: p = 0.58, R = 0.098; ADJ-L: p =
0.48, R = 0.12; NORM-G: p = 0.65, R = 0.079; NORM-L: p = 0.82, R =−0.040) or the resection
volume (ADJ-G: p = 0.61, R = 0.090; ADJ-L: p = 0.77, R = 0.051; NORM-G: p = 0.67, R = 0.075;
NORM-L: p = 0.38, R = −0.15); neither did they differ between temporal and extratemporal
cases (ADJ-G: p = 0.60; ADJ-L: p = 0.56; NORM-G: p = 0.51; NORM-L: p = 0.80).

4. Discussion

Neuroimaging and neurophysiology research of epilepsy biomarkers ask for accurate
delineation of the resected brain region within the patient’s MRI. In drug-resistant epilepsy,
the “epileptogenic zone” (EZ) within the brain can only be determined post-surgically:
one can be certain that the EZ was correctly identified only after the surgery renders the
patient seizure-free [6,46], as this is the only proof that the EZ was indeed excised. The
resected brain tissue thus represents the best estimate of the EZ, and its accurate definition
post-surgery is critical to all the studies investigating and validating novel methods to
estimate the EZ or predict outcomes in drug-resistant epilepsy.

For these reasons, there is an evident need for a user-friendly tool that is specifically
designed to accurately delineate resection cavities and does not require fine tuning of a
variety of image-processing parameters, which is not always intuitive and approachable to
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a nontechnical user. Through this study, we aimed at providing the epilepsy-research com-
munity with a user-friendly validated tool for this purpose. Although MRI segmentation
tools are available, we present here a new user-friendly application for the epilepsy-research
community, which to our best knowledge is unique in the following aspects:

(i) It is specifically tailored and tuned for a quick and reliable definition of epilepsy
surgical resections in the MRI space by any user that lacks advanced expertise in
medical image segmentation;

(ii) It provides an automated anatomical report of the resected brain tissue at the lobar
and sublobar level (when integrated with the use of other segmentation software).

We introduced and validated a semiautomated segmentation pipeline consisting of
a hybrid approach that integrates a traditional region-growing method on the postoper-
ative MRI with the patient-specific preoperative brain mask: our validation results in a
cohort of 35 patients show how we could optimize the segmentation pipeline and obtain
excellent levels of accuracy to the hand-drawn gold standard (mean dice coefficient of 83%)
independently from the initial seed placement (which was left as the main user-dependent
input).

In addition, this study presents the first segmentation tool, to our best knowledge,
designed and validated to automatically outline an anatomical report of the surgical
excision on the MRI, and we report accuracies above 90% to the clinical MRI reports.
We tested different methods to generate an anatomical report (see Figure 6): the better
performance of the KNN approach (which assigns all the resected voxels to the closest
anatomical area based on the preoperative cortical parcellation file), compared to the
overlap-based approach, suggests that can minimize the effect of slight MRI co-registration
errors (between pre- and postoperative MRIs). Thus, we implemented such an approach in
the publicly available GUI.

We performed validation in the context of 35 pediatric epilepsy surgery cases, which
include an heterogenicity of anatomical regions (differently from adult epilepsy cases who
are predominantly temporal lobe epilepsy). Our findings showed that the performance
of our proposed segmentation did not depend on the patient’s age (ranging in our cohort
from 2 to 21 years), the resection volume or on the type of surgery (whether temporal or
extratemporal cases). Therefore, the excellent performance that we report suggests reliabil-
ity of the proposed application to a variety of clinical scenarios and provides evidence for
adopting it as the segmentation solution for neuroimaging research in epilepsy surgery.

We finally presented and made publicly available an open-source, user-friendly appli-
cation for medical image processing that can be used by the epilepsy research community to
extract the volume and margins of a resection cavity in 3D MRIs along with its neuroanatom-
ical labeling (anatomical resection report). The GUI is focused entirely and specifically on
segmenting the resection cavity and it was designed to maximize user efficiency and the
output accuracy, as:

(i) we identified the optimal values for a variety of image-processing parameters so that
no tuning is needed (which would be otherwise difficult for anyone without expertise
in image processing);

(ii) we left the simplified parameter selection and kept it to a minimum: we only left the
user the option to vary one parameter and made its tuning through the GUI intuitive
(see Figure 7B);

(iii) we demonstrated how by varying one single parameter (among seven possible
choices), the user can reach a performance that is very similar to that of a user who
can vary all of them (504 choices)

(iv) the user is only asked to place an initial seed anywhere in the resection cavity that
they desire to delineate (Figures 7C and 8A).

Limitations and Future Directions

Validation on a larger dataset would be beneficial; however, taking into account the
incidence rate of epilepsy surgery, our sample size (n = 35) can be regarded as satisfactory.



Diagnostics 2022, 12, 1017 17 of 19

Since the source code is freely available, reproducibility and future validation on different
populations is encouraged and warranted to further ensure generalizability of our results.

The proposed segmentation pipeline cannot be used in case of laser ablation, which
is becoming a more and more common surgical option for children with DRE. Further
development and validation are needed to allow delineation of the ablated brain tissue as
their MRI characteristics largely differ from brain resections.

5. Conclusions

Although delineation of the resected brain cavity on the MRI of patients who had
epilepsy surgery is key for identifying biomarkers of the EZ, the current gold standard
remains manual slice-by-slice tracing by experts. Here, we presented a novel user-friendly
open-source GUI that implements a semiautomated segmentation pipeline specifically
optimized to generate resection models and their anatomical reports from patients who
had epilepsy neurosurgery, while minimizing the user interaction. The GUI was validated
on a cohort of 35 patients, demonstrating excellent performance, and was made publicly
available to the research community.
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