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Abstract

Type 1 Diabetes mellitus (T1D) is a chronic metabolic disease due to which the pan-
creas is not able to produce an adequate amount of insulin, resulting in an increased
blood glucose concentration. If not treated properly, it can lead to short- and long-term
complications requiring emergency care and life-threatening conditions. The advent of
Continuous Glucose Monitoring (CGM) sensors has considerably improved the manage-
ment of T1D, as it allows people suffering from this disease to monitor their glycemic
levels for 24 hours a day. These sensors are usually coupled with an insulin pump, a
device able to continuously provide small amounts of subcutaneous insulin and larger
amounts at the patient’s request. Since the final decision on glycemic control is taken
by the patient, who is a part of the control loop, such a device is defined as a hybrid
closed-loop artificial pancreas.

In the last decade, CGM data have been utilized together with Artificial Intelligence
(AI) and time-series techniques with the aim of improving T1D management and in-
creasing the quality of life of people with T1D. In this frame, regression is by far the
most widely investigated task. In practice, CGM and other features such as injected in-
sulin are given as input to a predictive model in order to forecast future glycemic levels;
in this way, the patients are warned in advance of what their blood glucose level is going
to be in the next future and are thus able to take the appropriate countermeasures if
the glycemia is predicted to exit the target range.

A different approach resorts to classification, in which the AI model is trained to
predict whether or not the patient is going to experience an adverse event, without
predicting the exact value of the future glycemic level. These studies are relevant because
they usually achieve better accuracy with regard to the prediction of hypoglycemic events
compared to the regression approach.

While regression and classification limit to provide the patient with a decision support
based on the prediction of future glycemic levels or events, leaving to the patient the
management of the disease, a third approach focuses on the control of glycemia, i.e.,
decides what is the optimal amount of medication that must be provided in order to
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maintain the blood glucose level within the target range.
This manuscript aims to provide significant and several contributions in the field of

the application of AI methodologies to T1D management. With regard to the regression
task, a novel neural network is presented for the forecasting on adult patients during
daily-life activity, and the comparison of different learning techniques is performed on
data of patients during sports; the optimal amount of data for training an AI algorithm
for the application on an edge-computing device is investigated; an edge-computing
application is developed for the forecasting of glycemic levels of pediatric patients. With
regard to the classification task, a layered meta-learning approach is presented for the
prediction of hypoglycemic and hyperglycemic events of adult patients during daily-life
activity and during sports, and the system is implemented on an edge-computing device.
With regard to the control task, a new glycemic closed-loop control based on Dyna-Q
is presented that does not necessitate information on carbohydrates, thus not requiring
any human intervention and providing a fully closed-loop control.

x





1. Introduction

1.1. Medical Background
Diabetes mellitus (DM) is a common metabolic disorder characterized by a chronic
state of hyperglycemia (increased blood glucose concentration above 160-180 mg/dL),
which can be due to inadequate pancreatic insulin production and/or a state of insulin
resistance in peripheral cells [1]. Glucose homeostasis is maintained by an intricate
balance between different hormonal signals in the body, the most important of which are
represented by insulin and glucagon. Insulin (produced by pancreatic β cells) promotes
glucose utilization and storage thus lowering glycemia, whereas glucagon (excreted by
pancreatic α cells) opposes these actions and promotes glucose production, increasing
glycemia [2]. This complex regulatory system maintains blood glycemia within a narrow
physiological range, despite pre- and postprandial fluctuations.

There are two broad categories of DM, designated as either type 1 or type 2 DM,
which differ in their pathogenesis and clinical management.

• Type 1 Diabetes Mellitus (T1D) is also known as insulin-dependent DM, and is
usually diagnosed at a young age. It results from an autoimmune-mediated de-
struction of the insulin-producing β cells of the pancreas. This leads to a complete
or near-total insulin deficiency, with consequent persistent hyperglycemia. The
mechanisms that trigger the autoimmune process underlying this disease are still
uncertain, however an important role is played by an individual’s genetic predis-
position as well as infectious or environmental stimuli. The management of T1D
relies on patients performing several daily injections of insulin, in order to maintain
their blood glucose level within the normal range.

• Type 2 Diabetes Mellitus (T2D) is typical of adult age and represents the most
common type of DM (accounting for about 90% of all cases). T2D is characterized
by variable degrees of insulin resistance and impaired insulin secretion. It is often
related to an elevated Body Mass Index, but also genetic and environmental factors

1



1. Introduction

as well as incorrect lifestyle and stress may play a role in its development. In the
case of T2D, insulin injections are not initially necessary: a healthy diet and orally
administered drugs are often sufficient to manage glycemia in the first phases of
this disease.

Since the long-term complications of DM are related to poor glycemic control, the
goal of these patients is to maintain a condition of normoglycemia for as long as possible.
While T2D subjects maintain low glucose variability thanks to their residual pancreatic
function, patients with T1D often have more difficulty controlling their blood sugar lev-
els, despite optimal medical management [3]. In both cases, blood glucose levels often
exceed the euglycemic range, becoming either too high or too low. Hypoglycemia is de-
fined as a blood glucose level lower than 70 mg/dL, and can be caused by excess aerobic
activity without the ingestion of an adequate amount of glucose, excessive insulin ad-
ministration or other diabetes medications [4]. The consequences of severe hypoglycemia
can be life-threatening due to its effects on the brain, ranging from mild cognitive im-
pairment to a state of hypoglycemic coma. Hyperglicemia, the underlying metabolic
alteration in DM, is equally dangerous. Acute hyperglycemia can be responsible of di-
abetic ketoacidosis, a condition requiring immediate emergency care as it can also lead
to a state of coma. More importantly however, the impact of chronic hyperglycemia
can have devastating consequences in the long term, leading to diabetic retinopathy,
nephropathy and neuropathy, which cause blindness, renal failure and nerve damage
respectively. Macro-vascular complications are related to hyperglycemia as well, i.e.
coronary heart disease and stroke. Overall, the glycemic fluctuations that can be seen
in patients with DM are responsible for the complications and recurrent hospitalizations
that lower patient’s quality of life and overall life expectancy [5].

According to the World Health Organization, the number of people suffering from
diabetes rose from 108 million in 1980 to 422 million in 2014, whereas in 2019 diabetes
was the direct cause of 1.5 million deaths and 48% of all deaths due to diabetes occurred
before the age of 70 years [6]. It is considered to be the 8th cause of death worldwide,
as it caused more than 1.5 million deaths in 2019.

1.2. Biomedical Background
The most established and used technique to monitor blood glucose concentration is Self-
Monitoring of Blood Glucose (SMBG). The most common test for measuring blood
glucose involves pricking a finger with a needle to obtain a small drop of blood to be

2



1. Introduction

applied onto a reagent test strip, and determining the glucose concentration by inserting
the strip into a measurement device. Different manufacturers use different technologies,
but most systems measure an electrical characteristic proportional to the amount of
glucose in the blood sample. The measurements are painful and uncomfortable for the
patient because of the prick. Reading a hyperglycemic or hypoglycemic value, patients
can decide to adjust their glucose levels by injecting an insulin dose, e.g. by an insulin
pen, or by ingesting some carbohydrates (CHO) manually, respectively. This adjustment
would require, anyway, a further measurement of the blood glucose level after 30 to 60
minutes in order to assess the effectiveness of the adjustment, but this procedure cannot
be performed several dozens of times a day, due to its drawbacks. Some of the latest
produced devices are able to connect with the user’s smartphone in order to register all
the information that a patient needs, and can interact with a software that runs on the
smartphone. Due to the small amount of samples taken per day, SMBG cannot give
complete information on glycemic dynamics, thus the glucose may happen to subtly
exceed the safe euglycemic range without the patient’s awareness.

In 1999 the first Continuous Glucose Monitoring (CGM) device was approved by the
Food and Drug Administration FDA. Such devices overcome the limitations of SMBG
and have become very popular and widely adopted by people with diabetes in the last
years. A CGM device mainly consists of a sensor and a receiver. The sensor consists in
a miniature device placed in the subcutaneous adipose tissue having a miniature needle
capable of measuring the blood glucose level in a wide range after being inserted in
the subcutaneous tissue through an ad hoc clamping device. The receiver is usually a
hand-held device which allows the patient to know their glucose level at any moment,
by communicating wireless with the sensor.

CGM devices are much more user friendly than SMBG: the sensor is indeed placed
in the subcutaneous tissue, thus it is not necessary to perform dozens of needle pricks a
day. In other words, this monitoring system is much less invasive than SMBG, because it
measures the glucose level in the interstitial fluid rather than in the blood compartment,
and only a few finger pricks a day are necessary to calibrate the sensor. Furthermore,
most sensors have a lifetime spanning from 7 to 14 days, and are thus able to considerably
reduce the number of interventions requested to the patient; plus, in February 2022 the
FDA approved a CGM sensor that lasts up to 6 months [7]. Another fundamental feature
of CGM systems is that the glucose level is measured in real time with a 1-5 minute
sampling period, which makes the glucose monitoring almost continuous and gives a
wide outlook on the patient’s glycemic excursions during the day. This also allows the

3



1. Introduction

patient to promptly detect a hypoglycemic or hyperglycemic event, in order to quickly
take the appropriate countermeasures.

In most cases, CGM devices are supplied with an insulin pump: this combination
represents the most recent model of semiautomatic integrated system, also known as
sensor-augmented pump (SAP) therapy. Since such a system consists of a monitoring
system (the CGM sensor) and a device that provides insulin (the pump), this system is
also defined "artificial pancreas". Since these devices close the loop between control and
management, they are usually referred to as closed-loop control systems. The insulin
pump is a continuously-connected device and is capable of giving insulin doses in a con-
tinuous way, plus larger amounts (a bolus) in the event of a meal, imitating physiological
pancreatic activity. Insulin is injected through the medium of a catheter and a needle
inserted in the patient’s subcutaneous tissue. The physician can assess the value of the
basal insulin and the carbohydrates-to-insulin ratio of the individual patient. The latter
is exploited by devices that are able to automatically calculate the bolus magnitude,
according to the amount of CHO that the patient reports to have ingested. This may
lead to issues, such as the patient forgetting to insert the bolus with a consequent hyper-
glycemic event; furthermore, this approach is susceptible to human error, due to user’s
inability to perfectly calculate the amount of CHO he or she is going to ingest.

Cutting edge insulin pumps, such as the Medtronic MiniMed 670G, are able to au-
tomate the basal insulin delivery according to the values read by CGM sensors [8].
Differently, although systems like this are able to suggest the optimal bolus of insulin af-
ter knowing the amount of ingested CHO, the final decision on the bolus of insulin to be
injected relies on the patient. For this reason, the currently available systems are usually
referred to as hybrid closed-loop artificial pancreas, because the patient is still an active
part of the control loop. However, in the light of an ever more automatic paradigm of
health care, recent research efforts are moving toward the development of devices that
are capable of excluding the patient from the control loop; this would provide the first
fully closed-loop artificial pancreas, in which the insulin delivery is fully automated [9].

It is important to stress that, despite the fact that both the glycemic measurements
and the insulin injections are subcutaneous and thus minimally invasive, a considerable
drawback in terms of delay of action rises: both the insulin injection and the glucose
measurement happen in the interstitial fluid and, thus, a delay is present compared to
the blood dynamics both on the glucose read value and on the action of the injected
insulin.
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1.3. State of the art of data driven models
Although CGM sensors are widely adopted by people with T1D, hypo- and hyper-
glycemic events are still frequently reported [10, 11, 12]. This is in contrast with of
T1D management itself, the main goal of which is the avoidance, or at least limita-
tion, of adverse events such as hypoglycemia and hyperglycemia. For this reason, in
the past two decades many studies have been presented, aiming at the improvement of
the management of this disease. In particular, the growing availability of CGM data
paved the way to the development of several data-driven models, aimed at the predic-
tion of future glycemic excursions. Indeed, CGM can be regarded as a time series, as
it presents temporal sequences of evenly-spaced data points, and thus typical Artificial
Intelligence (AI) methodologies related to the field of time-series can be utilized for the
analysis. In particular, studies present in the literature concerning the application of AI
methodologies to T1D management can be resumed into 3 main categories:

1. Regression: it is the most widely adopted approach [13], and consists in fore-
casting the exact future glucose level given a prediction horizon. Predicting the
future glycemic level in the next 15-30 minutes would allow the patient to take
countermeasures in the case the glucose level is forecasted to exceed the target
range;

2. Classification: rather than forecasting the exact future glycemic level, this ap-
proach limits to predict whether or not the patient is going to experience an adverse
glycemic event;

3. Control: this approach aims at providing control strategies to manage insulin
infusion, including the development of fully-automated insulin delivery systems.

Regardless of the specific category in which each study falls, they can be further
divided according to the amount of features they exploit into:

• Univariate approach: the CGM track is the only feature used;

• Multivariate approach: further features such as injected insulin and CHO are
considered in addition to CGM.

A further difference regards the validation procedure adopted by these studies. In
particular, 2 major approaches are present:
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• Precision medicine aims to develop a predictive model suited to patient-specific
data, and, as a consequence, the available data from each patient are split into
training and test sets. The training set is used to fit the model on data from one
subject, and the test set is used to evaluate performance on other data from the
same subject;

• k-fold Cross Validation is a statistical technique consisting in splitting the whole
dataset, composed of data from several patients, into k subsets to evaluate model
performance on the entire dataset by using, in turns, one fold as the test set and
the remaining k − 1 folds as discovery (training and validation) set. In many
cases, the Leave-1-Patient-Out Cross Validation is used, a special kind of k-fold
Cross-validation in which each fold consists of all the data of a single subject.

All the models that perform any kind of prediction must first define a Prediction
Horizon (PH), i.e. how far forward in time a prediction is performed. In most studies,
a PH of 30 minutes is selected, as it would be a sufficient time advance to avoid most
adverse events. Each of the 3 main approaches will be described in detail in the next
sections.

1.3.1. Regression

In the frame of T1D, the regression task consists in the forecasting of future blood
glucose levels. In general, time series forecasting resorts to different types of approaches,
including kernel machines, forests of trees, symbolic representation, generative models,
and artificial neural networks. Kernel machines and forests of trees can be used for
regression tasks, using well-established methods in the literature [14, 15, 16, 17, 18].
Symbolic representation aims at transforming real-time data into symbolic values, and
includes methods such as Symbolic Aggregate approXimation (SAX) [19] and Bag-of-
Words (BoW) [20]. A generative model is a dynamic model which can be used to generate
random outcomes of an observation y given a target value ỹ. Such models include Auto-
Regressive (AR) models for UTS and Vector Auto-Regressive (VAR) models for MTS
forecasting, just to mention a few [21, 22]. Finally, artificial neural networks [23, 24,
25, 26, 27, 28] are mathematical models inspired by the functioning of the human brain
and have been used in many applications for both classification and regression purposes.
The latter case mainly includes feed-forward neural networks, Nonlinear Auto-Regressive
with eXogenous input (NARX) neural networks, and recurrent neural networks.
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With the specific application to T1D, over the last decade, many algorithms belonging
to all the aforementioned approaches have been developed to help patients keep their
blood glucose levels as constant as possible. Most models only focus on T1D patients,
whereas the literature concerning predictions on T2D patients is scarce.

Different metrics are used to evaluate forecasting performance. Most studies present
their performance in terms of Root Mean Square Error (RMSE). The RMSE is defined
as follows:

RMSE =
√∑N

i=1[y(ti + PH) − ỹ(ti + PH|ti)]2
N

(1.1)

where N stands for the number of timestamps in the validation set, ti denotes the i-th
timestamp, and y(ti + PH) represents the true value given a prediction horizon PH.
Considering that such a metric refers to an error, the smaller the value, the better
the model performance. RMSE returns an error that strongly depends on the order of
magnitude of the analyzed quantity, thus, some studies investigated Sum of Squares of
Glucose Prediction Error (SSGPE) reported in [29] as:

SSGPE =
√√√√ SSE∑N−P H

i=1 [y(ti + PH)]2
(1.2)

which returns a percentage error score, and thus gives quantitative information about the
prediction error which is independent of the order of magnitude of the analyzed quantity.
It is based on the Sum of Squared Errors (SSE) defined in equation 4.2. Similarly,
another used metric is the Mean Absolute Relative Difference (MARD) defined as:

MARD = 1
N

N∑
i=1

∣∣∣∣∣yi − ỹi

yi

∣∣∣∣∣ (1.3)

where ỹi and yi are the value predicted by the network and the real value at the i-
th timestamp for a sequence of N samples, respectively. In addition, we considered
the Clarke Error Grid Analysis (CEGA) as a measure of the clinical accuracy of the
predictions [30]. The CEGA is based on a grid that is divided into 5 zones, from A to E,
and provides a plot of the actual and the predicted CGM values on the horizontal and
the vertical plot axis, respectively. Values in zones A and B represent good or acceptable
glucose predictions; values in zone C represent mistaken predictions that may lead to
unnecessary treatment; values in zone D represent a dangerous failure to predict; finally,
values in zone E represent a completely wrong prediction that would lead to erroneous
treatment. In brief, a good performance corresponds to small values of RMSE, SSGPE,
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and MARD, and to a small percentage of values in the C-D-E zones of the Clarke Error
Grid.

In the remainder of this section are listed some works which achieved remarkable
results resorting to a regression approach, and their main features are reported in Ta-
ble 1.1. In the frame of kernel machines, Bunescu et al. [14] used a three-compartmental
physiological model of blood glucose dynamics to generate features for a Support Vector
Regressor (SVR) that is trained on patient-specific data. The physiological model ex-
ploits data concerning CGM, insulin, and meal intake to simulate the glucose dynamics.
The model is validated on data from 5 T1D patients from a private dataset. The exper-
iments carried out to forecast blood glucose levels with a 30- and 60-minute prediction
horizon attain RMSE values equal to 22.6 mg/dL and 35.8 mg/dL, respectively. Hamdi
et al. [15] fed an SVR with CGM data after identifying the optimal model parameters
through the medium of a differential evolution algorithm. They take into account data of
12 T1D patients from a private dataset, attaining RMSE values equal to 9.4±3.7 mg/dL

and 10.8 ± 3.9 mg/dL for prediction horizons of 15 and 30 minutes.
With regard to the forests of trees, Georga et al. [16] presented a personalized pre-

dictive model of the glucose concentration in T1D patients which employs the Random
Forests regression technique. This multivariate model takes as input CGM data, physio-
logical features, and lifestyle information. Experiments were carried out on data from 27
T1D patients from a private dataset. High-accuracy predictions are derived in case all
the available features are used with a multivariate approach (RMSE = 6.6 ± 1.3 mg/dL

for 15-minute prediction horizon), whereas the performance considerably deteriorates
when using a univariate approach (RMSE = 11.3±2.2mg/dL). Midroni et al. [17] com-
bined an XGBoost expanded Random Forest Regression model with feature-engineering
methods to predict blood glucose levels. After observing time-dependent patterns in
the data, they include features concerning hour-of-day and day-of-week. The model was
validated using features including CGM data, physical activity, insulin, and CHO intake
of patients from the Ohio T1DM dataset [11], i.e. a publicly available dataset consisting
of 6 T1D patients, which is described in section 4.1.2. They achieve an RMSE value of
20.4 ± 2.4 mg/dL considering a 30-minute prediction horizon.

In the frame of symbolic representation, Contreras et al. [20] used a search-based
algorithm to generate models capable of capturing the dynamics of blood glucose at a
personalized patient level. The grammar-based feature generation enables the construc-
tion of empirical models using data gathered from a CGM sensor, the glucose dynamics,
and the daily energy expenditure. Raw data are pre-processed using three different
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physiological models to simulate the effects of insulin, glucose absorption, and physi-
cal activity. The system requires the definition of a problem-specific objective function
(RMSE is selected), which evaluates the solutions, and a customized grammar, which
defines the structure of the generated prediction. It iteratively combines solutions to
incrementally improve the prediction and to reach a final solution that minimizes the
objective function. The model is tested on the Ohio T1DM dataset [11] and provides
blood glucose levels estimations using prediction horizons of 30, 60, and 90 minutes,
attaining RMSE values equal to 21.2, 31.3, and 36.3 mg/dL, respectively.

Generative models are used to cope with the intra-subject variability characterizing
glucose dynamics. Authors adopt static (i.e. the model is trained once to perform tests
on the incoming data) or dynamic (i.e. the model is identified recursively every time new
data income) auto-regressive models, assigning a relative weight to a limited number of
past data, which depends on the selected forgetting factor. In an early study, Reifman et
al. [21] proposed a time-invariant AR model of order 10. Parameters are optimized using
regularized least squares, considering prediction horizons of 30 minutes. CGM data of
9 T1D subjects from a private dataset are used to fit the model. Both subject-specific
and subject-invariant models are evaluated: subject-specific models (RMSE = 22.3 ±
3.9mg/dL) achieve better results than inter-subject models (RMSE = 24.8±3.2mg/dL),
confirming the effectiveness of precision medicine in diabetes management. Sparacino
et al. [22] propose a first-order AR model with time-varying parameters, which are
estimated at each timestamp using recursive least squares. They test several values
of the forgetting factor with prediction horizons of 30 and 45 minutes. The model is
identified on CGM data of 28 T1D patients from a private dataset. Results are accurate
enough to potentially avoid or mitigate critical hypo- and hyperglycemic events (RMSE
= 18.3 ± 11.8 and 34.9 ± 21.3 mg/dL).

Artificial neural networks have recently been proposed as an alternative approach
for time series forecasting. The main advantage of artificial neural networks is their
flexible nonlinear modeling ability [31]. Indeed, although traditional generative models
generally achieve good results in time series forecasting, they are linear in the prediction
of future values, and thus they find it difficult to capture nonlinear behaviors that can
be observed in many real-world applications. Within this context, Zecchin et al. [23]
proposed a jump neural network exploiting as input the CGM data, its recent trend,
the glucose rate of appearance in blood, and its derivative. This multivariate model
consists in a feed-forward neural network with the addition of direct connections from
each input to the output neuron, combining linear and nonlinear connections between
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input and output in a single structure. This allows the simulation of the linear and
nonlinear dependencies of the output from the input using a rather simple model. The
jump neural network is tuned on data of 10 T1D patients and then assessed on 10 dif-
ferent subjects from a private dataset. Experiments predict future blood glucose levels
up to 30 minutes ahead of time (RMSE = 16.6 ± 3.1 mg/dL). Martinsson et al. [24]
proposed a Long Short-Term Memory (LSTM) model, which pursues a UTS approach
exploiting only the CGM and its recent trend. An LSTM is a recurrent neural network
where the cell at each timestamp contains an internal memory vector and three gates
controlling what parts of the internal memory will be kept (the forget gate), what parts
of the input will be stored in the internal memory (the input gate), and what will be
included in the output (the output gate). The model is developed using data from pa-
tients in the Ohio T1DM dataset [11] to predict blood glucose levels up to 30 minutes
ahead of time (RMSE = 20.1 ± 2.5 mg/dL). Zhu et al. [25] used a Convolutional Neural
Network (CNN) to forecast blood glucose levels. The authors put the change of glucose
values in 256 categories as a target, with a difference of 1 mg/dL between each class,
through the medium of quantization. The input features of the neural network are the
CGM values, the CHO intake, the insulin events, and the time index. They predict
blood glucose levels of patients from the Ohio T1DM dataset [11] with a 30-minute
prediction horizon (RMSE = 22.1 ± 2.5 mg/dL). Chen et al. [26] proposed a dilated
recurrent neural network comprising multi-resolution, recurrent skip connections, allow-
ing the network to learn different temporal dependencies at different layers. This model
exploits the previous knowledge of CGM data, insulin doses, and CHO intake from the
past 60 minutes. Tests were performed on the Ohio T1DM dataset [11] considering a
30-minute prediction horizon (RMSE = 19.0±2.6mg/dL). Bertachi et al. [27] proposed
a feed-forward neural network with 8 neurons in its hidden layer, which takes as input
information on CGM data, ingested CHO, injected insulin, and physical activity. Predic-
tions 30 and 60 minutes ahead of time are performed on patients from the Ohio T1DM
dataset [11], attaining RMSE values equal to 19.3 mg/dL and 31.7 mg/dL, respectively.
Li et al. [28] present GluNet, a dilated convolutional neural network capable of process-
ing multidimensional long signals concerning CGM data, insulin, meal information, and
lifestyle factors. The model was tuned on data from 20 virtual patients generated from
the UVA/Padova T1D simulator [32] and validated on both a private dataset and the
Ohio T1DM dataset [11]. In the latter case, prediction horizons of 30 and 60 minutes
produced RMSE values of 19.3 ± 2.8 mg/dL and 31.8 ± 3.5 mg/dL.

In recent years, models that combine multiple types of neural networks have been
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Table 1.1.: Previous works in the literature exploiting different machine learning ap-
proaches for blood glucose levels forecasting with a regression approach. KM:
Kernel Machine, FT: Forest of Trees, SR: Symbolic Representation, GM:
Generative Model, NN: Neural Network, Multi-NN: multiple types of neural
networks. Univariate (UTS) and multivariate (MTS) time series approaches
are highlighted, together with the number of patients involved and the type
of dataset.

Main author Model Approach UTS/MTS T1D patients/Dataset
Bunescu [14] SVR KM MTS 5/private
Hamdi [15] SVR + DE KM UTS 12/ private
Georga [16] Random Forest Regression FT MTS 27/private
Midroni [17] XGBoost Random Forest FT MTS 6/Ohio T1DM [11]
Contreras [20] Search-based algorithm SR MTS 6/Ohio T1DM [11]
Reifman [21] Auto-regressive model GM UTS 9/private
Sparacino [22] Auto-regressive model GM UTS 28/private
Zecchin [23] Jump NN NN MTS 20/private
Martinsson [24] Long-Short Term Memory NN UTS 6/Ohio T1DM [11]
Zhu [25] CNN NN MTS 6/Ohio T1DM [11]
Chen [26] Dilated Recurrent NN NN MTS 6/Ohio T1DM [11]
Bertachi [27] Feed-Forward NN NN MTS 6/Ohio T1DM [11]
Li [28] Dilated Convolutional NN NN MTS 16/ private, Ohio T1DM [11]
Kalita [33] LSTM-GRU Multi-NN MTS UVA/Padova simulator [32]
Jaloli [34] CNN-LSTM Multi-NN MTS Replace-BG [35], DIAdvisor
Lu [36] Stacked MLP, Bi-GRU, RNN +AM Multi-NN UTS RT_CGM [37]

presented to catch deeper relations between the input and the desired output. Kalita
et al. [33] fed an LSTM with Gated Recurrent Units (GRU) with CGM data and meal
information of in silico patients from the UVA/Padova simulator [32] for predictions 15
and 30 minutes ahead of time, achieving an average RMSE of 5.27 and 14.85 mg/dL, and
an average MARD of 2.9 and 8.4%, respectively. Jaloli et al. [34] presented a stacked
CNN-LSTM neural network with CGM, meal information, and insulin intakes of patients
from two datasets, namely Replace-BG [35] (free-living conditions) and DIAdvisor (in-
tensive care), to forecast blood glucose levels with a PH of 30, 60, and 90 minutes,
achieving an average RMSE for the longest PH of 23.45 ± 3.18 and 25.12 ± 4.65 mg/dL,
respectively. Finally, [36] proposed a method to forecast future blood glucose levels
with a 30-minute PH with a hybrid deep learning model, which integrates multi-layer
perceptron (MLP), stacked bidirectional gated recurrent unit (Bi-GRU) based recurrent
neural network (RNN), and the attention mechanism (AM), fed with CGM data of real
patients in the RT_CGM dataset [37] with a precision-medicine approach, and achieved
an average RMSE of 11.76 mg/dL.
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1.3.2. Classification

A different approach resorts to the classification task, in the sense that the model aims
at predicting whether or not the patient will experience an adverse event within the time
window defined by the PH, regardless of the exact future glycemic level. The need for
this approach arises from the limitations observed for the regression approach, as it has
been proven by recent studies that predicting adverse glycemic events using classification
rather than regression leads to improved performance [29, 38]. As in other classification
tasks, the performance is evaluated in terms of total accuracy and of metrics derived
from the confusion matrix, namely Recall and Precision per class, defined as:

Recall = TP/(TP + FN) Precision = TP/(TP + FP ) (1.4)

where TP , FP and FN are the total numbers of true positives, false positives, and
false negatives per class. Usually, these studies consider two main classes to be pre-
dicted, according to the read CGM value, namely hypoglycemia and hyperglycemia,
although some studies take into account further thresholds (e.g., severe hypoglycemia if
CGM ≤ 50 mg/dL) or only focus on predicting a specific event (e.g., postprandial hypo-
glycemia). For example, the vast majority of studies focus only on the prediction of hy-
poglycemia [39, 40, 41, 42, 43, 44]. It is a sensible choice because this condition can arrive
unannounced also in severe cases, leading to serious short-term complications. In this
regard, in a recent review on machine learning techniques for hypoglycemia prediction,
Mujahid et al. [42] stated that is important to understand that hypoglycemia prediction
is blood glucose level prediction in essence. Nonetheless, most of such works mainly aim
at maximizing the true positive rate at the expense of a considerably low precision score,
which is often not reported [39, 40] or impossible to compute [45, 46, 38, 47, 41, 48].
Indeed, it is acknowledged that any prediction algorithm has to "decide" between raising
a lot of alerts to detect all events (good recall, bad precision, a lot of false positives) or
trying to minimize the nuisance of the patient (good precision, limited false positives,
at the expense of a lower recall). Works focusing on hypoglycemia prediction usually
choose the former approach [49], with few exceptions [47]. It reduces patient engagement
with the technology. Two main approaches fall into this area:

• sample-based prediction [39, 40, 41, 47] in which, at each timestamp, a prediction
is performed according to the PH; in this way, each sample is classified, and the
model performance is evaluated based on the predictions performed for all the
timestamps;
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Table 1.2.: State of the art of the glycemic events prediction task with a classification
approach. For each work, we report the main author together with the num-
ber of patients in the dataset and the validation strategy, the adopted model,
the specific sample-based or event-based approach, and, where available, the
average classification Recall (R) and Precision (P) of predictions up to 30
minutes ahead of time for the classes hypoglycemia (Hypo), normoglycemia
(Norm) and hyperglycemia (Hyper). We mark as not available (n/a) the
performance values that were not reported and are not possible to compute.

First author # Patients Validation Model Approach Results [%]
Hypo Norm Hyper

Gadaleta [29] 89 Leave-1-Patient-Out SVM Event-Based R 86 n/a 95
P 36 n/a 56

Daskalaki [45] 23 Precision Medicine cARX + RNN Event-Based R 100 n/a 100
P n/a n/a n/a

Cappon [46] 100 in silico Precision Medicine XGBoosted Tree Sample-Based R 92 76 86
P n/a n/a n/a

Seo [39] 104 5-fold Cross Validation Random Forest Sample-Based R 89.6 91.3 n/a
P 38.9 n/a n/a

Dave [40] 112 10-fold Cross Validation Random Forest day + Sample-Based R 93.7 94.4 n/a
Random Forest night P 15.1 99.8 n/a

Marcus [47] 11 Precision Medicine Kernel Ridge Regression Sample-Based R 64 96 61
P n/a n/a n/a

Cichosz [41] 10 Precision Medicine Linear Logistic Regression Sample-Based R 79 99 n/a
P n/a n/a n/a

Yang [38] 124 Precision Medicine Long Short-Term Event-Based R 92.6 92.5 n/a
Memory (LSTM) classifier P n/a n/a n/a

Prendin [48] 112 Precision Medicine Autoregressive Integrated Event-Based R 82 n/a n/a
Moving Average (ARIMA) P 64 n/a n/a

Jensen [43] 463 5-fold Cross Validation Linear Discriminant Sample-Based R 73 75 n/a
Analysis (LDA) classifier P 22 97 n/a

Zhu [50] 49 Holdout Validation Bidirectional RNN Event-Based R 84.1 n/a n/a
with meta-learning P 65.6 n/a n/a

D’Antoni [51] 33 Precision Medicine ARTiDe Jump NN Event-Based R 59.8 n/a 47.2
P 86.4 n/a 58.0

• event-based prediction [46, 29, 48], in which consecutive timestamps of hypo- or hy-
perglycemia are considered as a single event; a prediction of an event is considered
a true positive if an actual event occurs in the next minutes.

A summary of the state of the art of glycemic events prediction is reported in Ta-
ble 1.2.

1.3.3. Control

Although regression and classification AI models can provide a reliable prediction for
patients with a good balance between performance and applicability [49], their func-
tioning is different from what a controller is expected to do. In practice, they advise
patients to intervene directly to prevent adverse events by ingesting CHO or providing
a bolus of insulin, sometimes providing the optimal amounts to reach a target glucose
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value [52]. This is a limitation when aiming at the development of a fully-automated
artificial pancreas system. Consequently, another branch of the research has focused on
blood glucose control strategies. Typical T1D control algorithms are based on mathe-
matical models [53] that depend on output error and its proportional-integral-derivative
(PID) behavior [54], or on lookup-table and rule-based control [55]. However, in recent
years Reinforcement Learning (RL) techniques have become more and more popular
for T1D control. Such algorithms include an agent which, after training, can decide
the optimal action to perform in order to generate a modification in the environment
that will provide a reward as large as possible. In the case of T1D, the environment
consists of the patient or a simulator, whereas the action typically consists of an in-
sulin bolus or a glucagon injection; however, the latter is limited in practice by the fact
that most insulin pumps limit to injecting insulin without the possibility of injecting
glucagon. A control system able to inject both insulin and glucagon takes the name of
"dual-hormone control". By performing an action on the environment and by comput-
ing the correspondent reward, the agent can learn a policy that can minimize a given
loss function [56]. Nonetheless, RL agents typically start with a poor understanding of
the environment. This limits the applicability of such models because an exploration
of the environment based on poor initial decisions (i.e., insulin boluses) could result in
catastrophic consequences for the patients.

RL algorithms can be roughly split into model-free and model-based algorithms,
depending on whether the agent provides its action directly on the environment - without
a model of it - or on a model of it, respectively. To date, almost all the studies that
apply RL techniques to T1D use model-free algorithms [57, 58, 59], also known as Direct
RL [60], in which the agent is trained through trial-and-error processes directly on the
environment (i.e., the patient), without knowing in advance how it will change as a result
of the action performed. On the one hand, such algorithms do not include any kind of
model that simulates the behavior of the environment, and have thus the advantage of
being simple to implement and optimize; on the other hand, two main issues limit the
application of these algorithms on real devices: the large amount of data required for
efficient training, and the difficulty in replicating a trial-and-error learning process on a
real patient.

Since the main goal of the control algorithms is to maintain the blood glucose levels
in the euglycemic range - or a custom target range - as long as possible, the time in
range (TIR) is often considered as a performance metric to evaluate the goodness of a
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control system, and it is usually defined as:

TIR = time s.t. 70 ≤ CGM ≤ 180
timetot

(1.5)

nonetheless, since any control algorithm mustn’t generate severe hypoglycemic events,
other custom metrics such as the number of hypoglycemic events generated are often
used to evaluate performance too.

As mentioned, almost all studies that apply RL techniques to diabetes use model-free
algorithms, in which the agent is trained through trial-and-error processes directly on
the environment, without knowing in advance how it will change as a result of the action
performed [61]. Indeed, such algorithms do not include any kind of model that simulates
the behavior of the environment and, consequently, they have the advantage of being
simple to implement and optimize. In particular, Zhu et al. [62] presented a deep RL ap-
proach for both single-hormone (insulin) and dual-hormone (insulin and glucagon) basal
delivery. They used a double deep Q-learning with deep recurrent neural networks, able
to capture the complexity of glucose-insulin-glucagon dynamics due to its enlarged recep-
tive field. CGM values, ingested CHO, insulin, and glucagon data are the state variables
utilized to describe the environment. The reward function is a piecewise linear function
dependent on blood glucose levels. The same authors also proposed a personalized bo-
lus calculator intending to provide more patient-specific recommendations by exploiting
the Deep Deterministic Policy Gradient (DDPG) algorithm [58]. This algorithm allows
working with continuous action space and state variables. On the contrary, the previ-
ous Double Q-Learning requires a discrete set of actions, still admitting a continuous
environment state variables description. Again, the proposed reward function, reported
in equation 9.4, is a discrete function, with a higher penalization for actions leading to
hypoglycemia (glucose < 70 mg/dL), and the state variables adopted are CGM, insulin
data, and CHO. Although these studies show a quite good performance, with a TIR of
80.9%, it is worth noting that both use the amount of CHO ingested by the patient as
a state variable to describe the environment. Such models are also referred to as hybrid
closed-loop models because human intervention is necessary. However, with a view to
a fully-automated closed-loop artificial pancreas, information on CHO should not be
provided: in a real-life application, the patient would be asked to manually enter such
a value, which would defeat the purpose of closed-loop control of the device. In this
context, a step forward is achieved by Fox et al. [57], who exploited only CGM and in-
sulin data as state variables of the environment, thus requiring no meal announcement.
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They used a model-free Soft Actor-Critic (SAC) RL algorithm, which allows model-
ing both actions and state variables as continuous, and optimizes a stochastic policy
in an off-policy way, forming a bridge between simple Actor-Critic methods (stochastic
and on-policy) and DDPG (deterministic and off-policy). Another novelty introduced
in this study is the reward function used to train the agent, which is the Magni risk
function. Specifically, the authors develop several variants of the RL method: RL from
scratch, where the patient-specific algorithm is trained from scratch for each individual;
RL transfer, which fine-tunes an RL-Scratch model previously trained on data from an
arbitrary child/adolescent/adult; RL-MA, which uses RL-Scratch trained using the au-
tomated meal boluses from the bolus calculator or PID controller; Oracle architecture,
which replaces observed states with ground-truth states returned by the UVA/Padova
simulator. Among these, the best performance (about 78.8% TIR) is achieved by the
Oracle model; nonetheless, such a model could not be used in reality, because the ground
truth would not be available. The second best model is RL-MA, which requires the meal
announcement for the bolus calculator to generate the optimal boluses and, therefore,
would not be suitable for closed-loop control. In addition, the two models Scratch and
Trans RL achieve TIR of about 72% and 71%, respectively, only after a very long train-
ing phase, which includes more than 2 years of data for RL-Trans and up to 16.5 years
for RL-Scratch, which would make their real application practically impossible.

However, since in the matter of glycemic control the environment is exactly the
patient, it would be highly difficult and extremely unsafe to replicate a trial-and-error
learning process on a real person. This is why in our opinion model-based RL algorithms,
i.e., based on an environment modeling and planning strategy to take an action [61],
would be more appropriate. To the best of our knowledge, in the literature, a unique
attempt has been made to combine model-based RL techniques with glycemic control.
In particular, the model from Yamagata et al. [63] relies on an ensemble system of Echo
State Networks (ESNs) to predict blood glucose levels, coupled with a Model Predictive
Controller (MPC) for planning. In other words, ESNs predict blood glucose levels, and
MPC generates the insulin dose suggestion as a consequence of blood glucose levels
predicted by the ESNs. The results achieved by the study suggest that model-based RL
can perform equally or better than the model-free approach while considerably reducing
the risks for the patient. However, the main limitation of such an architecture is that it
uses information on CHO intake as input for the ESNs, as well as the insulin data, to
predict blood glucose levels, which makes the algorithm impossible to be embedded in
an actual closed-loop artificial pancreas.
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1.4. Edge computing application
The increasing development of new, more powerful, dedicated hardware enables the
emergence of a branch of artificial intelligence known as inference at the edge [64, 65]. It
involves the machine learning models being run directly from a proximity device using
data collected from associated sensors. With the growing interest in the telemedicine
approach [66, 67], the inference at the edge can enable predictive models that work in
real-time with patient data to improve both medical quality and efficiency. For this
reason, to date, several works exploit the potential of edge computing not only from a
more methodological and general point of view (e.g., [68]) but also in the field of glycemic
level prediction. Zhu et al. [69], for example, proposed an Embedded Edge Evidential
Neural Network to predict future glycemic levels of adult T1D patients in real-time by
exploiting CGM sensor readings and an edge-computing device.

Although all the predictive algorithms described in the previous sections could run
on the Cloud, this would introduce some practical limitations, as the patients would be
requested to have a device that is constantly connected to the internet. In this respect,
an eventual disconnection or lack of service would leave the patient without a predictive
algorithm available. An interruption of the service must be avoided when applied to
medical devices. In addition, a time delay is introduced for web communication. Dif-
ferently, performing a prediction at the edge, i.e. as close as possible to where the data
are gathered, considerably reduces the delays in communication, and eliminates the risk
related to a no-service area. On the other hand, this approach introduces other chal-
lenges, such as the necessity to identify the target hardware able to run complex deep
learning algorithms in a reasonable time while limiting the costs, and the need to find a
way to work around the hardware limitations and the memory limits of edge-computing
devices.

1.5. Motivations
Despite the noteworthy step forwards in the biomedical devices for T1D and the huge
advances made by AI to aid subjects with T1D manage their condition in daily life, some
major limitations still exist that prevent the widespread application of such systems
among patients, which concern both the hardware and the software.

Concerning the hardware limitations, although CGM devices have considerably im-
proved the quality of life of people with T1D, they present some major drawbacks that
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need to be addressed, including:

• Accuracy and reliability: the measurement of blood glucose in the interstitial fluid
is not as accurate as traditional blood glucose monitoring methods including finger
pricking, and includes a measurement delay in case of rapid variations; moreover,
like many battery-powered devices, they may occur to run out of battery charge,
or may also interfere with other wireless devices;

• Cost: CGM devices can be expensive, and not everyone can afford them. In the
United States, the cost of a CGM sensor without insurance coverage can range
from around 50 to 150$ per sensor, depending on the brand and type, and usually
last between 7 and 14 days. This can be a significant barrier for people with T1D
who need these devices to manage their condition, especially considering that even
patients with years of experience happen to puncture a blood vessel when applying
a new CGM sensor, making it unusable and thus wasting that money.

• Privacy and Security: they collect a lot of personal sensitive data that could be
hacked;

• User experience: CGM devices can be uncomfortable to wear and require frequent
calibration and maintenance. This can make them a burden for some users, who
may be less likely to use them consistently as a result.

Concerning the software, although AI systems are promising for the management of
T1D, they present the following drawbacks:

• Data availability: AI systems rely on large amounts of data for training. However,
data can be difficult to collect, as people with T1D typically need to manually
measure their blood glucose levels and intake. This can make it challenging to
collect the necessary data to train and improve AI systems;

• Variability in disease progression: T1D is a highly variable disease, and its pro-
gression can differ significantly between individuals. This can make it difficult for
AI systems to make accurate predictions and recommendations, as they may not
be able to account for all of the individual differences between people with T1D;

• Complexity of insulin dosing: insulin dosing for T1D can be complex, as it requires
careful consideration of a variety of factors, including diet, exercise, and stress
levels. AI systems may not be able to take all of these factors into account when
making recommendations;
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Figure 1.1.: Examples of a 1-day monitoring (0-24) of 3 real patients from the UCBM
dataset (see Chapter 4.1.1).

• Lack of regulatory approval: while many AI systems have shown promise for T1D
management, they have rarely been approved by regulatory agencies;

• Technical limitations: AI systems can be limited by the technology used to im-
plement them. For example, if the sensors used to measure blood glucose levels
are not accurate or reliable, this can limit the effectiveness of the AI system that
relies on these measurements. Also, efficient and effective wearable technology is
necessary to implement such algorithms for edge computing.

The current limitations of T1D management may result in sub-optimal glycemic
management like the one that is observed in Figure 1.1. It reports as an example one
day of CGM measurements of 3 subjects from the UCBM dataset (see Chapter 4.1.1).
The first 2 patients exploit the Medtronic 640G system, whereas the third exploits
Dexcom G5. As can be observed, the first patient experienced, within the same day,
prolonged nocturnal hypoglycemia and severe daytime hyperglycemia; the second patient
experienced a quick glycemia decrease from hyperglycemia to the hypoglycemic threshold
after lunch, which resulted in successive prolonged hyperglycemia during the afternoon;
the third patient experienced nocturnal hyperglycemia, hypoglycemia at dinner time,
and several sensor disconnections. Many of these undesired events could have been
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avoided or mitigated by the utilization of effective AI systems joined with the CGM
sensor.
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This thesis presents contributions in each field of AI application in T1D management
described in the previous sections. It aims to address different challenges that are rele-
vant to T1D management and specifically 4 of the major software limitations described
in the previous chapter, which are data availability, variability in disease progression,
the complexity of insulin dosing, and technical limitations. Each contribution will be
thoroughly described in the next chapters.

Concerning the regression task, Chapter 3 describes an early development of a novel
artificial neural network for forecasting future glycemic levels using regression and a
precision-medicine approach. The proposed neural network only necessitates 24 hours
of CGM data for training, thus not requiring the patients to gather several heterogeneous
features. Although this model requires a much smaller amount of data for training than
others reported in the literature, it achieves better predictive performance. Chapter 4
reports an extension of the previous study by including a larger cohort of patients, one of
whom suffers from T2D and two of whom performed physical activity during the moni-
tored period, by comparing the results to those achieved using well-established methods
in the literature, and by evaluating performance in terms of event detection. Chapter 5
presents an analysis of different learning techniques for training a neural network on data
of T1D patients that regularly perform physical activity. Offline training, online train-
ing, and online training with a penalty are compared to assess what approach performs
better when facing the particularly difficult task of forecasting glycemic levels during
sports with a precision-medicine approach. It is observed that the improvement in per-
formance generated by continuously updating the model with the most recent data is
not so pronounced as to justify the notable increase in the computational burden. Chap-
ter 6 presents a study that aims at the identification of the optimal amount of training
data for the implementation of a glucose levels forecasting model on an edge device,
exploiting up to 100 days of data from 6 virtual patients and taking into account both
numerical and computational resources with a precision-medicine approach. The inves-
tigated model achieves state-of-the-art performance when trained with 1 day of data,

21



2. Contributions

while the RMSE slowly decreases as the size of the training set increases; a plateau in
predictive performance is observed when more than 60 days of data are used for training,
and increasing the training set always produces better predictions than just re-training
the model with the most recent available data. The time necessary for predictions on
an edge-computing device is far below the time constraints imposed by the specific task.
Chapter 7 presents a study focused on data of virtual pediatric T1D patients, consisting
in the application of two state-of-the-art deep neural networks for time-series forecast-
ing, and on the analysis of the performance achieved when running the neural networks
on two edge-computing devices that utilize different data representations. The analyzed
deep networks outperform models in the literature in terms of clinical accuracy, and the
performance does not decrease considerably when running tests on edge devices.

With regard to the classification task, Chapter 8 presents a meta-learning approach
based on a multi-expert predictive model (a CNN and a LSTM) relying on an event-
based approach that is capable of achieving a trade-off between the number of predicted
events and the number of false alarms. The model is validated with a Leave-1-Patient-
Out-Cross-Validation on a public dataset composed of 12 patients, and on a private
dataset composed of 5 patients who regularly perform physical activity. The approach
is evaluated in terms of classification performance for predictions made with a time
advance ranging from 5 to 30 minutes; it exploits techniques for imbalanced datasets
and pursues a univariate approach by utilizing only CGM data. The proposed approach
outperforms other models in the literature, and the meta-learning strategy improves
performance considerably compared to using only one predictive system. Finally, the
models are implemented on an edge-computing device in order to evaluate the real-life
feasibility and applicability of the proposed approach.

With regard to the control task, Chapter 9 presents a fully-closed loop control based
on a Dyna-Q RL algorithm that uses a predictive model as a model of the environment
(i.e., the patient). Different learning techniques are investigated for the predictor. The
whole model takes into account information concerning only CGM and injected insulin,
which are automatically recorded by the sensor and the insulin pump; thus, the patient
is never asked to manually provide information. A deep-Q-Network is trained as a
controller to decide the optimal amount of insulin to be injected. The proposed system
is capable of achieving a noteworthy TIR without exploiting information on meals, while
producing a very limited amount of hypoglycemic events, and outperforms a realistic
manual control.

In order to ease the understanding of the contribution of this thesis compared to the
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literature, Table 2.1 reports the state-of-the-art methods for each of the tasks described
in sections 1.3.1, 1.3.2, and 1.3.3, together with the dataset they utilized, their points of
strength and main limitation.

Briefly, the main contributions of this thesis can be summarized as follows:

• Several models have been developed for the forecasting of glucose levels of adult
and pediatric patients with a regression task. The investigation was extended
to the identification of the optimal amount of data and training strategy for the
predictive models;

• A meta-learning approach has been developed for the event-based prediction of
hypoglycemia and hyperglycemia that outperforms pre-existing models;

• A model-based RL algorithm has been utilized for developing a fully closed-loop
controller that does not require intervention from the patient.

Finally, it is worth stressing that the studies presented in Chapters 6, 7 and 8 investigated
the feasibility and the applicability of the discussed models on edge-computing devices,
tackling the drawbacks related to the inference at the edge using different techniques.
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3. Early experience in forecasting
blood glucose levels using a delayed
and auto-regressive jump neural
network

Many people with diabetes face the daily challenge of maintaining blood glucose levels
in the physiological (euglycemic) range, avoiding adverse events such as hyperglycemia
or hypoglycemia, which may lead to short- and long-term complications. To avoid their
side effects and help maintain the blood glucose level as constant as possible, research
efforts in the last decade have been directed towards the development of either machine
learning-based algorithms [16, 70, 23, 15, 24] or physiological-based models [71, 14]
capable of forecasting future glycemic levels via a regression task. Within this context,
a study from Zecchin et al. [23] presented a jump neural network exploiting as input
the CGM data and its recent trend, the glucose rate of appearance in blood, and its
derivative. This multivariate model consists in a feed-forward neural network with the
addition of direct connections from the inputs to the output, combining linear and
nonlinear connections between inputs and outputs in a single structure. This allows the
simulation of the linear and nonlinear dependencies of the output from the inputs using
a rather simple model. Experiments predict future blood glucose levels up to 30 minutes
ahead of time (RMSE = 16.6 ± 3.1 mg/dL).

It is interesting to point out that most methods in the literature exploit several
features to perform a reliable prediction [16, 23], including emotional states and physical
activity [70] which are difficult to quantify numerically, whilst others only exploit values
collected from CGM devices as input [15, 24]. This choice is more versatile in a real-life
application since it does not require the patient to monitor several physiological features.

In this chapter, we present a novel neural network [72] capable of predicting glycemic
levels after having been trained on only 24 hours of CGM data of a single patient, without
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requiring the gathering of additional features such as insulin and ingested CHO. The
model is trained with a precision medicine approach which maximizes accuracy on the
specific subject.

3.1. Dataset
The Unit of Diabetology and Endocrinology of the Campus Bio-Medico University
Polyclin provided data of 12 subjects suffering from T1D who used CGM through the
Medtronic EnliteT M glucose sensor. The dataset includes 7 females and 5 males, aged
between 24 and 69 (average 40 ± 15) who have been diagnosed with T1D from 1 to 40
years ago (average 16.2 ± 12.9). Four patients present complications related to diabetes
(e.g. neuropathy, dyslipidemia), while eight suffer from other autoimmune diseases such
as systemic lupus erythematosus and hypothyroidism; four patients have no complica-
tions or further diseases.

Each patient was monitored for a period ranging from 15 to 30 days. However, each
patient presents some days with discontinuities in the CGM track, which were not taken
into account in order to avoid introducing a bias. The effective dataset includes a total
of 111 days of continuous glucose monitoring, whereas the other 62 days in which some
relevant disconnection occurred were discarded. This observation suggests using, when
possible, a rather short monitoring time to develop a prediction algorithm, because long
periods of recording are, in fact, not available in real applications.

3.2. Methods
Section 1.3 shows that patients need a method able to predict blood glucose levels using
short training time and without any request for additional data. In this respect, we
deem that a 24-hour training time is a reasonable choice since it would allow us to catch
the glucose dynamics while requiring little effort from patients, using only CGM data
as model input. Furthermore, we are interested in developing a personalized learning
model able to describe the glucose dynamics of each subject, which is strongly tailored
to the specific patient. The pipeline of the adopted approach is illustrated in Figure 3.1,
where we distinguish between the training/validation and testing phases.

Among the models mentioned and described in section 1.3, the jump neural net-
work [23] seems to be the most promising for the specific task of blood glucose levels
forecasting. Indeed, the hidden neurons (with nonlinear activation functions) model the
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Figure 3.1.: Pipeline of the proposed approach to forecasting the blood glucose level.

nonlinear relationship between inputs and targets, while the output neurons (with lin-
ear activation functions) learn the linear relationship between inputs and targets. To
formally present this neural network let us introduce the following notation:

• PH is the considered prediction horizon, expressed in minutes;

• I(t) is a row vector with M elements given by M − 1 input signals at time t and
by an input equal to 1 accounting for the bias;

• IOW is a row vector with M weight elements directly connecting every input to
the output neuron;

• HOW is a row vector of L weights connecting every hidden neuron to the output
neuron;

• IHW is a L×M matrix of weights connecting every input to every hidden neuron;

• f is the tangent-sigmoid activation function, computed element-wise on the results
of IHW · IT (t);

On this basis, the predicted signal of the jump neural network at time t + PH is given
by [23]:

ỹ(t + PH|t) = IOW · I(t)T + HOW · f(IHW · I(t)T ) (3.1)

The first term models the linear relationship between the target and the inputs, whilst
the second term models the nonlinear relationship. Furthermore, the hidden layer of the
model proposed in [23] consists of just 5 hidden neurons, making it very quick both in
the training and test phase. Despite its advantages, when applied to forecast the blood
glucose concentration it did not perform better than other approaches in the literature,
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Figure 3.2.: Schematic illustration of the proposed ARTiDe jump neural network. The input is
directly connected to the hidden neurons and the output layer and includes time
delays (in green). Auto-regression (in red) is performed by directly connecting the
output to the hidden layer.

mainly because it is not able to predict abrupt changes in the glucose trend and to detect
hypoglycemic events.

To overcome the aforementioned limitations, in this work we extend the original jump
neural network adding time delays and auto-regressive connections. For this reason,
the proposed network is referred to as Auto-Regressive Time Delayed (ARTiDe) jump
neural network, and its schema is shown in Figure 3.2. The time delays, shown using
green symbols in Figure 3.2, are related to the input, and they are included from the
input neuron to each hidden neuron and directly to the output layer. The rationale
lies in observing that the prediction of future blood glucose levels can benefit from the
knowledge of the recent glycemic history [24], since it supplies information on abrupt
increase or decrease of blood glucose concentration in the last few minutes, e.g. due
to the ingestion of sugars or due to an insulin bolus. The auto-regressive connections,
represented by red connections in Figure 3.2, link the output neuron to the hidden layer,
since this may reduce the error in the light of new incoming glucose values [26] thanks to
the combination of auto-regressive feedback with weights that are modified during the
learning process. Formally, assuming that η and ϕ denote the values of the input and
auto-regressive delays respectively, these extensions modify as follows the parameters
already introduced to describe (3.1):
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• Î(t) is a row vector of H = M · η elements that concatenates the last η input
vectors so that Î(t) = [I(t), I(t − 1), . . . , I(t − η + 1)];

• IÔW is the row vector of H weights directly connecting every input to the output
neuron;

• IĤW is the L × H matrix of weights connecting each of the H inputs to every
hidden neuron;

• ỹ(t) is the row vector containing the last ϕ predicted values ỹ(t) = [ỹ(t − 1), ỹ(t −
2), . . . , ỹ(t − ϕ)];

• OHW is the L× ϕ matrix of weights connecting the last ϕ predicted values to the
hidden neurons;

• HOW and f are the same of (3.1).

Thus, the prediction ỹ(t + PH|t) of the ARTiDe jump neural network at the timestamp
t can be expressed as:

ỹ(t + PH|t) = IÔW · Î(t)T + HOW · f
(
IĤW · Î(t)T

)
+ HOW · f

(
OHW · ỹ(t)T

)
(3.2)

In our case, M = 1 since we aim to forecast the blood glucose level ỹ(t + PH|t) using
only CGM data as input.

3.2.1. Parameters search

The proposed model considers three structural parameters to be set, which are the num-
ber of neurons L in the hidden layer, the number of input delays η, and the number of
feedback delays ϕ. To select their best combination, we perform a preliminary valida-
tion phase as follows. For each patient in the dataset, the initial 24 hours are used for
training, and the following 24 hours are used as a validation set, where we evaluate the
performances in terms of RMSE attained by carrying out a grid search of such param-
eters. The Bayesian regularization back-propagation is chosen as the training function
since it allows the neural network to generalize well on data where the noise distribution
on the training set and the prior distribution for the weights are Gaussian [73], as it
could be expected in a physiological phenomenon. The back-propagation and the early
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stopping processes ensure avoiding overfitting. The aforementioned grid search considers
the parameters illustrated in Table 3.1.

Table 3.1.: Range of parameters investigated in the grid search to find the optimal combination.

Minimum Step Maximum
Value Value

Number L of hidden neurons 3 1 6
Number η of input delays 5 5 30
Number ϕ of feedback delays 5 5 30

The preliminary tests we performed confirm that a number of hidden neurons or
hidden layers larger than the considered ranges would have resulted in overfitting of the
network, confirming the results reported in [23], and longer delays would have caused
considerable oscillations in the predicted values. The results of the grid search show
that the most recurrent parameter combination among the different patient data in the
validation set is given by 4 hidden neurons in the hidden layer, 10-minute input delays
and 10-minute feedback delays, i.e. in both cases the values of the last 10 minutes are
taken into account.

3.2.2. Experimental design

The proposed method was evaluated performing the three experiments described below.
In all the cases, the prediction horizon was set equal to 15, 20 and 30 minutes, according
to the medical practice [22]. Hereinafter, we used 80% of training data to train the
network, whereas 20% of training data is used for detecting early stopping conditions.

3.2.2.1. Training: initial 24 hours - Test: all the following days

This first test aims to evaluate the performance of the proposed model when the first
24 hours of recorded data are used to train the network. For each patient, each group
of consecutively monitored days was considered as a stand-alone group of data. All the
following days were considered as test set (except for day 2 used as validation set as
described in section 3.2.1).
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3.2.2.2. Training: 24 hours - Test: next 24 hours

This experiment aims to investigate what happens if we retrain the learning model using
data collected in the last 24 hours. Furthermore, it may reveal if taking into account the
daily evolution of the glucose dynamics of the patient could be beneficial in some respect.
In practice, we proceeded as follows. Each group of consecutive days was considered as
a stand-alone group of data and, for each isolated group of days, the first day was used
as training set, and the performance was evaluated on the second day. Hence, in this
case, the network was trained from scratch. Next, the second day was used as training
set to retrain the model from scratch, and performance was evaluated on the third day,
and so on until the last recorded day of each group. Straightforwardly, the pairs of days
used to determine the network configuration as described in section 3.2.1 were excluded
from the experiment.

3.2.2.3. Training: incremental - Test: last day

This test aims to study what happens if we increase the amount of training data. For a
fair comparison among the different trained models we fixed the test day to the last one.
Hence, for every group of consecutive days of each patient, the last day was considered
as test set. Different training sets were considered: first, only 24 hours of CGM data
were used for training; second, 48 hours were used to train the network, and so on until
the training set is composed by every day except the last one. Depending on the number
of days available in each group, 2 to 5 days of CGM data were used to train each neural
network used in this test.

Further to these three experiments, we performed a supplementary test resembling
the traditional k-fold cross validation. For each patient, every single day was used as
training set, and the performances were evaluated on all the other days, including the
eventuality that the test set is composed by days prior to the day used for training. We
designed this experiment to verify that the performances obtained in experiments A, B

and C were not affected by the fact that the days used for training were more difficult
to predict than those used for the test set. So, this further test also investigated these
days, which otherwise would not have been included in any test set.
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3.3. Results and Discussion
Table 3.2 reports the average results of the experiments described in the previous section
for each patient and for each of the three prediction horizons considered. The results
are expressed in terms of RMSE (equation 1.1) and, hence, the smaller the values the
better the performances.

Let us turn the attention to the results attained in test A (Training: initial 24 hours
- Test: all the following days). It permits us to investigate if 24 hours are enough for the
network to learn the glycemic dynamics of the patient. The obtained results are promis-
ing, since the average RMSE with a 30-minute prediction horizon is in line with the
state of the art, whereas the average value obtained for a 15-minute prediction horizon
is slightly better, although the tests were performed on datasets composed of different
patients. This suggests two observations: first, 24 hours are sufficient to properly train
the proposed jump neural network for glucose levels forecasting. Second, the CGM data
alone can be used as input, allowing to reduce as much as possible the burden of data
collection on the patient. In particular, results with a 15-minute prediction horizon are
promising because other algorithms at the state-of-the-art use much longer training peri-
ods to obtain similar or worse performances, even though they perform tests on datasets
different from ours [23, 24, 26].

Let us now focus on the results attained in test B (Training: 24 hours - Test: next 24
hours), which permit us to assess if the performances improve by retraining the neural
network with the latest available data. This test is very similar to the first one, except
for the day used to train the model that varies every 24 hours, and it is always the
day prior to the one used as test set. As can be observed in Table 3.2 the results get
worse as the prediction horizon increases; however, the average results with a 30-minute
prediction horizon are in line with those reported in the state of the art, and results
with a 15-minute prediction horizon are slightly better [23, 24, 26]. Nevertheless, they
are not significantly better than the results obtained in the first test, suggesting that
both approaches could be used in a real-life application.

The third experiment, i.e. C (Training: incremental - Test: last day), shows that
no significant performance improvement is observed increasing the training period of
the model to several days, as illustrated in Figure 3.3. Specifically, we found that the
most remarkable improvement concerns patient 10, for whom the RMSE performance
improves from 11.8 to 10.9 mg/dL when 5 days are used to train the model, and the last
available day is used as test set. However, the improvements concerning other patients
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Figure 3.3.: Performance improvement for test C as the size of the training set increases. The
average results in terms of RMSE and related standard deviations are reported
from 1 to 4 training days for the three tested prediction horizons.

Table 3.2.: Average results of the three tests with a 15-, 20- and 30-minute prediction horizon
PH. Each tabular shows the average and the standard deviation of the RMSE
[mg/dL].

PH Test A Test B Test C

15′ 10.5 ± 1.5 9.9 ± 1.3 10.1 ± 1.9
20′ 13.9 ± 2.1 13.5 ± 1.7 13.5 ± 2.6
30′ 20.1 ± 2.8 19.7 ± 2.6 19.9 ± 4.4

are less notable, and they are smaller than 1 mg/dL. The average results are in line
with those of the other tests, suggesting that 24 hours can be enough to properly train
a predictive model with the proposed neural network.

The supplementary test proves the versatility of the proposed model. In terms of
RMSE the average results in case of 15, 20 and 30-minute prediction horizons are equal
to 10.3 ± 1.5, 13.4 ± 2.3, and 20.1 ± 3.3 mg/dL respectively. They are very similar to
the results attained b previous tests, suggesting that the proposed neural network did
not experience overfitting and that it is capable of generalizing well, even in presence of
discontinuities of data recording.

Some graphical illustrations of the predictions from the three tests are offered in Fig-
ure 3.4. Considering a 20-minute prediction horizon, we report the plots for patients
3, 9, and 6 who are selected since the proposed neural network attains the worst, best
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Table 3.3.: Average results achieved with the proposed ARTiDe jump neural network and
with other methods in the state-of-the-art with a 15, 20 and 30-minute Predic-
tion Horizon (PH), after 24-hour training. We tested a feed-forward neural net-
work, a delayed feed-forward neural network, a jump neural network and a three-
compartmental physiological-based model. Each tabular shows the average and the
standard deviation of the RMSE [mg/dL].

PH
ARTiDe Jump Feed-Forward Delayed Feed-Forward Jump Neural Network [23] 3-Compartmental
Neural Network Neural Network [70] Neural Network PB Model [71]

15’ 10.5 ± 1.5 15.9 ± 2.9 17.3 ± 3.4 15.1 ± 4.7 44.1 ± 9.5
20’ 13.9 ± 2.1 20.0 ± 3.7 21.7 ± 3.4 19.5 ± 3.5 /
30’ 20.1 ± 2.8 28.1 ± 5.1 30.2 ± 4.7 29.9 ± 6.5 /

and average performance on their data during tests A, B and C. In detail, for patient
3 we have RMSE = 17.3, 16.2 and 18.3 mg/dL for tests A, B and C respectively. For
patient 9 we have RMSE = 9.5, 9.5 and 9.6 mg/dL, whilst for patient 6 we have RMSE
= 14.3, 13.6 and 13.8 mg/dL. Results with a 20-minute prediction horizon are not
comparable to other works in the literature, since tests with this prediction horizon are
not reported; however, the good results of forecasts 20 minutes ahead of time suggest
to increase the prediction horizon in order to allow the patient to have more time to
perform adjustments on their glucose levels in case of issues.

3.3.1. Comparison with other methods

In this section we show that results reported in the previous section are noteworthy
if compared with those achieved using other methods in the literature. We tested the
following competitors on test A (section 3.2.2.1), using CGM data as input and 24-hour
training time for predictions 15, 20 and 30 minutes ahead of time, reporting the achieved
results in Table 3.3:

• Feed-forward neural network: we selected this architecture since many methods
in the state-of-the-art use it [70, 74]. In particular we tested the implementation
presented in [70], which makes use of 9 neurons with hyperbolic tangent transfer
function in its hidden layer;

• Delayed feed-forward neural network: this method is tested for comparison with
the proposed ARTiDe jump neural network, in order to measure the performance
achieved using only time delays regarding the input data. To perform an ade-
quate comparison, the number and type of hidden neurons is the same used in the
proposed model;
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(a) Test A on patient 3, average RMSE = 17.3 mg/dL

(b) Test B on patient 6, average RMSE = 13.6 mg/dL

(c) Test C on patient 9, average RMSE = 9.6 mg/dL

Figure 3.4.: Graphical examples of the three tests, performed with a 20-minute prediction
horizon. The reported predictions are related to patients with the best, worst and
average performance.
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• Jump neural network: this method reproduces the jump neural network proposed
in [23], which includes 5 hidden neurons in its hidden layer. This comparison
permits us to investigate the benefits given by the introduction of time delays and
auto-regressive feedbacks in ARTiDe architecture;

• Three-compartmental physiological-based model: the physiological model proposed
in [71] is tested as well to compare the performances of physiological-based and
machine learning-based approaches. Note that it does not perform a prediction
ahead of time of the future glucose values, since it aims to simulate the specific
glycemic trend of diabetic patients exploiting the initial glucose value and the real-
time knowledge of the injected insulin and the ingested CHO. As a consequence,
only one numerical value is reported in Table 3.3. Furthermore, differently from
ARTiDe and other competitors, this model needs data on insulin and CHO in
addition to CGM data.

Comparing the results reported in Table 3.3 with those shown in the second column
of Table 3.2 (test A), it is straightforward to notice that ARTiDe attains better perfor-
mances than all the competitors whatever the prediction horizon. Interestingly, these
results also show that the introduction of time delays and auto-regressive feedbacks in
the jump neural network is beneficial. The p-values of t-test confirm that a statistically
significant difference exists between the performances achieved by the proposed and by
the compared models: indeed, p < 0.01 when comparing ARTiDe and the pyhisiological-
based model, the feed-forward and the delayed neural networks, while p < 0.02 when
comparing ARTiDe and the original implementation of the jump neural network.
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The forecasting of blood glucose levels based on data-driven models suffers from some
open issues, including but not limited to the complications related to gathering and
joining several heterogeneous features, and the large amount of data necessary to train
a machine learning model. This is in contrast with what is observed in real data, where
patients are unlikely to collect all the information related to their daily activity (e.g.,
amount of ingested CHO or physical activity) and many sensor disconnections occur.
In this respect, this chapter extends the results achieved in the previous chapter [72].
First, to validate the proposed neural network, a larger cohort of patients is considered,
including one suffering from T2D and two others who performed physical activity. Sec-
ond, the results are compared with those achieved by other well-established methods
from the state of the art of time series forecasting. Third, the event detection per-
formance of the developed model is investigated, as proposed in [29] and described in
section 4.3.5. Fourth, we perform tests on a public dataset [11] comparing our results
with those already published for the same task [51].

4.1. Datasets
A wide-ranging analysis of the state of the art shows that tests are usually performed
on private datasets, which makes it difficult to compare algorithms. However, a public
dataset is available since 2018 [11], and data concerning the performance of other meth-
ods on this dataset exist. Hence, to improve the significance of our evaluation, in this
work we consider both a private internal dataset, on which the algorithm is tested in
cross-validation, and the aforementioned public external dataset [11] used to evaluate
the performance in comparison with other methods in the literature.
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4.1.1. Internal Validation Dataset

The Unit of Endocrinology and Diabetology of Campus Bio-Medico University Poly-
clinic provided data of 33 patients with T1D and using three different CGM devices
(i.e. Dexcom G5®, Medtronic Guardian™ sensor 2 and Medtronic Guardian™ sensor
3). The dataset includes 16 females and 17 males, aged between 24 and 70 (average
43 ± 17) who were diagnosed with diabetes from 1 to 40 years ago (average 16 ± 13).
The dataset includes a highly variable population: nine patients present complications
related to diabetes (e.g. neuropathy, dyslipidemia), whereas fourteen suffer from other
autoimmune diseases such as SLE and hypothyroidism; eleven patients have no com-
plications or further diseases. One patient suffers from T2D. Some information about
physical activity is available: patient 25 reported time and duration, whereas patient
17 regularly performs physical activity, although no specific events or their duration are
reported in the available data.

Every patient was monitored for a period of time ranging from 8 to 30 days (average
15 ± 11). Nonetheless, each patient presents some days with several discontinuities or
long interruptions in the CGM track; these days were excluded from this study to avoid
introducing bias. Thus, the effective dataset includes a total of 296 days (average 9 ± 7
for each patient) of continuous glucose monitoring, and we discarded other 198 days
(average 6 ± 5 for each patient) in which some relevant disconnection occurred. This
observation suggests to use, when possible, a rather short monitoring time to train a
predictive algorithm, because long recording periods are, in fact, not available in real
applications.

4.1.2. External Validation Dataset

We use the Ohio T1DM dataset [11], which was initially available to participants in the
Blood Glucose Level Prediction (BGLP) Challenge of the Third International Workshop
on Knowledge Discovery in Healthcare Data at IJCAI-ECAI 2018 in Stockholm, Sweden,
and then became publicly available to other researchers. It contains eight weeks of data
concerning CGM, insulin, physiological sensor, and self-reported life-events of six people
suffering from T1D. The dataset includes 4 females and 2 males, aged between 40 and
60, each using the Medtronic EnliteT M CGM sensor. Table 4.4 reports state-of-the-art
performance on this dataset.
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4.2. Methods
Blood glucose levels are characterized by both linear and nonlinear components, as are
many other physiological signals. For this reason, in order to achieve good performance,
many methods that combine a linear and a nonlinear model (e.g. a generative model
and a neural network) have been proposed in the literature [31, 75]. Conversely, here
we propose a method capable of performing the same task using a single model. This
goal is achieved using the structure of a classic multilayer perceptron with the addition
of three main components altogether:

1. direct connections from the input to the output layer;

2. feedback connections from the output to the hidden layer;

3. time delays for each of the input-to-hidden, output-to-hidden and input-to-output
connections.

Using a single model simplifies the training phase and the model buildup, without sensi-
tively increasing the computational burden [23]; see section 4.4.4 for more details. The
proposed model is capable of exploiting the previous knowledge of past input values.
The rationale lies in observing that the prediction of many physiological phenomena,
such as blood glucose levels, can benefit from the previous knowledge of the recent input
variables history [16, 22, 24, 26, 29]. Moreover, the auto-regressive connections from the
output to the hidden neurons introduce a dependence from the predicted future, which
proved to be beneficial for prediction performance, as shown in Table 4.4. The model is
the one presented in chapter 3 and is defined ARTiDe jump neural network; its schema
has been shown in Figure 3.2 in the previous chapter.

Let us assume a Univariate Time Series (UTS) approach. If the past η values of the
time series are used as input, then the input vector Î(t) is a row vector of size 1 × η in
the form: Î(t) = [I(t), I(t − 1), . . . , I(t − η + 1)] (4.1)

which concatenates the values of the η most recent timestamps (green symbols in Fig-
ure 3.2). They are transferred from the input to each of the L hidden neurons through
an L×η weight matrix IHW, and directly to the output neuron through a vector IOW
composed of η weights.

The auto-regressive connections, represented by red connections in Figure 3.2, link
the output neuron to the hidden layer, since this may reduce the error in the light of
new incoming input values [26] thanks to the combination of auto-regressive feedbacks
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with weights that are modified during the learning process. That is, ỹ(t) is a row vector
containing the last ϕ predicted values ỹ(t) = [ỹ(t − 1), ỹ(t − 2), . . . , ỹ(t − ϕ)], and it is
connected to the L hidden neurons through an L × ϕ weight matrix OHW.

This leads to an equation for the prediction ỹ(t + PH|t) of the ARTiDe jump neural
network at the timestamp t as the one introduced in the previous chapter, and reported
in the following to facilitate the reader:

ỹ(t + PH|t) = IOW · Î(t)T + HOW · f
(
IHW · Î(t)T

)
+ HOW · f

(
OHW · ỹ(t)T

)
(4.2)

where HOW is a row vector of L weights connecting every hidden neuron to the output
neuron and f(•) is the tangent-sigmoid activation function, computed element-wise on
the results of IHW · Î(t)T and OHW · ỹ(t)T .

The network training resorts to the Bayesian regularization back-propagation as a
training function. It allows a neural network to generalize well on data where the distri-
bution of noise on the training set is Gaussian and the prior distribution for the weights
is Gaussian [73], as one could expect when dealing with a physiological phenomenon.
Let us define ei as the network error related to a prediction at the i-th timestamp ti,
computed as the subtraction between the true value y(ti + PH) and the predicted value
ỹ(ti + PH|ti) given a prediction horizon PH. Straightforwardly, after k predictions
have been run, the vector of network errors ek is composed of the past k values of ei.
The Bayesian regularization aims to minimize a regularized objective function F on the
whole time series of length N used for training. F is composed of two terms:

F = α1 SSE + α2 W (4.3)

where SSE =
N−P H∑

i=1
ei

2 and W = 1
Ω

Ω∑
j=1

wj
2

are the Sum-of-Squared-Errors computed on the total (N − PH) predicted timestamps
and the average of the squares of the Ω networks weights wj, respectively. The scalars
α1 ∈ R+ and α2 ∈ R+ are objective function parameters. Minimizing F consists in
finding a trade-off between minimizing the SSE and W : the former generates a network
response which is as close as possible to the ground truth values, whereas the latter
produces a smoother network response due to smaller weight size. The weights and
biases of the network are initialized randomly, and the Bayesian regularization updates
their values according to the Levenberg-Marquardt optimization. This algorithm is faster
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than standard back-propagation since it approximates1 the Hessian matrix as H = JT J
and computes the gradient as G = JT ek, so that the series values are updated as

ỹk+1 = ỹk − [JT J + µI]−1JT ek (4.4)

where µ ∈ R+ is a scalar learning coefficient and J is the Jacobian matrix that contains
the first derivatives of the network errors with respect to the weights and biases. The
Jacobian matrix can be computed through a standard back-propagation technique, which
back-propagates the network error to every layer of the neural network so that at the
end of the process the optimal values of weights and biases are determined. In addition,
we set early stopping conditions by imposing a minimum gradient and by setting the
maximum number of validation check fails. The back-propagation and the early stopping
processes ensure to avoid overfitting: at each training iteration, the weights of all the
connections are updated until an early stopping condition is reached or the maximum
number of epochs has passed.

4.2.1. Parameters search

The proposed model considers three structural parameters to be set, which are the
number of neurons L in the hidden layer, the number of input delays η, and the number
of feedback delays ϕ. Preliminary tests limited the search interval for L between 3 and 6
hidden neurons, and between 5 and 30 for both η and ϕ. Exceeding such ranges results in
overfitting of the network or in poor performance. In order to find the best combination
possible, a validation phase is performed as follows. We randomly select 17 out of the
33 patients in the internal dataset described in section 4.1.1. For these 17 patients, the
initial 24 hours of recorded data are used for training and the following 24 hours are
used as validation set. The patient with T2D and those with information concerning
physical activity are not considered in this phase. We evaluate performance on the
validation set in terms of RMSE (Equation 1.1), attained carrying out a grid search of
the structural network parameters. The results of the grid search show that the most
recurrent parameter combination among the different patient data in the validation set
is given by 4 neurons in the hidden layer, 10-minute input delays and 10-minute feedback
delays, i.e. in both cases the values of the last 10 minutes are taken into account.

1The approximation is possible only if the performance function has the form of a sum of squares, as
happens in this case.
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Figure 4.1.: Pipeline of the blood glucose levels forecasting task.

4.3. Experimental Design
As pointed out in section 4.2.1, only data of 17 out of the 33 patients from the internal
dataset are used to set the optimal number of structural parameters. The second day
of each group of consecutive days is used for validation. From now on, we will refer
to these 17 patients as group A, and to the further 16 patients as group B. In order to
evaluate the performance of the model, we implement the experiments described below.
The prediction horizon is set equal to 15, 20 and 30 minutes, according to the medical
practice [22]. Hereinafter we use data corresponding to 24 hours of CGM reading as
training set for each test, unless differently specified. We use 80% of training data
to train the network, whereas the remaining 20% is used for detecting early stopping
conditions. A general pipeline of the performed task is illustrated in Figure 4.1. We
evaluate the model performance by measuring the RMSE between the predicted and the
actual glucose values. Such a measure permits an immediate comparison with the results
achieved in other works, being a widespread performance evaluation metric. However,
RMSE returns an error value which strongly depends on the order of magnitude of the
analyzed quantity; as a consequence, we also evaluate performance in terms of SSGPE,
as defined in equation 1.2.

4.3.1. Training: initial 24 hours - Test: all the following days

This first test aims to evaluate the performance of the proposed model when the first
24 hours of recorded data are used to train the network. All the following days are
considered as test set (except for day 2 of patients in group A used as validation set).
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For each patient, each group of consecutively monitored days is considered as a stand-
alone group of data.

4.3.2. Training: 24 hours - Test: next 24 hours

This experiment aims to investigate what happens if we retrain the learning model using
data collected in the latest 24 hours. Furthermore, it may reveal if taking into account
the daily evolution of the glucose dynamics of the patient could be beneficial in some
respect. In practice, we proceed as follows. Each group of consecutive days is considered
as a stand-alone group of data. The first day of each group is used for training the
network from scratch, and the performance is evaluated on the second day. Next, the
second day is used as training set to retrain the model from scratch, and performance
is evaluated on the third day, and so on until the last recorded day of each group. For
patients in group A, the pairs of days used to determine the network configuration are
excluded from the experiment.

4.3.3. Training: incremental - Test: last day

This test aims to study what happens if we increase the amount of training data. For a
fair comparison between the models trained using different training sets, we fix the test
day to the last one. Different training sets are considered: first, only 24 hours of CGM
data are used for training; second, 48 hours are used to train the network, and so on
until the training set is composed by every day except the last one. Depending on the
size of each group of days, 2 to 5 days of CGM data are used to train the models used
in this test.

4.3.4. Comparison with other methods

To further assess our method, we compare the results we achieve with those of well-
established methods in the literature. The list of competitors includes one model in the
frame of kernel machines (SVR), one in the frame of the forests of trees (Random Forest
Regression), one symbolic model (SAX), one generative model (AR) and four artificial
neural networks (RNN, NARX, Delayed FFNN, Jump neural network). Each method
is optimized on the internal dataset described in section 4.1.1 through a validation
set, so that each competitor achieves the best possible performance. According to the
procedure we pursued to train our model, we consider for each competitor the possibility
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of exploiting the knowledge of previous glucose levels, if this leads to better performance.
The optimization procedure produced the following results:

• Random Forest Regression: we test a forest of regression trees, investigating the
optimal amount of past values to be used in predictions, the number of learners
and the depth of trees. The optimal combination turns out to be a forest of 70
regression trees exploiting the knowledge of the past 5 minutes of glucose dynamics.

• SVR: we investigate which between linear, gaussian and polynomial kernel ensures
the best performance. The optimal model turns out to be an SVR with linear
kernel function exploiting the past 5 minutes of CGM data, after standardization
of the input.

• SAX model: the optimal solution turns out to be the utilization of an alphabet of
10 symbols, after dividing each test day in 288 segments (i.e. one segment every
five minutes).

• Auto-Regressive (AR) model: we test this dynamic model to investigate the optimal
number of past glucose values to use as input, which results in an input vector
composed of the past 5 minutes.

• Recurrent Neural Network: the optimal combination includes 3 neurons in the
hidden layer with tangent-sigmoid activation function, and it takes into account
the past 30 predicted values, regardless of past input values.

• NARX neural network: we test the closed-loop configuration to find the optimal
values of hidden neurons, input delays and feedback delays. The optimal combi-
nation turns out to be a neural network having 4 hidden neurons, and taking into
account the past 30 minutes of CGM data and the latest 10 predicted values.

• Jump neural network: this method reproduces the jump neural network proposed
in [23]. The optimal model includes 4 neurons in its hidden layer and only the last
available glucose value as input. It is worth noting that the ARTiDe jump neural
network represents a more general framework of this model, since when ϕ = 0 and
η = 1 ARTiDe does correspond to the model proposed in [23] with a Multivariate
Time Series (MTS) approach.

• Delayed feed-forward neural network: this method is tested for comparison with
the proposed ARTiDe jump neural network, in order to measure the performance
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achieved using the same input with a more traditional network structure. The
optimal combination turns out to be a neural network having 4 neurons in the
hidden layer and taking into account the past 10 minutes of CGM data.

4.3.5. Event detection

To further assess the model prediction capability, we perform the event detection task
defined in [29]. According to the timestamps of samples verifying particular conditions,
the following events are defined:

• Severe Hypoglycemia: the blood glucose level falls below the 50 mg/dL threshold,
i.e. y(t − 1) > 50 and y(t) ≤ 50;

• Hypoglycemia: the blood glucose level falls below the 70 mg/dL threshold, i.e.
y(t − 1) > 70 and y(t) ≤ 70;

• Hyperglycemia: the blood glucose level exceeds the 180 mg/dL threshold, i.e.
y(t − 1) < 180 and y(t) ≥ 180;

• Severe Hyperglycemia: the blood glucose level exceeds the 250 mg/dL threshold,
i.e. y(t − 1) < 250 and y(t) ≥ 250;

where all measurement units are mg/dL. Four different sets are created according to
this criterion, each containing all the events that meet one of the above defined condi-
tions. Due to measurement noise, multiple consecutive events of the same type could
be observed within a short time frame. Hence, if a specific event occurs, additional
events of the same type are not considered for the following 30 minutes, in order to limit
this unrealistic behavior [76]. With this purpose, both the predicted and the original
glycemic time series are investigated to detect the events defined above. We use the same
rationale of [29] and proceed as follows: let A = {t1, . . . , ta} be the generic set contain-
ing the a timestamps associated with the actual events, extracted from the values in the
actual CGM values {y(t1), . . . , y(tN)}, and let P = {t1, . . . , tp} be the set containing the
p timestamps associated with the predicted events corresponding to the predicted CGM
track {ỹ(t1), . . . , ỹ(tN)}. Each element in P is analyzed according to its timestamp tp and
marked as either a true positive or a false positive, according to the following criterion.
Let us define ∆tpa = tp − ta as the distance between the timestamps of a predicted event
and of an actual event. Let PH be the considered prediction horizon. For each tp ∈ P,
if there exists ta ∈ A so that −k < ∆tpa < PH (where k ∈ N is a positive constant
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Figure 4.2.: Pipeline of the event detection task. Performance is evaluated in terms
of recall, precision, and F1-Score for each class, according to the events
detected in the actual and predicted time series.

that prevents the association of events that are too distant apart), then tp is considered
as a true positive and ta is no longer considered. If the aforementioned condition is not
met, tp is considered to be a false positive, i.e. the predicted event will not occur or
has already occurred. Following [29] we set k = 30 minutes. After having checked all
the elements in set P, the events in set A that are still not tagged are tagged as false
negatives. Consequently, Precision, Recall, and F1-Score are evaluated as follows:

Precision = TP

TP + FP
(4.5)

Recall = TP

TP + FN
(4.6)

F1-Score = 2 · Precision · Recall

Precision + Recall
(4.7)

where TP , FP and FN are the total number of true positives, false positives and false
negatives, respectively. A general pipeline of the event detection task is illustrated in
Figure 4.2. Data of the 33 patients in the internal dataset include a total amount of 563
events which are 12 severe hypoglycemia, 97 hypoglycemia, 280 hyperglycemia and 174
severe hyperglycemia events.

4.3.6. Test on the External Dataset

Forecasting tests are also performed on the public Ohio T1DM dataset [11] to compare
the results we achieve with those reported in the literature. The dataset has a given
division between training and test sets for each patient. Following the rationale of
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the test described in section 4.3.1, we use only the first 24 hours of data available in
each training set to train and to optimize the neural network on the specific patient.
Unfortunately, we found that the test set of every patient has several interruptions, as
occurs in our private dataset. As a consequence, in order to assess the performance on
the whole test set, we perform a test on every fraction of continuous data, and then
merge all the fractions of the test set and of the predicted values into two respective
time series, so that we can properly calculate the RMSE for every subject as described in
equation (1.1). It is worth noting that the structural parameters of the neural network
are those detected on patients from group A with the method described in section 4.2.1,
so they are totally unbiased from this dataset.

Further to this test, we also increase the amount of training data to the whole training
set to evaluate performance improvement while considering different prediction horizons.

4.4. Results and Discussion
Table 4.1 reports the average results of the experiments described in the previous section
for all the patients in the internal dataset and for each of the three prediction horizons
considered. The results are expressed in terms of RMSE (equation 1.1) and SSGPE
(equation 1.2), hence, the smaller the values the better the performance.

Let us focus on the results attained in Test 1 (Training: initial 24 hours - Test: all
the following days). It allows us to investigate if 24 hours are enough for the network to
learn the glycemic dynamics of the patient. The obtained results are promising, since
the average RMSE with a 30-minute prediction horizon is in line with the state of the art
presented in Table1.1, whereas the average result obtained with a 15-minute prediction
horizon is slightly better, although the tests are performed on different datasets. This
suggests two observations: first, the CGM data alone can be used as input, and this
reduces the burden of data collection as much as possible. Second, 24 hours are sufficient
to properly train the proposed neural network: to the best of our knowledge, this is by
far the smallest amount of data used in the literature to train a model for glucose
level forecasting. In particular, results with a 15- and 30-minute prediction horizon
are promising because other algorithms at the state of the art obtain similar or worse
performance, even though they use much longer training periods and, in many cases,
they exploit MTS approaches.

Let us now focus on the results attained in Test 2 (Training: 24 hours - Test: next 24
hours), which allows us to assess if the performance improves by retraining the neural
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Table 4.1.: Average results of the three tests described in section 4.3 with a 15-, 20- and
30-minute prediction horizon PH. The performance is evaluated consider-
ing the internal dataset only. The reported results are the average of the
RMSE [mg/dL] and the SSGPE [%] scores on all the patients, with standard
deviation.

PH RMSE [mg/dL] SSGPE [%]
Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

15′ 9.5 ± 1.9 9.3 ± 1.7 9.4 ± 1.8 5.3 ± 1.3 5.8 ± 1.4 5.7 ± 1.6
20′ 12.6 ± 2.4 12.4 ± 2.2 12.5 ± 2.5 7.1 ± 1.7 6.8 ± 2.0 7.6 ± 2.1
30′ 18.7 ± 3.5 18.4 ± 3.3 18.4 ± 3.9 10.6 ± 2.4 10.1 ± 2.8 11.1 ± 3.0

network with the latest available data. This test is very similar to the first one, except
for the day used to train the model which varies every 24 hours, and it is always the day
before the one used as the test set. We notice in Table 4.1 that the average results are
in line with or slightly better than those reported in the state of the art. Nevertheless,
they are not significantly better than the results achieved in the first test, suggesting
that both approaches could be used in a real-life application.

The third experiment (Training: incremental - Test: last day) shows that no signifi-
cant performance improvement is observed increasing the training period of the model to
several days, as illustrated in Figure 4.3 where we report the average performance on all
patients. Considering a 30-minute prediction horizon, we observe that the performance
of only 4 out of the 33 patients improves more than 2 mg/dL, whereas other patients
have modest benefits. The only remarkable improvement concerns patient 29, for whom
the RMSE performance improves from 21.7 to 16.8 mg/dL when 5 days are used to
train the model, and the last available day is used as the test set. This could be due to
the prominent difference between the first (i.e. original training set) and the last (i.e.
effective test set) recorded day of the patient: the former includes moderate glycemic
levels, whereas the latter presents several hyperglycemic events, which are consequently
underestimated with impact on the prediction quality. On the contrary, the days im-
mediately preceding the last one are characterized by high glucose levels, being more
similar to the tested day. Nonetheless, the improvements concerning other patients are
less notable, and they are, in most cases, smaller than 1 mg/dL. The average results are
in line with those of the other tests, suggesting that 24 hours can be enough to properly
train a predictive model with the proposed neural network.
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Figure 4.3.: Performance improvement for test 3 as the size of the training set increases.
The average results in terms of RMSE and related standard deviations are
reported from 1 to 4 training days for the three tested prediction horizons.

It is worth noting that RMSE results illustrated in Table 4.1 are slightly better than
those reported in our previous work on the respective tests [72], proving that the model
was fairly general despite the relatively low number of patients involved. Indeed, the
larger dataset confirms the good performance with a more variable population. The
SSGPE scores we achieved in the tests are noteworthy as well. Indeed, ARTiDe outper-
forms all the models that are investigated in the work of Gadaleta et al. [29].

The RMSE and SSGPE scores do not vary significantly among patients, considering
that those suffering from diabetes complications or other diseases present the same av-
erage results as those with no complications. This proves that the model is properly
capable of generalizing on a wide range of people with diabetes and that it performs
accurate predictions regardless of disease severity. With regards to the patient suffering
from T2D, we observe that the performance is in line with the total average since the
RMSE on Test 1 results to be 18.7 mg/dL with a 30-minute prediction horizon. How-
ever, a single patient is not sufficient to assess the effectiveness of our method on T2D
patients, and a specific and wide dataset would be necessary for this purpose. Turning
the attention to the two patients who performed physical activity, we observe that the
performance is slightly worse than the average for patient 17, whose RMSE is 19.9mg/dL

for a 30-minute prediction horizon on Test 1; however, we do not exactly know when
physical activity was performed. Performance is above average for patient 25 as well
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Table 4.2.: Comparison between the results achieved on the internal dataset by the pro-
posed ARTiDe jump neural network and by other well-established methods
in the literature of time series forecasting, evaluated in terms of RMSE with
a 15-, 20- and 30-minute Prediction Horizon (PH). The p-values from the
t-test between the results of ARTiDe and the competitors are also reported.

Method RMSE [mg/dL] p-value
PH=15’ PH=20’ PH=30’

Random Forest Regression 27.4 ± 6.6 31.5 ± 6.6 39.4 ± 8.2 < 10−15

SVR 62.8 ± 18.9 63.4 ± 19.2 64.0 ± 19.8 < 10−15

AR model 12.2 ± 2.6 15.3 ± 2.7 20.9 ± 3.8 < 0.02
SAX model 70.7 ± 23.0 71.0 ± 22.3 71.4 ± 21.9 < 10−15

Recurrent Neural Network 17.0 ± 8.4 22.0 ± 9.6 29.5 ± 9.3 < 0.01
NARX Neural Network 41.4 ± 36.2 50.6 ± 41.1 54.2 ± 28.1 < 10−9

Jump Neural Network 14.9 ± 5.3 18.7 ± 3.7 24.1 ± 4.9 < 0.02
Delayed Feed-Forward Neural Network 17.3 ± 3.4 21.7 ± 3.4 30.2 ± 4.7 < 0.01
ARTiDe Jump Neural Network 9.5 ± 1.9 12.6 ± 2.4 18.7 ± 3.5 /

(RMSE = 19.4 mg/dL) since it deteriorates in the occurrence of the timestamps where
physical activity is reported. This suggests that an ad hoc model for glucose levels pre-
diction should be developed to perform predictions during physical activity, but a larger
amount of information is necessary for this purpose, such as the use of MTS [77, 78].

4.4.1. Results of the comparison with other methods

In this section, we show that results reported in the previous section are noteworthy if
compared with those of other well-established methods of time series analysis, which are
described in Table 1.1. We tested the competitors on Test 1 (section 4.3.1), using only
CGM data as input and considering 24 hours of data as training for predictions 15, 20,
and 30 minutes ahead of time, reporting the achieved results in Table 4.2. The best-
performing models are the AR model and three artificial neural network models, which
are recurrent, jump, and delayed feed-forward neural networks. These models achieve
performance in line with the state of the art. The performance achieved by the Random
Forest is slightly worse than the state of the art, whereas the performance achieved by
SVR, SAX, and NARX neural network is considerably worse.

Comparing the results reported in Table 4.2 with those of the proposed model, it
is straightforward to notice that ARTiDe attains better results than all the competi-
tors whatever the prediction horizon. Interestingly, the AR model outperforms many
competitors, proving that the linear relation between the input and the predicted value
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Table 4.3.: Event detection metrics for the proposed method tested on the internal
dataset with a 30-minute prediction horizon.

Recall % Precision % F1-Score %
Severe 83.3 83.3 83.3Hypoglycemia

Hypoglycemia 59.8 47.2 52.7
Hyperglycemia 86.4 58.0 69.4

Severe 72.4 54.5 62.2Hyperglycemia

plays a predominant role in forecasting blood glucose levels. In addition, ARTiDe im-
proves the performance of the AR model by more than 2mg/dL in every test, proving
that including the nonlinear component can further improve the results. Furthermore,
the introduction of time delays and auto-regression confirms to be beneficial, according
to the generally good results achieved by auto-regressive competitors. We performed
the t-test between the results from the proposed method and from the competitors.
The p-values reported in Table 4.2 confirm a statistically significant difference: indeed,
p < 0.02 when comparing ARTiDe with the jump neural network and the AR model; in
addition, the p-value is less than 0.01 when comparing ARTiDe with other methods.

4.4.2. Event Detection performance

Data from the 33 patients in the internal dataset include a total of 563 events, namely
12 severe hypoglycemia, 97 hypoglycemia, 280 hyperglycemia, and 174 severe hyper-
glycemia. Defined the Imbalance Ratio (IR) as the ratio between the number of in-
stances in the majority class and the number of instances in the minority class, the
dataset has IR = 23.3 and thus presents high imbalance according to the definition
given in [79]. We evaluate the event detection performance considering the predictions
generated from Test 1 (section 4.3.1), i.e. the regression outputs provided by ARTiDe
are compared with the thresholds defined in section 4.3.5 to detect the corresponding
event. Considering a 30-minute prediction horizon, the recall, precision, and F1-Score
of each class are reported in Table 4.3.

A direct comparison with the results reported by Gadaleta [29] is not possible, due to
the different tested datasets, the number of tested models, and the different aims of the
works. However, a qualitative comparison is shown in Figure 4.4 using boxplots, which
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provide a statistical and compact view of the results. The results we achieve are com-
parable to those of the methods in [29] that achieve the best performance, although the
significance of this conclusion is purely qualitative since the datasets used for evaluation
are different.

Due to the high IR of the dataset, F1-Score represents the most appropriate metric
to evaluate performance between classes. It is worth noting that the F1-Score for hy-
perglycemia is sensitively higher than the one for hypoglycemia. A possible explanation
for this finding may be the fact that data used in this work are gathered from patients
in real-life conditions. Indeed, patient interventions may have occurred to prevent or
mitigate hypoglycemia, making it more difficult for the model to learn the correct pat-
tern preceding a hypoglycemic event, e.g. a prediction performed 30 minutes in advance
may take place before the intervention by the patient. This generates false alarms and
reduces the precision score of hypoglycemia. As a matter of fact, all the severe hy-
poglycemia events are preceded by the same pattern, i.e. missed intervention by the
patient during hypoglycemia, which results in a high F1-Score despite the small number
of instances. In addition, after comparing the forecasted data with the original events
of hypoglycemia, we notice that some predictions take place after an event has already
occurred and that some forecasts predict a glycemic value that is slightly higher than
the 70 mg/dL threshold; this reduces the recall of hypoglycemia. On the other hand, for
the reasons discussed in the Introduction, patient interventions are less likely to occur
in the case of a hyperglycemic event. This is proven by the larger amount of such events
and results in the higher F1-Score of this class.

4.4.3. Results on the External Dataset

The previous sections propose an immediate comparison with other methods tackling
the same issue in the literature by directly analyzing the performance achieved in terms
of RMSE. We also test our method on the public Ohio T1DM dataset [11], so that we
can compare the performance of the proposed method with those of other works in the
literature that tested the same dataset. The results of this comparison are illustrated
in Table 4.4. We report the results of predictions 30 minutes ahead of time because all
the listed works tested this prediction horizon. The third column of the table shows
that the proposed method outperforms all the others in the literature, although the
amount of training data utilized is considerably smaller. The best results among the
listed competitors are achieved by Chen et al. [26], whose method lies on our same
rationale since it exploits the knowledge of both past inputs and predicted values to
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Figure 4.4.: Results of the Event Detection task in terms of Recall, Precision, and F1-
Score. The left column reports the results achieved using the proposed
method on our internal dataset; the remaining columns report the results
of the 3 best-performing methods in [29] on their private dataset for a qual-
itative comparison.
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Table 4.4.: Comparison between the results achieved on the Ohio T1DM dataset by the
proposed method and others in the literature, considering a prediction hori-
zon of 30 minutes. The methods and relative authors are illustrated, as well
as the performance achieved in terms of RMSE (with standard deviation).
Multivariate models are marked with an asterisk. We report both the results
we achieve using 24 hours of data to train the model (Test 1) and the full
training set (Test 3).

Study Method RMSE [mg/dL]
Midroni et al. [17] XGBoost Random Forest* 20.4 ± 2.2
Contreras et al. [20] Grammar Evolution approach* 21.2 ± 1.8
Martinsson et al. [24] LSTM Recurrent Neural Network 20.1 ± 2.4
Zhu et al. [25] Convolutional Neural Network* 22.2 ± 2.5
Chen et al. [26] Dilated Recurrent Neural Network* 19.0 ± 2.4
Bertachi et al. [27] Feed-Forward Neural Network* 19.3 ± 2.2
Li et al. [28] GluNet* 19.3 ± 2.8

Proposed model ARTiDe (full Training set) 18.4 ± 1.6
ARTiDe (24-hour Training) 18.8 ± 1.3

improve performance. Nevertheless, the direct input-output connections of our method
ensure slightly better performance, even though Chen et al. exploit information on CHO
and insulin doses in addition to CGM values.

Figure 4.5 illustrates the results achieved by increasing the amount of training data
until completing the training set. As mentioned in section 4.1.2, this dataset presents
many discontinuities in data recording. Consequently, in order to consider the whole
training set for each patient, we initially train the model from scratch on the initial part
of the data, and then re-train the model on the remainder of the training data, updating
the weights and bias values. We tested prediction horizons from 15 to 120 minutes,
increasing by 15 minutes for every iteration. Each test is executed two times: 1) only
the first 24 hours of CGM data are used to train the model, and 2) the complete train-
ing set is exploited for each patient. Figure 4.5 shows the average results, in terms of
RMSE, of the predictions performed in both cases. Interestingly, no appreciable differ-
ence occurs when short-term predictions are operated; in particular, for the considered
30-minute prediction horizon the RMSE performance improves from 18.8 to 18.4mg/dL.
Conversely, the enhancement of the training set produces more sensitive upgrades when
dealing with longer prediction horizons. It is worth noting that, in every case, the aver-
age improvement is smaller than 3 mg/dL, proving that 24 hours of recorded data can
be enough to properly train the ARTiDe jump neural network.

54



4. Auto-Regressive Time Delayed jump neural network for blood glucose levels
forecasting

Figure 4.5.: Performance related to the Ohio T1DM dataset for different prediction hori-
zons. The proposed model is trained using 24 hours of data or the complete
training set.

This test also confirms the robustness of the proposed method, since comparable
results are achieved on datasets composed of patients from different parts of the world
(i.e. Italy and Ohio), proving that the structure of the proposed neural network is
capable of generalizing results on a wide range of people with diabetes having different
lifestyle and diet.

4.4.4. Computational complexity

In this section, we briefly investigate the computational complexity of the ARTiDe jump
neural network, together with its training and testing time. According to the notation
introduced in section 4.2, the computational complexity of the proposed model during
the training phase can be approximated as being in the range of O

(
NL(η + ϕ)

)
per

iteration, where N is the number of timestamps considered as the training set, L is the
number of neurons in the hidden layer, η and ϕ are the numbers of input and feedback
delays, respectively. For comparison, the computational complexity of a fully-connected
multilayer perceptron with one hidden layer composed of L neurons and with η inputs
can be approximated as O(NLη). Straightforwardly, the computational complexities
during the test phase for a single prediction can be approximated as O

(
L(η + ϕ)

)
and

O(Lη), respectively. Considering that η and ϕ share the same order of magnitude in
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practical cases, the computational complexity of ARTiDe is about twice the complexity
of a multilayer perceptron. In practice, this is not an issue: with regard to Test 1 with a
30-minute prediction horizon, the average time (with standard deviation) for training the
model on each training set is 0.28 ± 0.17 seconds, whereas the average time to perform a
single prediction is 3.38 · 10−5 ± 4.36 · 10−6 seconds. This is largely suitable for real-time
predictions since a single value is predicted every few minutes. The training and testing
times of other tests with different prediction horizons are in the same range and are
not reported for brevity. All tests are coded in Matlab R2018b and performed on an
HP Pavilion Notebook with Windows 10 Home 64-Bit Operating System, 2.6 GHz Intel
Core i7 CPU, 16 GB DDR4-2133 SDRAM.
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5. Blood Glucose Level Forecasting on
Type-1-Diabetes Subjects during
Physical Activity: A Comparative
Analysis of Different Learning
Techniques

Although regular physical activity is important for people living with T1D for a variety
of health reasons [80], most subjects are unable to manage the consequences because
the intensity [81], duration, and type of physical activity have a significant impact on
glucose homeostasis [82, 83], which can lead to potential episodes of hypoglycemia or
hyperglycemia. The former is mainly observed during aerobic physical activity, whereas
the latter is observed during anaerobic exercise.

Despite the excellent performance obtained by predictive models, the prediction of
abrupt changes in blood glucose values produced during sports remains one of the main
challenges in this sector. Physical activity has rarely been addressed in the literature,
mainly due to the difficulties in data collection. In addition, the works addressing
this task usually resort to multivariate approaches that ask the patient to manually
supply data concerning their state or integrate their data from several heterogeneous
sensors [84, 85], or consider a dataset composed of virtual patients [86, 87].

In this study [88], we exploit the data of six adults suffering from T1D who regularly
perform physical activity to develop a predictive model capable of effectively forecasting
future glucose levels during sports. The experimental work has seen the application of
a Jump Neural Network [23] to perform a regression task with a univariate approach.
This latter choice was made to reduce as much as possible the burden of the patient
without requiring them to supply data manually or to wear unnecessary sensors. A
precision medicine approach was adopted, which proved to be the most effective from
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the experimental results. Concerning the methods of application of the algorithm, three
different configurations were developed, which include: a model with offline training, a
model with online training, and a model with online training and a loss function that
incorporates an increased penalty in case of a great difference between the predicted
and real values. A comparative analysis was finally conducted, to determine whether
the performance of a model with offline training could be exceeded by models with online
updates, with or without penalty contribution.

5.1. Dataset
The Unit of Endocrinology and Diabetology of the Campus Bio-Medico Polyclinic of
Rome supplied anonymized data of six subjects suffering from T1D, aged between 23
and 52 (average 39 ± 10), that held regular physical activity and exploited CGM dur-
ing the period of observation. Data were accompanied by information provided by the
patients regarding the days and times in which physical activity was performed and its
type. In detail, three of the participating subjects performed anaerobic activities (gym,
sailing, and home workouts for patients 1, 2, and 3, respectively), whereas the remain-
ing performed aerobic activities (padel/bicycle, belly dance, and eight-a-side soccer for
patients 4, 5, and 6, respectively).

For each patient, several sensor disconnections occurred during the monitored period,
which makes it difficult for an AI model to learn the patterns of a time series [26]. As a
consequence, we decided to include in this study only those days for which the monitoring
was continuous for 24 hours. After excluding incomplete days, the amount of collected
data ranged from a minimum of 6 days for patient 1 to a maximum of 81 for patient 4
(average 31 ± 28), and a number of physical activity events from a minimum of two for
patient 2 to a maximum of eight for patient 4 (average 5 ± 2).

5.2. Methods
With the purpose to make a prediction to 30 minutes, in the labeling process, the CGM
value of the timestamp (t + 30) was considered as a target for the training of the CGM
sample at timestamp t. The three configurations developed in this work used a Jump
Neural Network, which is a particular feed-forward neural network whose inputs are
connected not only to the first hidden layer but also to the output layer. This model
was originally proposed by Zecchin et al. [23] for predicting the blood glucose levels of 10
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subjects with T1D in daily-life conditions exploiting a MTS approach. The network used
in this work presents only one hidden layer composed of four neurons with a sigmoidal
activation function. In practice, it differs from the original model of Zecchin because it
has a different number of hidden neurons and exploits a UTS approach. A schematic
illustration of the proposed jump neural network is shown in Figure 5.1.

Figure 5.1.: Schematic illustration of the proposed Jump Neural Network.

The regression task was conducted following a precision medicine approach. At each
prediction timestamp t, the network input consists of the most recent 10 minutes of CGM
values. The network output is the future blood glucose value at timestamp (t + PH).
PH is the prediction horizon, i.e., how far forward in time a prediction is performed,
and, in this work, it is set to be equal to 30 minutes. At each timestamp t, the jump
neural network predicts a signal that can be expressed as

ỹ(t + PH|t) = IOW · I(t)T + HOW · f(IHW · I(t)T ) (5.1)

where

• I(t) is a row vector with M elements corresponding to the CGM [t − M + 1, t]. We
experimentally found the optimal value for M = 10.

• IOW is a row vector with M weight elements directly connecting every input to
the output neuron.
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• HOW is a row vector of L weights connecting every hidden neuron to the out-
put neuron.

• IHW is a L×M matrix of weights connecting every input to every hidden neuron.

• f is the tangent-sigmoid activation function, computed element-wise on the results
of IHW · I(t)T .

The first term models the linear relationship between the target and the inputs,
whereas the second term models the nonlinear relationship.

5.2.1. Experimental Design

For each patient, each group of continuous days is considered a stand-alone group of
data. With regard to the network input, the CGM of each group of continuous days is
used both as a vector of features and as a vector of labels. In detail, if a group of data
is composed of N minutes of CGM, the timestamps ranging from 1 to (N − PH) are
considered as features, and the timestamps ranging from (PH + 1) to N are considered
as labels. The vectors are then reorganized in such a manner that, at each timestamp
t, the network receives as an input 10 minutes of CGM data (i.e., the time window
[(t − 9), t]) that is associated with the label corresponding to the value of CGM at the
timestamp (t + 30).

In each of the proposed configurations, and for each patient, in the beginning, offline
training is carried out on the initial 80% of data of the first 24 hours of the first group
of continuous days, and the model is validated on the remaining 20% of the data of that
same day. The network performance during the offline training is evaluated in terms of
Mean Squared Error (MSE). Defining y(t) as the true CGM value at timestamp t and
ỹ(t) as the related model prediction, we can define the error at a timestamp t as

e(t) = y(t) − ỹ(t) (5.2)

and the MSE as
MSE =

N∑
t=1

e(t)2

N
(5.3)

where N is the number of timestamps of the predicted time series. After the first offline
training, the process diversifies according to the configuration used:

• Offline training configuration: after training on the first available 24 hours of data,
all the following days are considered as test sets of the offline trained model, and
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the performance is evaluated. A schematic illustration of the first configuration
behavior is shown in Figure 5.2;

• Online training configuration: after the training of the offline model, the jump
neural network uses the online update mode. The weights obtained from the offline-
trained model are used to initialize the online configuration. At each timestamp,
the model makes a prediction of the blood glucose value at (t + PH). Every five
timestamps, the configuration of the network is updated using the 24 hours of CGM
immediately preceding the test timestamp, and the training and test windows are
moved forward by 5 min. The online training performance is evaluated in terms
of the MSE. This process is iterated until all of the patient’s CGM samples have
been considered as test sets so that every prediction is performed after training
the model with the most recent 24 hours of data. Therefore, this configuration
presents a considerably greater computational burden compared with the previous
one;

• Online training configuration with penalty: the model is trained online and works
similarly to the second configuration; however, the performance during the online
training phase is evaluated through the MSE product with a penalty. The lat-
ter was generated starting from the difference between the current value and the
predicted value.

A schematic representation of the latter two configurations is illustrated in Figure 5.3.
As introduced, the third configuration is characterized by a custom loss function built
ad hoc, which is composed of the product between the squared errors and the penalty
variable:

penalized loss =
N∑

t=1

e(t)2 · penalty(t)
N

(5.4)

where the latter is defined as follows:

penalty(t) =



0, if e(t) ≤ 5

1, if 5 < e(t) ≤ 10

2, if 10 < e(t) ≤ 20

0.5·e(t), if e(t) > 20

(5.5)

The construction of the penalty is designed to make the model act more rigidly when
the error is larger, trying to improve the prediction on those timestamps where the
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Figure 5.2.: Schematic illustration of the first configuration’s behavior.

error is great while taking less into account those timestamps where the error is small;
conversely, errors whose magnitude is under a set threshold are considered as correct
predictions.

5.3. Results and Discussion
All the simulations were run using Google Colab and the open-source libraries of Keras
and TensorFlow. In the offline training phase, a learning rate of 0.1 and a maximum
number of epochs equal to 500 were set for the network training. In order to prevent
overfitting, the early stopping technique was also used, i.e., the network finished its
training if the validation set had no improvement in terms of loss for 10 consecutive
validation checks carried out every four epochs. With regard to the configurations in-
volving online training, gradient clipping was exploited to prevent the gradient explosion
observed during preliminary tests, and its value was set to 0.3 from the experimental
results. The learning rate was set to 0.01.

The final performance of the configurations was evaluated in terms of RMSE in order
to provide an immediate comparison with other works in the literature. Different types
of performance were considered for the three configurations: first, the average RMSE
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Figure 5.3.: Schematic illustration of the second and third configurations’ behavior.

was calculated for each patient by taking into account the total of days in the test set;
second, the RMSE associated only with the timestamps in which each patient performed
physical activity was calculated; finally, the average RMSE of all patients and for each
type of physical activity was computed.

5.3.1. Offline Training Configuration

In the offline configuration, the model was trained from scratch only once for each
patient, exploiting the first 24 hours of data available, and tested on all the following
days. Table 5.1 reports the results of this test for each patient. The second column
reports the results referring to the total amount of recorded days, whereas the third
refers only to the timestamps during which physical activity was performed. The bottom
panel of the table reports the mean of the RMSEs concerning the total days and the
timestamps associated with physical activity. In detail, the two bottom lines report the
average RMSE referred only to the timestamps in which anaerobic or aerobic exercise
was performed. Interestingly, the average RMSEs related to predictions associated with
exercise were better than those on the total of days. The patients for which the best
performance was achieved for predictions during exercise were not the same as those
that provided the best predictions on the total of days, both concerning aerobic and
anaerobic exercise. The average results regarding physical activity show that the model
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Table 5.1.: Results of the tests of the offline configuration. The results are reported in
terms of average RMSE (mg/dL). For each patient, we report whether they
performed aerobic (AE) or anaerobic (AN) exercise. The second column
reports the results referring to the total amount of recorded days, whereas
the third refers only to the timestamps during which physical activity (PA)
was performed. The average RMSEs are also reported. The bottom panel
reports the average RMSE related only to anaerobic and aerobic exercise.
Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 22.0 23.2 AN
Patient 2 20.7 21.6 AN
Patient 3 25.1 17.8 AN
Patient 4 22.8 29.6 AE
Patient 5 29.0 23.7 AE
Patient 6 29.9 25.6 AE

Average RMSE 24.9 23.5 -
Average RMSE—AN - 20.8 -
Average RMSE—AE - 26.3 -

was better at predicting the anaerobic type of activity over aerobic.

5.3.2. Online Training Configuration

In the online configuration, the model was trained from scratch only once for each patient
and then updated every time new data were available. Table 5.2 reports the results of
this test for each patient. The structure and meaning of the elements shown in the table
are the same as in Table 5.1. Again, the results concerning physical activity were better
than those concerning the total amount of days. The average results were similar to
those achieved using the offline configuration. The results regarding physical activity
show that this model was also better at predicting anaerobic activity over aerobic.

5.3.3. Online Training Configuration with Penalty

In the online configuration with the penalty, the model was trained from scratch only
once for each patient and then was updated every time new data were available, while
considering a penalty that was greater as the forecast error increased. Table 5.3 reports
the results of this test for each patient. The structure and meaning of the elements
shown in the table are the same as in Table 5.1. The results concerning physical activity
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Table 5.2.: Results of the test of the online configuration. The results of performed tests
are reported in terms of the average RMSE (mg/dL). For each patient, we
report whether they performed aerobic (AE) or anaerobic (AN) exercise. The
second column reports the results referring to the total amount of recorded
days, whereas the third refers only to the timestamps during which phys-
ical activity (PA) was performed. The average RMSEs are also reported.
The bottom panel reports the average RMSE related only to anaerobic and
aerobic exercise.
Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 22.0 23.3 AN
Patient 2 20.1 21.0 AN
Patient 3 24.2 18.9 AN
Patient 4 22.8 30.2 AE
Patient 5 29.7 24.7 AE
Patient 6 28.3 25.2 AE

Average RMSE 24.5 23.9 -
Average RMSE—AN - 21.1 -
Average RMSE—AE - 26.7 -

were better than those concerning the total amount of days, and, once again, the model
was better at predicting the anaerobic type of activity over aerobic. The average results
were similar to those achieved using the previous configurations.

5.3.4. Comparison between the Three Configurations and the State
of the Art

Table 5.4 summarizes the results achieved with the three configurations, together with
the average results on the total days and on days with aerobic and anaerobic exercise.
All the configurations achieved similar results, both concerning the total days and the
physical activity. All the models performed better when predicting glucose levels related
to anaerobic exercise rather than aerobic; this may be a sign that the abrupt glycemia
decreases that occur during aerobic physical activity are particularly difficult to predict
accurately.

During aerobic exercise, glycemic variation can be influenced by the intensity and
duration of exercise, insulin to glucagon ratio, fitness, nutrition, and initial glucose
concentration [89]; moreover, most patients consume snacks immediately before aerobic
exercise to prevent hypoglycemic events, and this causes an increase in glucose levels
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Table 5.3.: Results of the test of the online configuration with the penalty. The results
of performed tests are reported in terms of the average RMSE (mg/dL). For
each patient, we report whether they performed aerobic (AE) or anaerobic
(AN) exercise. The second column reports the results referring to the total
amount of recorded days, whereas the third refers only to the timestamps
during which physical activity (PA) was performed. The average RMSEs are
also reported. The bottom panel reports the average RMSE related only to
anaerobic and aerobic exercise.
Patient ID RMSE Total Days RMSE PA PA Type

Patient 1 23.0 24.2 AN
Patient 2 21.1 22.2 AN
Patient 3 26.0 17.3 AN
Patient 4 21.7 28.7 AE
Patient 5 27.8 22.4 AE
Patient 6 28.5 28.5 AE

Average RMSE 24.6 23.9 -
Average RMSE—AN - 21.2 -
Average RMSE—AE - 26.5 -

followed by a decrease due to exercise [90]. A multivariate approach taking into account
such heterogeneous features may improve glucose predictions during aerobic physical
activity.

Although the offline configuration achieved better results on the total number of days
for only one out of the six patients compared to the online configuration without penalty,
it remains the best choice for physical activity. Indeed, the offline configuration achieved
better average performance for both aerobic and anaerobic physical activity. On the
other hand, the offline model was outperformed by the other configurations concerning
the performance on the total days. The fact that better results of the configurations
with online training on the total number of days did not translate into better results
concerning only physical activity could indicate that these configurations have a better
long-term adaptation.

However, the performance improvement is not great enough to justify the significant
increase in the computational burden introduced by the online configurations; thus, the
offline configuration would likely be most appropriate for use in a real-life application.
With regard to the online configurations, the performance of the penalty and non-penalty
configurations were very similar, indicating that the negative reinforcement did not
present an advantage. With regard to the individual performance on the total number
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Table 5.4.: Results of the test of all three configurations. The results of the performed
tests are reported in terms of the average RMSE (mg/dL). For each patient,
we report whether they performed aerobic (AE) or anaerobic (AN) exercise.
The results were calculated both for the total number of days and only for
the CGM forecasts associated with physical activity (PA). For the latter, in
addition to the total average, the average of the RMSEs associated only with
anaerobic and aerobic PA is also reported.

Patient ID Total Days Total Days Total Days PA Offline PA Online PA Online
and PA type offline online online penalty penalty

Patient 1—AN 22.0 22.0 23.0 23.2 23.3 24.2
Patient 2—AN 20.7 20.1 21.1 21.6 21.0 22.2
Patient 3—AN 25.1 24.2 26.0 17.8 18.9 17.3
Patient 4—AE 22.8 22.8 21.7 29.6 30.2 28.7
Patient 5—AE 29.0 29.7 27.8 23.7 24.7 22.4
Patient 6—AE 29.9 28.3 28.5 25.6 25.2 28.5
Average RMSE 24.9 24.5 24.6 23.5 23.9 23.9

Average RMSE—AN - - - 20.8 21.1 21.2
Average RMSE—AE - - - 26.3 26.7 26.5

of days, we observed that some individual differences may affect the prediction of the
three models.

The configuration with online training achieved the best performance for Patients 2,
3, and 6, whereas the online and offline training configuration equally achieved the best
performance for Patient 1, and the online configuration with penalty achieved the best
performance for Patients 4 and 5. As no clear pattern was observed using one configu-
ration over another, we must conclude that the small variations in performance may be
due to individual differences between patients. A similar analysis can be applied to the
timestamps related to PA. Figure 5.4 shows a graphical comparison of the predictions of
the three configurations on a sample day of Patient 3, who performed anaerobic phys-
ical activity, and Patient 5, who performed aerobic exercise; the timestamps in which
physical activity was performed are also highlighted.

As mentioned in the Introduction, the forecasting of the blood glucose levels of T1D
patients that perform physical activity has rarely been addressed in the literature mainly
due to the difficulties in collecting data. Despite the reduced amount of published works,
a partial comparison can be performed with the work of Hobbs et al. [85], which is likely
the most remarkable work resorting to a regression task. They achieved an average
RMSE of 29 mg/dL on 32 T1DM subjects who practiced skiing and snowboarding,
which are considered to be mainly anaerobic types of exercise.

All the configurations proposed in this work achieved considerably better performance
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on anaerobic physical activity, although the number of patients investigated is exigu-
ous. Furthermore, differently from other works in the literature, the proposed model
exploits only the previous knowledge of CGM data without requesting the patients to
manually provide information on their status [77, 84] or integrating data from several
heterogeneous sensors [85], making it a promising approach for future developments.
However, we acknowledge that the results achieved cannot be conclusive nor exhaustive
because they were achieved on a small number of patients, and therefore they need to
be validated on a larger dataset to be considered definitive.
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Figure 5.4.: Comparison between the predictions of the three configurations on two sam-
ple days. We report the actual CGM track (red line), the predictions of the
online configuration with the penalty (blue line), the predictions of the online
configuration (green line), and the predictions of the offline model (purple
line). All the predictions are almost overlapped and slightly shifted from
the original CGM values. The black dotted lines delimit the period during
which physical activity was performed. Top: Predictions on a whole day of
Patient 3, who performed anaerobic exercise (RMSEs between 24.2 and 26.0
mg/dL). Bottom: Predictions on a whole day of Patient 5, who performed
aerobic exercise (RMSEs between 27.8 and 29.7 mg/dL).
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6. Identification of Optimal Training
for Prediction of Glucose Levels in
Type-1-Diabetes Using Edge
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Although predictive models for blood glucose levels achieve very promising performance,
their application is limited in practice by the fact that most studies have investigated
only the predictive capability of such models, whereas few studies have focused on real-
life applications. In the latter case, the CGM sensor should be able to continuously
communicate with the predictive model, which can be on cloud services (i.e. on the
internet) or an Edge Computing system (i.e., on a computational board). Edge Com-
puting systems are based on a distributed computing model in which data processing
takes place as close as possible to where the data are collected [91]; this approach leads
to a solution that does not require continued connection to cloud services, reducing the
risk of system malfunctioning. For the above-mentioned reasons, this study [92] aims
to identify a model capable of predicting future blood glucose levels taking into account
both numerical accuracy and computational resources.

6.1. Dataset and preprocessing
The UVA/Padova simulator [32], which was approved in 2008 by the FDA as a replace-
ment for preclinical animal trials, is used to generate data from 6 adult T1D patients.
For each patient, 100 days of data are generated with 1-minute sampling, in such a way
that, during each day, patients can have 3 to 5 meals; each meal has a reference CHO
intake taken from the Dietary Reference Intakes for Carbohydrate [93]. For each con-
sidered day, breakfast, lunch, and dinner are always present and set at reference times
8:00, 13:00, and 20:00, with reference carbohydrate intake of 45 grams, 70 grams, and
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80 grams, respectively. One or two snacks at 11:00 and/or 17:00 are randomly included
with a reference carbohydrate intake of 20 grams. To create more realistic data, the
exact time of each meal is obtained by shifting the reference time by a random amount
of time taken from a uniform discrete distribution in the interval [-60, +60] minutes,
whereas the exact amount of CHO for each meal is obtained by adding a casual value
extracted from a uniform discrete distribution in the interval [-20, +20] grams to the
reference carbohydrate amount. As an example, each day patients have lunch at some
point between 12:00 and 14:00, with an amount of CHO that varies between 50 and 90
grams.

Frequent hypoglycemic and hyperglycemic events are intentionally generated in or-
der to investigate the behavior of the model to facing critical cases, and to make the
generated dataset more similar to the observed clinical data [11, 12]. This is achieved by
modifying the optimal insulin bolus value computed by the simulator itself in the occur-
rence of each meal, in order to simulate human error. The modified value is extracted in
the same way as for CHOs, except that the interval from which the corrective value is
randomly taken is [-3, +3] units of insulin. The dataset consists of two features: blood
glucose and Insulin-On-Board (IOB). The latter is a combination of basal insulin and
insulin bolus which represents an estimation of the amount of insulin still active in the
subject’s body after bolus injection. For the Insulet pump, which is the one considered
during the simulations in this study, the active insulin time is equal to 3 hours and its
action has a linear plot [94]. Thus, the value of IOB for each timestamp t is computed
as:

IOB(t) =
179∑
k=0

a(k)I(t − k) (6.1)

where I(t − k) represents the value of insulin injected at timestamp (t − k), and a(k) =
(180 − k)/180 is the coefficient corresponding to the insulin decay curve discretized in
accordance with a 1-minute timestamp of insulin delivery, and k = 0, 1, 2, ..., 179 are
the total timestamps for the 3 hours of active insulin. We intentionally decided not
to consider further features provided by the simulator, such as the amount of ingested
CHO, as an input of the predictive model: in this way, patients are not asked to manually
provide any feature.

Following the precision medicine approach, each patient is considered separately. Af-
ter raw data are created, a Z-score standardization is applied to the features of the
dataset to obtain a normal distribution of the values with zero mean and unit standard
deviation. Finally, the dataset is split into windows consisting of 30 minutes of data
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(input of the model) and one sample as the label (output of the model), being so ready
to be fed to the neural network. A PH is fixed to determine how forward in time the
prediction is performed. Thus, at each timestamp t, the estimated future CGM value
ĈGM is a function of CGM and IOB values from the previous 30 minutes:

ĈGM(t + PH) = f(CGM [t − 29, . . . , t]; IOB[t − 29, . . . , t]) (6.2)

where the PH is set to 30 minutes. This is a sensible choice because it is the most widely
adopted value in the literature, as it would allow sufficient time advance to prevent an
adverse event [42].

6.2. Methods
Recurrent neural networks represent the golden standard for time series forecasting, but
in their classic implementation, they are afflicted by some limitations when facing long
time series data [95]. Since the presented dataset consists of a 100-day time frame for
each patient, an LSTM architecture is selected, i.e., a specific recurrent neural network
variant that is more suitable to handle long-term dependencies [96]. An LSTM is in
synthesis a recurrent neural network where the single cell at each considered timestamp
t contains an internal memory vector, or state vector, ct that defines its state as described
in the following. The units of the network are composed of an input cell, an output cell
and a forget gate. Considering the matrices W input weights, R recurrent weights, and
b bias for each gate, the state of the cell at timestamp t defined as

ct = ft ⊙ ct−1 + it ⊙ gt (6.3)

whereas the hidden state is defined by

ht = ot ⊙ σ(ct) (6.4)

where the terms, for a given input x(t), are referred to the equations governing the gates.
In detail, for the input gate:

it = σ(Winx(t) + Riht−1 + bi) (6.5)
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for the forget gate:
ft = σ(Wf x(t) + Rf ht−1 + bf ) (6.6)

for the cell candidate:
gt = σ(Wgx(t) + Rght−1 + bg) (6.7)

and, finally, for the output gate:

ot = σ(Wox(t) + Roht−1 + bo) (6.8)

where σ is the sigmoid activation function.

6.2.1. Experimental design

At first, to determine the optimal hyperparameters for the proposed LSTM, the first 10
days of data of each patient are taken and divided into three subsets, namely training
(70%), validation (20%), and test set (10%). These days are excluded from the dataset
for successive tests. A grid search on the validation set is performed, as an optimization
stage, to identify the combination of hyperparameters resulting in a better and faster
performance of the neural network over data from all the patients. As an evaluation
criterion, RMSE between the true and the forecasted time series is used. The investi-
gation of optimal parameters is performed over the learning rate, the number of cells
of the LSTM layer, the optimizer, and the activation function. This preliminary search
led to a Recurrent neural network characterized by a 3-layer architecture (16-cell LSTM
layer, a dense layer, and an output layer), a learning rate of 0.01, Adam as an optimizer,
and Rectified Linear Unit (ReLU) activation function for the dense layer. The training
is run using a maximum of 200 epochs with a mini-batch size of 1400. Furthermore,
the early stopping technique is implemented. To evaluate the performance of the dif-
ferent configurations, two training approaches are tested on the whole dataset, namely
windowed and cumulative, which will be described in the next section.

All the following tests are performed on a dataset composed of 90 days for each patient
to keep the analysis unbiased, as the first 10 days were leveraged in the optimization
phase:

1. at first, to characterize the minimum training set size required to achieve promising
performance, the model behavior is analyzed using training sets ranging in size
from 1 to 10 days;

73



6. Identification of Optimal Training for Prediction of Glucose Levels in
Type-1-Diabetes Using Edge Computing

2. subsequently, the extent to which the performance improves as the number of
days used for the training set increases is investigated. Two different approaches
are considered, namely cumulative and windowed. In the cumulative approach,
7 different training sets are analyzed, the first consisting of 10 days, the second
consisting of 20 days (including the previous 10), up to the training set consisting
of 70 days. In the windowed approach, the 7 training sets are all composed of 10
consecutive, non-overlapping days. The comparison is carried out using test sets
containing the days immediately following the last training day;

3. finally, an analysis is carried out on training sets ranging in size from 10 to 80
days, i.e., the cumulative approach was applied again by keeping the test set fixed
to the final available days.

6.2.1.1. Edge system

The presented model is implemented in Python using the open-source libraries of Tensor-
Flow and Keras. The optimization stage is performed utilizing the Google Colaboratory
environment; the identified model is thus run on the edge device. Raspberry Pi 4 is used
as hardware; it includes a quad-core Cortex-A72 1.5GHz processor with 8GB of RAM;
additional information can be found in the datasheet [97]. The model is converted to
the .tflite format to allow a faster prediction [98].

6.3. Results and Discussion
The results from the 3 tests can be summarized as follows:

1. with regard to the minimum size of the training set, it is observed that a wider
training set leads to a larger decrease in the RMSE value. In detail, the system can
provide reasonable predictions from day one, corresponding to an average RMSE
of 14.5 mg/dL; the RMSE decreases down to 12 mg/dL if 10 days of training are
leveraged. These results are comparable to those presented in the literature, where
an RMSE of 15 to 20 mg/dL is usually achieved on data of real patients [13].

2. a comparison of the average performance of the windowed and the incremental
approaches is reported in Figure 6.1. The cumulative approach always achieves
better results, whatever the size of the training set. The results are equal for a
training set of size 10 days because the two training sets coincide. This shows that
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Figure 6.1.: Comparison of the average results of the proposed approaches.

Figure 6.2.: Average test RMSE for different sizes of the training set.
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Table 6.1.: Profiling of the required time to execute different parts of code as the size of
the training set changes.

Training Dataframe Preprocessing Train Overall
Days Acquisition

10 40.8 s 8.1 s 123.2 s 3.3 min
20 77.5 s 15.7 s 209.3 s 5.5 min
30 113.2 s 23.8 s 308.3 s 8.4 min
40 149.5 s 30.8 403.9 s 11.0 min
50 191.2 s 38.2 s 567.0 s 14.0 min
60 227.6 s 46.1 s 780.9 s 18.0 min
70 263.9 s 53.6 s 833.3 s 16.0 min
80 294.7 s 59.9 s 904.9 s 21.0 min

increasing the size of the training set leads to better results than just considering
the 10 most recent days for training and updating the model.

3. the performance variation for larger sizes of the training set is reported in Fig-
ure 6.2. As it can be observed, training the network over 60 days leads to an
improvement in numerical performance on a fixed test set, and RMSE decreases
down to 10.7 mg/dL. Extending the training set further leads to a performance
plateau. Indeed, the RMSE improves slightly, reaching an average value of 10.6
mg/dL after 80 days are used for training. The results are similar to those reported
in the literature by models including more parameters that require a much longer
training time [99].

The time necessary for these training procedures on the edge system is reported in
Table 6.1; in addition to the total times, the times for dataframe acquisition, stan-
dardization, batch splitting, and model training are listed. The only atomic data not
reported in Table 6.1 are the times for the conversion in tf.lite format, because they are
not dependent on the dimensions of the dataset but only from the model size, which is
the same for all the different training procedures. Therefore even if these were slightly
different, these differences could be attributed to the daemon processes performed by
the edge device.

As pointed out, the model performance achieves a plateau after a training size of
60 days. As shown in Table 6.1, training the model on 60 days of data requires 18
minutes; this makes the proposed approach feasible in real-life applications [100]. The
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RAM used in each simulation is about 1GB, which is by a large margin under the 8GB
available for the device, thus not leading to a decrease in performance. This is achieved
also thanks to the shallow architecture chosen for the LSTM, which includes a limited
number of parameters compared to deep neural networks which are usually exploited
for glucose levels forecasting [34]. Future analysis may focus on the identification of
the optimal hardware for running such algorithms, in terms of minimum computational
capacity and resources; indeed, considering the global shortage of semi-conductors, re-
sorting to cheaper and more available devices that do not decrease performance could
be an effective strategy to implement the mass distribution of the system.
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7. Prediction of Glucose Concentration
in Children with Type 1 Diabetes
Using Neural Networks: An Edge
Computing Application

Despite the large number of works presented for the forecasting of future glycemic levels
and the noteworthy results they achieve, all the aforementioned papers focus on the
prediction of glycemic levels of adult subjects. Indeed, few works in the literature aim to
predict blood glucose levels specifically in pediatric patients. Children represent the most
challenging diabetic population because pediatric patients go through a period of rapid
growth, and physiological and hormonal changes along with complex individualization
and socialization processes. This often results in a significant decline in the quality of
disease management, treatment adherence, and glycemic control [101, 102].

Normally, machine learning techniques are validated on laboratory setup, and, when
they are applied in practice, they are performed directly on servers or centralized pro-
cessing units. The task of future glycemic levels prediction makes no exception, as most
systems performing real-time prediction exchange data between an edge device, only
used to gather information, and the cloud, where the actual glucose level forecasting
is performed [100, 103]. This is mainly due to the memory limits of edge-computing
devices. Nonetheless, the drawback of such systems is that they constantly require an
internet connection to work; this is not arguable about medical devices, because an in-
terruption in the signal may result in missing decision support to the user. However,
the increasing development of new, more powerful, and dedicated hardware, combined
with the widespread use of IoT (Internet of Things) tools, is enabling the emergence of
a branch of artificial intelligence known as inference at the edge [64, 65].

The contribution of this study [91] is twofold. On the one hand, two state-of-the-art
models for the prediction of glycemic levels are implemented, and they are applied to
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the specific task of blood glucose levels forecasting in pediatric patients; such models
improve the performance of the models currently studied in this field. On the other hand,
these models are implemented on an edge computing system, thus laying the foundations
for the future creation of embedded devices capable of forecasting blood glucose levels
to improve patients’ quality of life and aid medical diagnosis; the feasibility of such a
prediction-at-the-edge system is evaluated on two different boards in terms of prediction
accuracy and execution time.

7.1. Materials
Data were produced for 10 pediatric patients by running several simulations in the
UVA/Padova simulator [32]. Such a tool allows the generation of different scenarios for
in silico patients by only providing a meal schedule. The simulator can determine the
optimal insulin boluses to be injected for each meal of a specific patient and thus provide
the glycemic evolution for each subject for a pre-set number of days. However, the tool
allows the user to modify the insulin bolus value and include a sensor error in the CGM
readings. Data are generated with a 1-minute sampling.

Two different datasets were generated on a scenario consisting of 30 days of simulation
for each patient, with 5 meals per day. The first set consists in a scenario that has no
errors in sensor reading and insulin administration, as automatically computed by the
simulator, and thus corresponds to an ideal T1D management. Differently, we created
the second scenario using the same meal schedule as the first scenario, but by including
CGM sensor errors and by forcing the presence of hyperglycemic and hypoglycemic
events. We were able to achieve such a goal by first allowing the UVA/Padova simulator
to simulate its optimal bolus control; then, we extracted the vector of injected boluses
and added random noise taken from a uniform distribution. The modifications were
made using the same strategy described in Section 6.1. The modified bolus vector was
given as an effective bolus vector to the UVA/Padova to run the simulations for this
scenario. This makes such a scenario more realistic because in real life the increase or
decrease in blood sugar levels occurs mainly due to an inaccurate estimate of the number
of carbohydrates ingested, or to deviations in correction dosing [104]: noise was added
on insulin boluses to simulate the human error.

The datasets consist of information on blood glucose levels and data on insulin (bolus,
basal, and injection were added together and considered as one) and finally carbohydrate
intake. Specifically, the final datasets consider IOB as an insulin feature, which was
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Figure 7.1.: Graphical example of 5 days of data generated for patient child#007. Many
hyperglycemic (Blood Glucose Level > 180 mg/dL) values can be observed
due to the modification of the optimal bolus values.

manually generated by exploiting a mathematical model [94] as described in Section 6.1.
IOB is a quantity that refers to the amount of rapid-acting insulin still active in the
patient’s body after bolus injection, and thus provides deeper information on the recent
history of insulin injections compared to the punctual insulin values themselves. A
graphical example of 5 days of data concerning the CGM sensor reading, the ingested
carbohydrates, and the IOB of a sample patient, generated with a 1-minute sampling
using the simulator and the pre-processing are reported in Figure 7.1.
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Figure 7.2.: Schematic representation of the proposed Convolutional Neural Network.

Figure 7.3.: Schematic representation of the proposed LSTM Recurrent Neural Network.

7.2. Methods
A precision medicine approach was used to tune the predictive models, which involves
choosing the hyperparameters optimally and individually for each different subject. In
this work, we implemented and optimized a CNN and an LSTM recurrent neural net-
work, because such models achieve the most promising performance in the literature
[105]. Both networks were trained using a subset of the available data and then tested
on subsequent data of the same in silico patient without being updated again. The
networks have a sequence-to-label architecture, as the expected output is a single value
corresponding to the expected blood glucose value in 30 minutes. After splitting the
data into Training (70%), Validation (20%), and Test set (10%), the models were built.

The proposed CNN is a 1D-CNN, with a one-dimensional kernel, consisting of two
convolutional layers with ReLU activation function, each followed by a MaxPooling that
cuts the parameters in half by taking, in pairs, only the largest value. To complete
the model, the convolutional layers are followed by a dense layer with a ReLU activa-
tion function, and an output neuron that provides the final regression. A schematic
representation of the proposed CNN model is reported in Figure 7.2. The choice of
hyperparameters was made by performing a grid search on the validation set, based on
a range of parameters including values identified through preliminary tests and param-
eters reported in the literature [105]. The optimization was done concerning the kernel
size and the number of feature maps.

The proposed LSTM model consists of a first LSTM layer, a dense layer with a ReLU
activation function, and an output layer that returns the predicted CGM value. Also in
this case, the model was optimized in terms of the number of neurons in the first LSTM
layer and the dense layer by investigating both parameters identified in preliminary
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tests and parameters reported in the literature [105]. A schematic representation of the
proposed LSTM model is reported in Figure 7.3.

Both models take as input a (3 × 30) matrix of values, corresponding to the last 30
minutes of the 3 feature values. Such a parameter was identified in preliminary tests,
as it provides the models with enough information to capture the recent trend of the
features. We found empirically that using longer monitoring periods did not improve
performance. With regards to the strategy chosen to train both networks, the Stochastic
Gradient Descent (SGD) optimizer is adopted, which requires a learning rate (0.0001),
a momentum (0.9), and a clip Value (0.5), which is a necessary parameter to prevent
the gradient explosion phenomenon in deep neural networks, improving the prediction
quality. The training of both models was performed by splitting the data into mini-
batches of 1400 samples (i.e., approximately one day of data) and setting the maximum
number of epochs to 200. Finally, to prevent overfitting, the early stopping strategy was
adopted, which stops training if the performance on the validation set does not improve
within a fixed number of consecutive epochs.

Two different evaluation metrics are used to evaluate the performance of the models.
RMSE (equation 1.1) is utilized to assess numerical accuracy, as it provides a numerical
estimate of how close the predicted values are to the real ones. In addition, the CEGA
is considered as a measure of the clinical accuracy of the predictions produced [30].

7.2.1. Edge system description

In order to test the feasibility of implementing and utilizing the predictive models on an
edge system, we needed to identify the target hardware. Our choice fell on two different
devices: a Raspberry Pi4, chosen for its low cost and high computational capability, and
a Coral DevBoard, a developer kit containing a Tensor Processing Unit (TPU) processor
wthat accelerates the execution of machine learning models. The Raspberry Pi4 has a
Broadcom BCM2711 quad-core Arm Cortex A72 of 1.5GHz processor, with 4 GB of
memory. Furthermore, to be able to carry out the tests, we chose to use Raspbian OS
(a Debian-derived ISO) as the operating system. Python and Mendel Development Tool
(MDT) were also installed. The former is necessary to perform tests directly on the
Raspberry; the latter is used to give commands to the Coral DevBoard and therefore
allows its set-up and use. The Coral Devboard has a quad Cortex-A53, Cortex-M4F
CPU, with 1 GB LPDDR4 RAM, and it has a 4 TOPS (8bit) TPU accelerator for
machine learning processes. The operating system running on the DevBoard is Mendel
Linux. We installed and utilized all the dependencies necessary to run the model on the
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board using the Py CoralAPI.

7.2.2. Edge system implementation

Both datasets were provided as input, as sequences of the last 30 minutes of values, for
two models compared: CNN and LSTM. The models were implemented and trained
on Google Colab through the use of the open-source libraries of Keras and TensorFlow.
Through this API, the networks were trained, and the hyperparameters were optimized.

Although the single models were trained on two different datasets, topologically, the
trained networks do not differ in terms of hyperparameters. Therefore, the number of
algebraic operations performed by a single network is invariant to the dataset. Having
made this consideration, we decided to implement on the edge device only the models
trained on the dataset including more hypo/hyperglycemic events, as it is more similar
to a real use case.

For the implementation of the models on edge computing architectures, it is necessary
to perform a quantization step that differs depending on the architecture on which in-
ference is going to be performed. In order to perform regression tasks on the Raspberry,
we chose to use the quantization in .tflite format, that transforms the model keeping
output variables in float32 format. This optimization, namely dynamic range quantiza-
tion, provides latency close to fully fixed-point inference. However, the outputs are still
stored using a floating point so that the speedup with dynamic-range operations is less
than a full fixed-point computation, as reported on the official TensorFlow web page
[106]. From now on we will refer to the model obtained with this quantization as .tflite.

For the implementation on the Dev Board, it was necessary to transform the models
in their 8-bit representation to execute them exploiting the full potential provided by
Coral’s TPU. In this case, the quantization method to be used is known as full integer
quantization. Applying this approach requires providing a representative dataset to cali-
brate variable tensors such as model input, activation functions, outputs of intermediate
layers, and model output. As a representative dataset, it would theoretically be suffi-
cient to provide a set of 100-500 sample data, taken between the training and validation
set. In our case, a dependence of the goodness of the quantization on the subset of data
passed to the model as a representative dataset was noted. In fact, it was not sufficient
to use data taken randomly from the training or validation set but it was necessary to
use ordered data, given the time series forecasting nature of the task. At the end of this
quantization procedure, all input and output values are taken to uint8. From now on
we will refer to the model obtained with this quantization as uint8.
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Due to the 8-bit nature of the quantization required to exploit the capabilities of the
Coral Devboard TPU processor, a problem arose for the regression task. The range of
values of the dataset varies between 10 and 600 mg/dL, whereas the values that can
be represented with 8 bits are 256. Consequently, we pursued two approaches. The
first consists in avoiding any pre-processing of the input data and then reconstructing
the possible overflow cases obtained in the output through post-processing of the data,
maintaining the granularity of the prediction at 1 mg/dL. The reconstruction was done
following the procedure set out in the algorithm 1. It assumes that a decrease in glucose
concentration of more than 50 mg/dL in a single minute is very unlikely or impossible.
In this case, we post-process the prediction and sum 255 to the predicted value.

Algorithm 1 Output reconstruction algorithm
1: reconstructed_pred = [] ▷ initialization of variables
2: overflow = False
3: deltaY = 50
4: For i,x in enumerate (tflite_uint8_model_prediction): ▷ Start of the for loop
5: if x >= 240 then
6: if overflow and (x - tflite_uint8_model_prediction[i-1]) >= deltaY: then
7: overflow = False
8: else if not overflow and (x - tflite_uint8_model_prediction[i+1]) >= deltaY:

then
9: overflow = True

10: delta = 255 if overflow else 0
11: reconstructed_pred.append(x + delta) ▷ End of the for loop

The second approach consists in the application of a normalization step in the pre-
processing phase, remapping the data values between 0 and 255. Such an approach avoids
overflow-related problems, but it takes the granularity of the prediction to approximately
2.33 mg/dL. Then, we de-normalized the predicted values to compute the evaluation
metrics. This could introduce inaccuracy in the predictions.

The Raspberry and DevBoard were used for the calculation of inference times, to
be compared with the performance limits that our application requires (less than the
sampling period of the sensor, i.e. 1 minute). At each timestamp, the edge system takes
as input the 30 most recent values of the features (i.e., the data of the in silico patient
produced by the simulator), computes the latest value of the IOB, and performs a pre-
diction of the future blood glucose level. A representative schematic of the experimental
system can be seen in Figure 7.4.
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Figure 7.4.: Schematic representation of the experimental setup during the test phase
with edge systems.

7.3. Results
As a result of the grid search performed on the discovery set, the optimal configuration
of the CNN comprises 26 filters in the first convolutional layer, 20 filters in the second
convolutional layer, and a Kernel size equal to 1x5 on both. Note that, due to the
shape chosen for the filters and to the structure of the input matrix, in the first CNN
layer the convolutions are performed on different timestamps of the same feature. With
regards to the LSTM model, the optimal configuration resulted in 64 neurons for both
the LSTM and the fully-connected layer. Once the models were optimized, predictions
were performed on the Test set, and the RMSE and the CEGA were computed. With
regards to the CEGA values, only those from the second dataset were evaluated, as they
present more hypo- and hyperglycemic values and are thus more similar to scenarios
observed in real life [12].

Table 7.1 reports the average values and their standard deviation of the tests per-
formed using the different versions of the models. As expected, the results achieved
by the baseline model on the standard dataset are better than those achieved on the
dataset with outliers. The LSTM model outperforms the CNN on both datasets in terms
of average RMSE and CEG results. In particular, concerning the realistic dataset, the
LSTM achieves an RMSE of 16.3±4.7 mg/dL, which is noteworthy if compared to other
studies presented in the literature concerning the prediction on pediatric T1D patients.
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Table 7.1.: Results of the tests performed with the proposed models CNN and LSTM.
In this test, the normalization step was not performed in the pre-processing
phase. The results refer to the RMSE [mg/dL] achieved on both the ideal
(no-error) and the realistic (hypo-hyper) dataset. Such results are reported in
terms of average RMSE ± standard deviation. The CEGA results are referred
only to the realistic dataset, and its results are reported as percentages on the
total dataset. For each neural network, we reported the results for the model
implemented on Google Colab, for the model implemented on Raspberry
(.tflite float32 format), and for the model implemented on the Dev Board
(.tflite uint8 ).

Model RMSE (no-error) RMSE (hypo-hyper) CEGA (A;B;C;D;E)
CNN 22.2 ± 2.5 23.2 ± 2.3 87.0; 12.0; 0.0; 1.0; 0.0

LSTM 13.5 ± 3.4 16.3 ± 4.7 93.8; 5.2; 0.0; 1.0; 0.0
CNN .tflite / 23.6 ± 2.0 85.7; 13.6; 0.0; 0.7; 0.0

LSTM .tflite / 16.3 ± 4.7 93.7; 5.2; 0.0; 1.1; 0.0
CNN uint8 / 40.1 ± 11.1 75.4; 20.8; 0.0; 1.2; 2.5

LSTM uint8 / 35.0 ± 13.3 82.4; 12.5; 0.0; 1.5; 3.6

Also, 99.0% of its predictions fall in zones A and B of the CEGA and thus represent
clinically accurate or acceptable predictions, whereas 1.0% of predictions fall in zone D.
The latter mainly correspond to failures of predicting hypoglycemia. No predictions fall
in zones C and E.

A comparison with the results achieved in the literature can be only partial because
few studies are addressing the prediction task on pediatric patients, and only one of them
exploits the UVA/Padova simulator. The model tested on data from 4 real pediatric
patients by Mougiakakou et al. [107] that achieves an average of 22.1 mg/dL RMSE
is outperformed by both the proposed models; however, it is known that forecasting
glycemia of real patients is though compared to virtual patients because some unpre-
dictable events might be present. De Bois et al. [108] tested the same 10 virtual children
of the UVA/Padova simulator we utilized; they achieved an average RMSE of 5.2 mg/dL

that outperforms both the proposed models in all configurations in terms of numerical
accuracy; nonetheless, the clinical accuracy of their best model (zones A+B) is 97.5%
and it is outperformed by our models, which both achieve accuracy above 99.0% in their
best configuration. However, it must be considered that the two datasets have been
generated with different meal and bolus schedules, so this comparison is qualitative.
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7.3.1. Edge system results and discussions

The results reported in Table 7.1 refer to the models trained without having carried out
the normalization of the input values. The expected increase in the RMSE values of the
models implemented on the edge devices can be observed; however, this variation differs
between the two quantized representations of the networks. With regards to models
quantized using dynamic range quantization for implementation on the Raspberry, the
RMSE values increase by a maximum of 0.4 mg/dL for the CNN, whereas there is no
difference for the LSTM. Again, the LSTM model outperforms the CNN in terms of
numerical accuracy, achieving an RMSE of 16 ± 4.7 mg/dL, and 98.9% of its predictions
fall in zones A and B of the CEGA. This result is of particular interest because it is
similar to the performance achieved on datasets composed of data of adult T1D patients,
and it is achieved on the edge device, without resorting to cloud computing. A graphical
example of the predictions is reported in Figure 7.5, where we report as an example data
of two patients for whom the best and the worst performance is achieved in terms of
RMSE. The LSTM prediction is closer to the true CGM value compared to the CNN,
which produces more oscillatory predictions; however, the LSTM tends to overestimate
both hyperglycemic and hypoglycemic peaks.

Nonetheless, it is worth noting that only 0.7% of predictions of the CNN model fall
outside the A and B zones of the CEGA, compared to 1.1% of the LSTM; conversely,
the LSTM produces more predictions that fall in zone A (93.7% against 85.7% of the
CNN). This may be explained considering that the LSTM is more capable of performing
accurate predictions in the euglycemic range, which translates into better RMSE and
a larger percentage of predictions in zone A, whereas it may miss some hypoglycemic
events; on the contrary, the CNN has a larger RMSE and a larger number of predictions
in zone B of the CEGA, corresponding to errors in the euglycemic range, whereas it is
more capable to predict hypoglycemia. Examples of the CEGA are shown in Figure 7.6,
where we report as an example data of two patients for whom the best and the worst
performance is achieved in terms of CEGA percentage in zone A. In conclusion, the CNN
may be more appropriate to predict critical hypoglycemic events when implemented in
.tflite, although its average numeric accuracy is worse than that of LSTM. However, it
should be taken into account that results achieved on virtual patients are, in general,
slightly better than those obtained on real patients, thus performance may deteriorate
when testing on a real dataset.

A different analysis applies to the models on which the full integer quantization was
performed for implementation on the Coral DevBoard. Indeed, this quantization tech-
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Figure 7.5.: Graphical examples of the best and worst predictions performed by the
CNN (left) and LSTM (right) using different edge devices. We computed
the confidence interval for the predicted values, which are 2.01 for the worst
.tflite, 2.14 for the worst uint8, and 1.09 for either the best .tflite and uint8,
respectively. Nonetheless, we do not report such an interval in the figure
because its values are too small to be observed in the graphics. The glycemic
index values shown in the figure are normalized between 0 and 255, thus, to
obtain the real glycemic values, we need to multiply by 2.33.
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Figure 7.6.: Clarke Error Grids resulted by the best and worst predictions of the CNN
(left) and LSTM (right) using different edge devices. Predictions falling in
the safe zones A and B are plotted in green; predictions in zone C are plotted
in yellow; predictions falling in the dangerous zones D and E are plotted in
red.
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Table 7.2.: Results of the tests performed with the proposed models CNN and LSTM, on
which was carried the normalization step in the pre-processing phase. The
results refer to the RMSE [mg/dL] achieved on the realistic (hypo-hyper)
dataset. Such results are reported in terms of average RMSE ± standard
deviation. The CEGA results are referred only to the realistic dataset, and
its results are reported as a percentage of the total dataset. For each neural
network, we reported the results for the model implemented on Google Colab,
and for the model implemented on the Dev Board (.tflite uint8 format).

Model RMSE (hypo-hyper) CEGA (A;B;C;D;E)
CNN 21.8 ± 2.3 87.8; 10.9; 0.0; 1.1; 0.0

LSTM 16.0 ± 3.4 93.7; 5.5; 0.0; 0.8; 0.0
CNN uint8 -normalized 24.7 ± 5.5 87.6; 9.8; 0.0; 0.9; 0.0

LSTM uint8 -normalized 21.2 ± 8.6 87.4; 7.5; 0.0; 5.1; 0.0

nique, which casts the values from float32 to uint8, has more significant effects on the
goodness of prediction. In particular, the overflow that is observed when glycemic val-
ues are above 255 mg/dL considerably increases the RMSE scores and generates some
predictions that fall in the dangerous E zone of the CEGA. For this reason, as explained
in section 7.2.2, two different approaches were chosen. The second one, which involved
an initial pre-processing of the data, gave considerably better results than the first one,
and they are reported in Table 7.2. In particular, the results obtained for the models in
Google Colab do not differ substantially from those achieved without the normalization;
conversely, the uint8 implementation of such models achieves considerably better per-
formance than those obtained with the first approach. It must be considered that the
granularity of the prediction increases from 1 mg/dL to 2.3 mg/dL. Despite this draw-
back, we can still consider this approach better than the first one, because the increase
in granularity obtained is not critical from a clinical point of view. It is worth noting
that, although the LSTM model outperforms the CNN in terms of RMSE (21.2±8.6 and
24.7±5.5 mg/dL, respectively), 5% of the predictions produced by the LSTM fall in the
D zone of the CEGA, corresponding to a failure of predicting dangerous events. This
situation shows the LSTM model to be weaker than the uint8 representation, which
brings it a greater drop in accuracy. This is probably due to the narrowness of the
model, which has only one LSTM plane. Given the limited number of mathematical
operations required to achieve an output, the conversion step of the model to uint8 fails
to optimize the weights with the new integer values. On the contrary, only 0.9% of the
predictions produced by the CNN fall in the D zone, proving that this latter model is
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Table 7.3.: Maximum inference time obtained in the test phase in milliseconds. The
inference times are reported for each model. They were calculated: for the
models saved in TensorFlow saved model format over the Colab online TPU,
for the .tflite model format over the Raspberry and the .tflite format quan-
tized in uint8 over the Coral DevBoard.

Model Colab TPU (TF Saved Model) Raspberry (.tflite) Coral DevBoard (.tflite uint8 )
CNN 0.085 101.56 18

LSTM 0.086 70.3 12

more clinically accurate and reliable when implementing the models in uint8, despite
the better numerical accuracy achieved by the LSTM model.

A further comparison between the different implementations concerns the actual infer-
ence times obtained, which returned largely satisfying results. We reported in Table 7.3
the worst-case results for each model and hardware to show compliance with the time
constraints posed by the application. The inference times for both models in all three
representations are far below the limit imposed by the application, i.e. 1 minute. How-
ever, the total times in the case of a real application should also take into account the
times necessary for: signal collection by the sensors, pre-processing of the raw data, and
displaying the results on an appropriate Graphic User Interface (GUI). Nonetheless, the
times for a single inference operation to be summed are, in the worst case, the ones of
the CNN performed in .tflite format by the Raspberry, corresponding to 101.56 ms. We
can therefore assert that inference times, covering at most 0.17% of the total time limit
imposed by the application, are not one of the parameters to be optimized in the case of
a real implementation of the system. Furthermore, looking at Table 7.3 and comparing
the data obtained in the tests of the two Edge systems, a consistent acceleration can
be observed with the use of the Coral DevBoard when compared to the Raspberry’s
performance, although it does not reach the performance of Google Colab TPU. This
result is in line with Google’s claims [109].
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predicting adverse events in Type 1
Diabetes

Works in the literature attempting to reduce the number of these events suffer from some
open issues. First, most models only focus on predicting future blood glucose levels with
a regression task [13, 58]. As such, regression predicts future glucose levels regardless
of whether they are in the hypoglycemic or hyperglycemic range. It has been proven
by recent works that predicting adverse glycemic events using classification rather than
regression leads to improved performance [29, 38].

Second, the vast majority of studies focus only on the prediction of hypoglycemia [39,
40, 41, 42, 43, 44]. It is a sensible choice because this condition can arrive unannounced
even in the most severe cases, leading to serious short-term complications. In this regard,
in a recent review on machine learning techniques for hypoglycemia prediction, Mujahid
et al. [42] stated that "is important to understand that hypoglycemia prediction is blood
glucose level prediction in essence". Nonetheless, most of such works mainly aim at
maximizing the true positive rate at the expense of a considerably low precision score,
which is often not reported [39, 40] or impossible to compute [45, 46, 38, 47, 41, 48].
Indeed, it is acknowledged that any prediction algorithm has to "decide" between raising
a lot of alerts to detect all events (good recall, bad precision, a lot of false positives) or
trying to minimize the nuisance of the patient (good precision, limited false positives,
at the expense of a lower recall). Works focusing on hypoglycemia prediction usually
choose the former approach [49], with few exceptions [47]. It reduces patient engagement
with the technology.

Third, predicting glycemic excursions, and in particular incoming hypoglycemic events,
is a very challenging task. Although a wide literature exists about the prediction of
glycemic events, spanning from regressive models [48] to ensemble models [39] and
cutting-edge technologies such as deep neural networks [38], none of such models can
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fully represent the complex rules lying behind the different glucose dynamics of T1D
patients. It also happens because the datasets utilized to build such models are usually
limited in size. Recently, meta-learning has proven to solve and improve the generaliza-
tion of few-shot tasks that would be unsolvable by training from scratch [110]. A new
study from Zhu et al. [50] successfully used model-agnostic meta-learning to enable fast
adaptation of a neural network for forecasting future glycemic levels of T1D patients.
However, this approach requires a second, patient-personalized fine-tuning phase, which
could require weeks of data gathering and manual labeling from the physicians.

Finally, some works focus only on the sample-based approach [46, 40, 47, 41]. This
is a limitation, because such an approach may lead to overestimating the performance,
generating high recall scores because correctly predicted continuous hypo/hyperglycemic
samples count as several true positives, whereas the event may have not been predicted
in advance.

For the reasons above, we propose [111] a meta-learning system based on a multi-
expert predictive model relying on an event-based approach. The experts consist of
either Recurrent LSTM or CNN. We aim to develop a model capable to achieve a
good trade-off between the amount of correctly predicted events (i.e., high recall per
class) and the number of false alarms (i.e., high precision per class) while evaluating
performance on a public dataset. We consider a 30-minute (6-timestamp) PH since it
would be a sufficient time to warn patients about incoming adverse events [22]. We
evaluate the effective advance by which predictions are performed by introducing a
parameter α, evaluating performance as α varies. Due to the strong imbalance between
the classes, we use a Leave-1-Patient-Out Cross-Validation approach to maximize the
number of samples from the minority classes in the discovery set. Such an approach
would also provide users with a ready-to-use model which does not require a fine-tuning
period on patient-specific data. In addition, we aim to develop a univariate approach
to make the predictive models more suitable for real-life applications. By not requiring
the user to utilize different devices for data recording, it could be usable by patients
that exploit only CGM for therapy while reducing the computational burden required
to combine several heterogeneous data. Moreover, previous works have shown that using
several input features besides CGM does not improve performance sensitively without
a computationally expansive preprocessing [112, 16], which is likely to be avoided when
performing tasks on edge devices [91]. Finally, we implement the proposed system on
an edge-computing device to evaluate the real-life feasibility and applicability of the
proposed approach.
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8.1. Materials

8.1.1. Public Validation dataset (Ohio)

The Ohio T1DM dataset was initially available to participants in the first and second
Blood Glucose Level Prediction (BGLP) Challenge in 2018 and 2020 and then became
publicly available to other researchers. In this work, the original format [11] and its ex-
pansion [12] are considered as a single dataset. It contains eight weeks of data concerning
continuous glucose monitoring, insulin, physiological sensor, and self-reported life-events
of twelve adults suffering from T1D (five females and seven males, aged between 20 and
60, each using the Medtronic EnliteT M CGM sensor and a fitness band), all following
a Continuous Subcutaneous Insulin Infusion therapy(CSII). More detailed information
about the dataset can be found in [11, 12].

The dataset is already split into a training and a test set for each patient; however,
since we aimed to perform a Leave-1-Patient-Out Cross Validation, we joined the training
and the test sets of each patient to make a single fold. The recorded data report many
interruptions; plus, two different fitness bands were used in the first and second releases
to record physical data.

We decided to pursue a univariate approach, so CGM sensor data is used alone as
an input feature of the proposed model. In order to test the multivariate variant of the
models, and provide a fair comparison between different approaches, we utilized only
the features that are in common between the datasets; furthermore, in order to develop
a system as autonomous as possible and to reduce the burden on the patient, we only
considered the features collected by sensors and without the direct involvement of the
user. After this selection, the four considered features are CGM sensor read values,
injected insulin, skin temperature, and galvanic skin response.

8.1.2. Private Validation Dataset (UCBM)

The Unit of Endocrinology and Diabetology of Campus Bio-Medico University (UCBM)
Polyclinic provided anonymized CGM data of five T1D patients (all males), all using
Dexcom G5 CGM sensor, aged between 32 and 43 (average 38.6±5), glycated hemoglobin
(HbA1c) between 5.7 and 8.4, weight between 67 and 95 kg, daily insulin requirement
per kg between 0.07 and 0.85 UI/Kg/die (average 0.49 ± 0.29). Three patients use CSII,
whereas two follow Multi-Injection Therapy. Every patient was monitored for a period
ranging from 3 to 14 days (average 8 ± 3.8), for a total of 40 days, during which they
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regularly performed physical activity. Predicting glucose levels of T1D patients during
physical activity is particularly tough due to quick variations occurring [88]. It is worth
noting that the patients from the UCBM dataset utilize a different CGM sensor than
patients from the public dataset.

8.1.3. Data Preprocessing

As aforementioned, many disconnections occurred during the data recording period con-
cerning both the CGM sensor and the fitness band. In general, this leads to complications
when training a time-series model. To minimize complications and allow a comparison
between the performance of the UTS and the MTS approach, we included in the dataset
only the timestamps in which all the considered features were available at the same time
for at least 12 consecutive timestamps (60 minutes). Indeed, in this work, we found
that the size of the input sequence of 6 timestamps (i.e. the latest 30 minutes) provides
optimal results. Since a PH of 30 minutes is being considered, consecutively recorded
sequences shorter than 60 minutes would not provide a ground truth value to evaluate
the effectiveness of the prediction. Also, we excluded from the analysis the 6 timestamps
preceding and following a sensor calibration or disconnection, since huge variations of
glycemia were present during such events, resulting in noisy data for the model training.
Next, we composed a different feature matrix for each patient by joining all the portions
of data obtained in this way. No further preprocessing was performed on raw data; the
only exception concerns the amount of injected insulin: we added the bolus values to
the basal insulin rate at the corresponding timestamps. In this way, we joined the basal
insulin and the injected boluses into a single insulin feature.

8.1.4. Data Labeling

Data labeling is essential to perform a classification task and properly evaluate the
model. Different approaches have been pursued in the literature for the prediction of
glycemic events, spanning from binary classification problems [39, 40, 41] to 4-class
problems [29]. In this study, we approached a three-class classification task, considering
classes hypoglycemia, hyperglycemia, and normoglycemia (euglycemia). We chose well-
established thresholds to define classes based on CGM values, considering the following
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formal definition:
Hypoglycemia if CGM ≤ 70 mg/dL

Normoglycemia if 70 mg/dL < CGM < 180 mg/dL

Hyperglycemia if CGM ≥ 180 mg/dL

For each sample in the dataset, we observe the subsequent 6 timestamps (30 minutes)
and act differently according to the values in that time window:

• if a hypo/hyperglycemic value is in the considered time window, then the sample
under observation is labeled as either hypoglycemia or hyperglycemia.

• if the sample under observation falls within the hypo- or hyperglycemic ranges,
the sample is labeled as either hypoglycemia or hyperglycemia regardless of the
values in the following time window.

• if the sample under observation and all the samples in the considered time window
are in the euglycemic range, then the sample is labeled as normoglycemia.

Note that this labeling strategy generates "alarms" every time an adverse event is forth-
coming or is already happening, whereas it considers as "normal" all the other times-
tamps. It is also why, differently from other works [29], we decided not to consider severe
hypo- or hyperglycemia as classes: the proposed model generates an alarm every time
an event is predicted or present, regardless of its severity.

In the sample-based approach, after the labeling step, the public dataset includes
5866 hypoglycemia, 67972 euglycemia, and 38175 hyperglycemia samples, correspond-
ing to about 389 days of data. The Imbalance Ratio, defined as the ratio between the
number of samples of the most and the least represented class, is IR = 11.6. Thus, the
dataset presents a high imbalance (IR ≥ 9) according to the definition given in [79].
The event-based approach presents 413 events of hypoglycemia, 66786 samples of eug-
lycemia, and 1417 events of hyperglycemia, with a consequent IR = 161.7. It indicates a
strongly imbalanced dataset [79]. Euglycemia cannot be considered an event. According
to the physiological meaning and the labeling strategy we chose, we consider all the nor-
moglycemia samples (every single timestamp) as independent observations (events) in
the event-based approach. Following this strategy, the number of observations is slightly
smaller due to data rearrangement during the event-based performance evaluation.

The private dataset includes 819 hypoglycemia, 7113 normoglycemia, and 3221 hyper-
glycemia samples (IR = 8.7), corresponding to 55 events of hypoglycemia, 7044 samples
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of normoglycemia, and 72 events of hyperglycemia (IR = 128).

8.1.5. Edge Devices

The increasing development of new, more powerful, dedicated hardware enables the
emergence of a branch of artificial intelligence known as inference at the edge [64, 65]. It
involves the machine learning models being run directly from a proximity device using
data collected from associated sensors. With the growing interest in the telemedicine
approach [66, 67], the inference at the edge can enable predictive models that work in
real-time with patient data to improve both medical quality and efficiency. For this
reason, to date, several works exploit the potential of edge computing not only from a
more methodological and general point of view (e.g., [68]) but also in the field of glycemic
level prediction. Zhu et al. [69], for example, proposed an Embedded Edge Evidential
Neural Network to predict future glycemic levels of adult T1D patients in real-time by
exploiting CGM sensor readings and an edge-computing device.

To test the feasibility of the predictive model implementation and utilization on an
edge system, we needed to identify the target hardware. Because of its low cost and
high computational capabilities, our choice fell on the Raspberry Pi4. The Raspberry
Pi4 presents a Broadcom BCM2711 quad-core Arm Cortex A72 of 1.5 GHz processor,
with 4 GB of random access memory. Furthermore, we used Raspbian OS (a Debian-
derived operating system) as the operating system to carry out the tests. To limit the
experimental time, we chose to carry out these tests using three identical devices. We
standardized the data collected during testing and installed the dependencies required
to carry out the tests only on one device. Then, the operating system image was copied
over two different memory cards and inserted into the other devices to make them clones
of the previous one.

8.2. Methods
We propose a meta-learning approach based on a multi-expert system. In particular,
we resort to layered meta-learning, in which a base learner models task-specific char-
acteristics while a meta-learner models the features shared by the tasks [110]. As the
base learner, we utilized a multi-expert system based on a deep neural network archi-
tecture. We evaluated two different architectural approaches, one based on recurrent
neural networks (LSTM) and the other based on convolutions (CNN). We selected these
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models because they achieve state-of-the-art performance on tasks related to time series,
including T1D management [42, 49]. The softmax layer output of each expert is passed
to a decision tree (the meta-learner). Figure 8.1 reports the architectural schemes of the
two implemented base learners, while Figure 8.2 reports the scheme of the entire system.

8.2.1. Base learner

The base learner is a multi-expert system consisting of three deep neural networks, either
Recurrent with LSTM units or with three convolutional layers. We will refer to these
multi-expert models as ME-LSTM and ME-CNN, respectively. The rationale lies in
observing that the overall performance on a skewed dataset may be improved by combin-
ing the decisions of three different models [113], each specialized in detecting one of the
three classes under examination. In other words, in this phase, the original three-class
problem is decomposed into three binary classification problems, and, straightforwardly,
a binary relabeling was performed before training each expert. During the training of the
single expert, a weighted classification layer provides the final decision. We optimized
the LSTM and CNN models through a grid search on the number of hidden layers and
the number of nodes for each layer. We report further details in paragraph 8.2.3.

LSTM In general, recurrent layers of RNNs consist of recurrent cells which are affected
by both past states and current inputs. Almost all the exciting results achieved in the
latest years with RNNs have been achieved by the LSTM. Thanks to its ability to learn
long- and short-term sequence patterns, it is nowadays considered the state-of-the-art
model for time-series forecasting and sequence classification [114]. Each LSTM cell
consists of three gates. The first two have a role when updating the cell state: the
input gate decides what part of the new information will be stored, while the forget one
what information will be thrown away. The third gate, the output one, decides what
information can be output based on the cell state.

In this work, a single expert consists of the succession of the following layers: a
sequence-input layer, which takes as input an m × n matrix of features, where m is the
number of features and n is the number of recent timestamps to be input; a first LSTM
layer of nh hidden units; a second LSTM layer of 1

2nh hidden units; a fully-connected
layer of two units (i.e., one for each class investigated by the expert); a two-neurons
softmax layer, which takes the network output values between 0 and 1. We report the
schematic representation of the expert structure in Figure 8.1. The proposed model
exploits only CGM as an input feature, thus m = 1 (univariate approach). In this work,
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Figure 8.1.: Schematic representation of the expert architectures. Left: the architecture based
on the LSTM. Right: the architecture based on the CNN.

we found that a value of n = 6 (i.e., the latest 30 minutes) provided optimal results.
The value of nh for each expert was empirically determined as described in section 8.2.3.

CNN Apart from a sequence-input layer (the same as in the LSTM case), each CNN
expert involves three convolutional layers with different numbers of filters, also called
kernels. In the univariate approach, we fix the filter size equal to 1 × 2. For each layer,
each filter slides (with a stride equal to 1) along one direction (the temporal dimension).
At each step, a convolution of the samples (time instants) covered by the filter window
is applied. In the multivariate approach, we fix the filter size equal to 2 × 2, and each
filter slides along the two dimensions.

Given the small size of the kernels, we have chosen not to include pooling layers.
We applied, instead, a batch normalization layer [115] after each convolutional layer to
standardize their inputs among the samples in each batch.

After the last convolutional layer, a dense layer of 64 nodes with the ReLU activation
function and a 2-node dense layer with a softmax activation function provide the expert
output.
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Figure 8.2.: Schematic representation of the meta-learning algorithm and the single experts’
architecture.
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8.2.2. Meta-learner

Given the outputs of the three experts for an input sample, a straightforward decision
strategy could be to compare them and select the class for which its expert model
shows the greatest value. We adopt this strategy to evaluate the performance of the
base learners (ME-LSTM and ME-CNN) models. However, given that each expert
is trained separately, it is not ensured that just picking the greatest value between the
experts’ outputs would provide the best choice for assigning the final label. Looking
at the proposed architecture in terms of layered meta-learning, each expert in the base
learner is utilized to model the characteristics that are specific to its binary classification
task. This knowledge is exploited by the meta-learner to model the features shared
between the binary classification tasks and the 3-class classification task.

The meta-learner utilized in this study is a CART decision tree, a powerful graph-
based method used in machine learning. It is a successive model that unites a series of
basic tests (nodes) cohesively, where a numeric feature is compared to a threshold value
in each node [116]. Although it can be prone to overfitting, it is highly interpretable
compared to artificial neural networks, and overfitting can be limited using pruning. It
is characterized by hyperparameters such as the split criterion for nodes (we utilized
the Gini diversity index as the split criterion) and a set of parameters optimized during
training. The decision tree meta-learner automatically learns the optimal threshold from
the outputs of the three experts. As will be discussed in the following sections, we proved
that this meta-learner achieved better performance compared to other algorithms. We
will refer to the complete systems (base learner and meta-learner) as ME-LSTM-DT
and ME-CNN-DT (Figure 8.2).

8.2.3. Parameter search

Before performing the tests, it is necessary to determine the optimal number of param-
eters of the base learners, i.e., the number of hidden units nh of the first LSTM layer of
each expert (the number of hidden units of the second LSTM layer is always set equal to
nh/2), and the number of filters and kernel size for the CNN. With regard to the meta-
learner, we investigated whether or not using pruning or class weights would improve
performance. In this phase, we use only the public dataset. Straightforwardly, taking
apart data from one patient in each turn, we consider 12 different folds as the discovery
set. Then, each discovery set is randomly split into a training (70%) and validation
(30%) set.
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About the LSTM, we investigate a variable number of hidden units nh for each ex-
pert, ranging from 10 to 100, and evaluate the combination which guarantees the best
performance through the medium of a grid search. For the CNN, we investigate the
combinations with 32, 64, and 128 channels, considering all the parameter combinations
by performing a grid search. During this phase, we train each binary expert on each
training set and evaluate its performance with a sample-based approach on the corre-
sponding validation set. Then, we evaluate all the possible combinations of experts to
determine the optimal configuration.

As mentioned, this work aims to develop a model capable of achieving high scores
for both recall and precision per class. Straightforwardly, to maximize precision and
recall per class at the same time, we considered as the evaluation metric the F1-Score:
F1-Score=2 · Precision · Recall/(Precision + Recall). In particular, we evaluated the
quality of the predictions by measuring the geometric mean G of the F1-Scores per class:
G = K

√∏K
i=1 F1-Scorei, considering K = 3 classes. The utilization of functions for the

parameter selection that takes into account a combination of metrics, e.g., a combination
of recall and specificity, has already proven to be effective for the prediction of nocturnal
hypoglycemia, even for longer prediction horizons [117].

Since several combinations of parameters generate similar results for each validation
set, we take the best 10 combinations from each fold and then check which of these was
the most recurrent combination of parameters. Following this analysis, we select the
triplet of 30-80-70 hidden units for the hypoglycemia-euglycemia-hyperglycemia experts
for the ME-LSTM, and the triplet of 32-64-64 filters for the three subsequent convolu-
tional layers for the ME-CNN. For the grid search routine, as well as for all the successive
training phases described in the next sections, we set the mini-batch size equal to 1/10
of the size of the training set. To avoid overfitting, we set the maximum number of
epochs to 1500 and stop the training phase by early stopping if the performance on
the validation set does not improve for 10 consecutive checks. We check the validation
performance every 25 training iterations and shuffle training and validation data after
every epoch.

8.3. Experimental Design
As widely mentioned in the previous sections, the sample-based approach presents several
limitations. Consequently, we evaluate the performance using the event-based approach,
as it provides a more realistic overview of the algorithm’s capability to predict an adverse
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event compared to the sample-based approach. Nonetheless, taking into account the
strong imbalance related to the event-based approach, we train the model with a sample-
based approach. Then, we evaluate performance on event prediction in the aftermath
according to the definition of event-based prediction. We use this strategy as we assume
that such training would improve performance because the model could see more samples
belonging to the minority classes during the training and validation phase [118, 119].

8.3.1. Event detection

Event-based performance evaluation requires preprocessing. According to the most
widely used definition [29], we consider a true positive an event correctly predicted
in advance, and a false positive an event predicted without an actual counterpart. We
consider false negatives the events not predicted. Straightforwardly, we consider consec-
utive timestamps of hypo/hyperglycemia as a single event. In our approach, we use this
definition for the events of classes hypoglycemia and hyperglycemia.

For the reasons reported in section 8.1.4, we use a sample-based approach for class nor-
moglycemia, instead. As a consequence, during the event-based performance evaluation,
we follow a well-established strategy and consider consecutive misclassified samples as
a single false-positive event when the actual observation is normoglycemia. Conversely,
we consider each misclassified sample belonging to a minority class (either hypo- or hy-
perglycemia) a false negative for its class and a false positive for the wrongly assigned
class.

Moreover, in order not to consider fluctuations in the read CGM signal nor the
predictions, we consider an event or a prediction as such if it lasts for at least 10 minutes,
i.e., if it lasts for at least 3 consecutive timestamps. It is worth noting that our approach
increases the imbalance of the dataset, making the classification task more difficult.

In most works, an event is considered correctly predicted if the prediction is supplied
with any advance with respect to the actual event [29, 45]. Furthermore, fixed a pre-
diction horizon PH, a parameter k is set so that a prediction is considered correct if
performed from 1 to PH + k minutes in advance. In the literature, values of k range
from 10 to PH minutes. In this work, we considered k = 10 minutes. The standard
approach provides no clue as to the actual advance of the prediction.

For this reason, here we introduce a parameter α ranging from 1 to 6 (i.e., from 5 to 30
minutes) to evaluate the number of correct predictions performed with a fixed advance
in terms of timestamps. In particular, for classes hypoglycemia and hyperglycemia, we
classify the events according to the following rules: True Positive (TP) if a correct
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prediction is performed in the time window [−(PH + k),−α] before the actual event;
False Positive (FP) if an event is predicted and no actual counterpart is present in
the (k + PH) timestamps following the prediction; False Negative (FN) if an actual
event is not predicted in the time window [−(PH + k),−α] before the actual event. It
makes our approach differ from the standard approach, as it allows us to evaluate how
many events are effectively detected at least α timestamps in advance.

Figure 8.3 reports a graphical comparison between the proposed and the standard
event prediction approaches and some examples of correct and wrong predictions. The
figure refers to the prediction of adverse events, i.e., hypo- and hyperglycemia, whereas
the prediction of class normoglycemia exploits a sample-based approach. In this exam-
ple, we consider α=3 for the proposed approach. In practice, the standard approach
corresponds to our approach with α = 1.

We performed three different tests, utilizing the public dataset and the private dataset,
and implementing the proposed architecture on an edge device. The tests are described
below and a schematic representation is shown in Figure 8.4.

8.3.2. Test 1: evaluation on the public dataset

We test the proposed approach on the Ohio T1DM dataset with a Leave-1-Patient-Out
Cross-Validation (Fig. 8.4a). We fix, at each turn, data from one subject as the test set,
and data from all the other subjects as the discovery set, randomly split into training
(70%) and validation (30%) sets for the training of the base learners. The outputs of
the softmax layers of the three experts are passed as training data to the decision tree
meta-learner, together with the corresponding target label. At inference time, we classify
all the samples in the test set. We then compute for each subject the event detection
performance and a confusion matrix; then, we derive the final results from the total
confusion matrix calculated by summing all the confusion matrices of all subjects.

8.3.2.1. Comparison with other methods

To further assess the proposed method, we compare the results we achieve on the public
dataset to those of other state-of-the-art methods. The list of competitors that we test
on the Ohio T1DM includes:

• A Support Vector Machine (SVM) with both polynomial (SVM-poly) and radial-
basis-function (SVM-rbf) kernel. The latter model is the best classifier proposed
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Figure 8.3.: Comparison and differences between the proposed and the standard [29] event
prediction approach. Left: example of how a predicted event is classified whether
as a true positive or a false positive depending on the advance by which the pre-
diction is performed. Given an actual event E beginning after 60 minutes, bright
cells indicate when a prediction would produce a true positive, whereas dark cells
indicate when a prediction would produce a false positive. Right: examples of pre-
dictions and relative classification with the proposed and the standard approach.
a) An actual event Ie occurs at t = 0. The event is predicted (Ip) exactly PH
timestamps in advance. Both approaches consider Ip as a true positive. b) The
prediction is performed less than PH but more than α timestamps in advance.
Both approaches consider Ip as a true positive. c) Ip is predicted without an ac-
tual counterpart. Both approaches consider Ip as a false positive. d) An actual
event occurs, but it is not predicted at least (PH + k) minutes in advance. Both
approaches consider Ie as a false negative. e) Ie occurs and it is predicted less
than α timestamps in advance. The proposed approach considers Ip both as a
false negative and a false positive, whereas the standard approach considers it as
a true positive.
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(a) Test 1

(b) Test 2.1

(c) Test 2.2

Figure 8.4.: Schematic representations of the experimental tests.
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by Gadaleta et al. [29]. Similar to our model, the learners were trained and tested
with one-vs-all decomposition for the classification task.

• A Random Forest (RF), which was proposed by Seo et al. [39] and Dave et al. [40].
We performed a grid search on our data to detect the optimal number of learners,
resulting in 100. We used the same weights as our proposed models to tackle the
data imbalance. It is worth noting that this model consists of an ensemble of
decision trees, i.e., the model utilized as a meta-learner in the proposed approach.

• Two different configurations of LSTM neural networks. We performed a grid search
on our dataset to determine the optimal amount of LSTM hidden units for both
models. The first presents a multi-expert architecture like the one proposed but
includes simpler and lighter neural networks with only one hidden layer for each
expert. The grid search returned a value of 10, 100, and 1 hidden units for the
hypoglycemic, euglycemic, and hyperglycemic experts, respectively (ME-LSTM
10/100/1). The second setup consists of a single neural network that presents
the same architecture as a proposed expert, performing a three-class classification
task. The grid search returned an optimal value of 70 units in the first and 35
units in the second LSTM layers (LSTM 3-class).

• CNN as a three-class classifier (CNN 3-class). To keep the framework comparable
with the multi-expert model, we implement an analogous architecture as in the
ME-CNN system.

Furthermore, we optimized and tested additional meta-learners following the optimal
ME-LSTM and ME-CNN architecture already found as described in section 8.2.3:

• A SVM (ME-LSTM-SVM and ME-CNN-SVM) whose optimal configura-
tion resulted in a polynomial kernel with one-vs-one decomposition and no class
weights.

• A Naive-Bayes classifier (ME-LSTM-NB and ME-CNN-NB) whose optimal
configuration resulted in normal Kernel smoothing and class weights for each class.

• A feedforward neural network (ME-LSTM-NN and ME-CNN-NN) whose op-
timal configuration resulted in one hidden layer with 3 neurons, each having ReLU
activation function, and a size of 256 for the mini-batches.

We considered as additional competitors the ME-LSTM and the ME-CNN, i.e., the
presented base learners, in which the final decision on the label to assign to every sample
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is taken based on the greatest softmax output between the three experts. Finally, to
assess if performance improves when including injected insulin and physiological features,
we evaluated the proposed models, as well as every competitor, using all the four available
input features (Model-4F).

8.3.3. Test 2: evaluation on the private dataset

We further validate the proposed approach on a private (UCBM) dataset. To implement
a realistic evaluation approach, we train the ME-LSTM using only data from the Ohio
T1DM dataset, using data of all patients as a discovery set and adopting a 70/30% split
for training and validation set. Then, we perform tests on the five patients from the
private dataset one by one. Before conducting these tests, we train the meta-learner
following two different approaches:

1. utilizing only data from the public dataset (Fig. 8.4b). This approach consists of
the application of a model trained using all the data available during test 1 to a
different test set, consisting of patients that use different CGM sensors;

2. utilizing all the data from the public dataset and, at each turn, data from the four
patients of the private dataset that are not the test patient (Fig. 8.4c). This ap-
proach is particularly suited for meta-learning because only the light meta-learner
is updated with new data, while the base learners remain unchanged.

8.3.4. Test 3: edge implementation

To date, there are many devices capable of improving the lives of people with T1D [120],
but there are still no devices capable of predicting the onset of hypo- or hyperglycemic
episodes without the aid of a doctor. To investigate the possibility of integrating our
system on edge and evaluate the time performance due to the utilization of the proposed
solution in real applications, we perform an edge implementation test on the edge devices
presented in section 8.1.5. We aim to obtain data on the training, transformation, and
inference times of the proposed models and thus be able to discover their application
scenarios and their possible limitation. We carry out the edge tests following a precise
workflow. First, we train the classifiers, then we perform the transformation in .tflite to
speed up the inference on the edge devices. Afterward, we run the classification process
and feed the data to the decision trees downstream.

Regarding the number of operations accomplished:
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• we train the base learners 30 times each for each patient, for a total of 360 training
for each classifier;

• we perform the transformations in .tflite 100 times for each classifier and each
patient, for a total of 1200 transformations for each classifier;

• we calculate the inference times 100 × N_test_samples times for each classifier
and each patient, following the leave-1-patient-out approach.

Finally, for calculating the training and inference times of the decision trees downstream
of the three base learners, 1000 pieces of training were carried out and 1000× N_test_samples

inference tests were calculated, always following the leave-1-patient-out approach. After
that, we compute the mean and standard deviations for all the collected data.

8.4. Results and Discussion
In this section, we present and discuss the results achieved with the proposed meta-
learning models. For compactness purposes, we use the abbreviations Hypo (hypo-
glycemia), Norm (normoglycemia), and Hyper (hyperglycemia) in the result tables.

8.4.1. Test 1: Results and Performance analysis

With regard to the event-based evaluation approach, we report the results achieved on
the Ohio T1DM dataset with the proposed models in terms of recall per class, precision
per class, and F1-Score per class. Table 8.1 reports the total results computed by
summing all the confusion matrices of the patients, thus providing the performance on
the whole dataset for the proposed models. The average results on the 12 patients are
similar to the total results. We do not report them for brevity purposes.

Let us focus on the results achieved by the ME-LSTM-DT for different values of α.
Recall, precision, and F1-Scores per class tend to become smaller as α increases. It
indicates that the models are not fully capable of predicting adverse events with greater
advance. The scores of class normoglycemia tend to remain high due to the strong
imbalance of the dataset and the sample-based approach considered for this class. We
can observe that more than half of the adverse events are predicted at least 30 minutes
in advance; at the same time, the amount of FPs is very limited. In detail, the model
can predict more than 81% hypoglycemic events and 83% hyperglycemic events at least
15 minutes in advance, while producing a small number of false alarms. Such a time

109



8. Layered meta-learning algorithm for predicting adverse events in Type 1 Diabetes

advance could be sufficient to avoid or considerably mitigate the complications [42]. More
in detail, the average time gain, defined as the time between an alert and a real event
(where the time gain is 0 in the case of an FN), is 22.8 minutes for hypoglycemia and
24.0 minutes for hyperglycemia. It is a good improvement compared to the literature,
where a time gain of 15-20 minutes is usually achieved [48, 50].

It is worth noting that the decrease in the precision-per-class scores is due to the events
predicted less than α timestamps in advance. In this case, they are considered false
positives although a real event occurs; for this reason, the most appropriate precision
scores to take into consideration are those obtained considering α=1, which express to
what extent a wrongly predicted event is not going to occur.

It is also interesting to focus on the number of false alarms produced per day by the
proposed method. Indeed, a 79.3% precision for hypoglycemia means that, on average,
only 2 out of 10 alarms generated by the model are false alarms; in total, the amount of
FPs for this class is 201, corresponding to an average of 0.45 false alarms per day. Some
of these false alarms might be due to hypoglycemic events which would have actually
occurred without a patient intervention [121], or that have not been detected by the
CGM sensor [41, 121]. Similarly, a total of 202 FPs is observed for hyperglycemia,
corresponding to an average of 0.46 false alarms per day. Such values are small enough
not to stress patients with constant alarms that would generate a nuisance.

With regard to the results of the ME-CNN-DT, the F1-scores are always slightly
greater than those achieved by the ME-LSTM-DT, except hypoglycemia for α ≥ 5.
In particular, this model performs better on hyperglycemia prediction, as the recall
scores are always slightly greater, while the precision scores are very similar. Taking
into account hypoglycemia performance, this model presents greater precision (fewer
false alarms) at the expense of a lower ability to detect events with greater advance,
corresponding to values of α ≥ 4. It corresponds to an average time gain of 21.7 minutes
for hypoglycemia and 25.0 minutes for hyperglycemia. The 87% precision achieved with
α = 1 corresponds to 1.3 false alarms every 10 alarms; in total, the amount of FPs for
this class is 34, corresponding to an average of 0.087 false alarms per day. A total of 134
FPs are observed for hyperglycemia, corresponding to an average of 0.34 false alarms
per day. Although the performance of the ME-CNN-DT model is better in general,
the ME-LSTM-DT model would probably provide greater help to T1D patients, due to
its improved ability to predict hypoglycemic events with greater advance while keeping
small the number of false alarms. However, the ME-CNN-DT would be very helpful as
well and would provide better performance in the prediction of hyperglycemia.
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Table 8.1.: Total results of the proposed meta-learning systems with the event-based
approach, extracted from the total confusion matrix for Test 1. Results are
reported in terms of recall [%], precision [%], and F1-Score [%] per class for
the different values of α investigated.

Model α
Hypoglycemia Normoglycemia Hyperglycemia

Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score
1 95.0 79.3 86.4 92.5 99.6 95.9 91.9 89.2 90.5
2 88.3 78.0 82.9 92.5 99.6 95.9 89.0 88.5 88.8

ME-LSTM-DT 3 81.0 76.6 78.8 92.5 99.6 95.9 83.9 86.7 85.3
4 73.3 75.0 74.1 92.5 99.6 95.9 78.6 85.2 81.1
5 65.9 73.1 69.3 92.5 99.6 95.9 72.1 82.6 77.0
6 54.8 69.1 61.1 92.5 99.6 95.9 62.9 79.2 70.2
1 92.3 87.3 89.7 92.5 99.9 96.0 94.8 89.0 91.8
2 83.9 86.0 85.0 92.5 99.8 96.0 91.1 87.9 89.5

ME-CNN-DT 3 75.8 84.8 80.0 92.5 99.8 96.0 87.3 86.4 86.9
4 67.5 83.2 74.5 92.5 99.8 96.0 83.2 84.9 84.0
5 59.4 80.8 68.5 92.5 99.7 96.0 77.9 82.7 80.3
6 48.5 77.8 59.7 92.5 99.6 95.9 66.8 79.5 72.6

8.4.1.1. Qualitative comparison with the literature

In this section, we provide a comparison with the results presented by other works.
Straightforwardly, we focus on the total results we achieve considering α=1 because they
correspond to the approach pursued in the literature [29]. The comparison is qualitative
because works that performed event detection used different datasets.

For hypoglycemia, the best recall score is 95%, proving that almost all hypoglycemic
events are predicted at least 5 minutes in advance, while precision is strictly greater
than 79%. Of the models listed in section 1.2, only our previous work [51] achieves a
better precision (86.4%), which is lower than that of the ME-CNN-DT model, while
achieving a sensitively lower recall (59.8%). The second best precision score is achieved
by Zhu et al. [50] (65.6%) while achieving 84.1% recall. They proposed a bidirectional
recurrent neural network refined with patient-specific model agnostic meta-learning for
regression on three datasets (including the Ohio T1DM dataset), obtaining on average
0.48 false alarms per day. Similarly, the model proposed by Prendin et al. [48] achieves a
good precision (64%), which also results in a smaller amount of 0.5 false alarms per day;
however, the recall reported in that study is lower (82%). We outperform by more than
40% the remaining hypoglycemia precision scores. Daskalaki et al. [45] achieve 100%
recall for both hypoglycemia and hyperglycemia; nonetheless, their work only aims at
predicting events regardless of the precision per class. They report that their model
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generates on average 1.6 false alarms per day, but there is no clue on the number of
events in the test set, so the computation of the precision per class is not possible. The
same applies to the work from Yang et al. [38].

For hyperglycemia, the recall score is noteworthy as well, being about 92%, whereas
precision is above 89%. It is worth pointing out that, although the prediction of hy-
perglycemia may seem of reduced practical impact because most patients experience
hyperglycemia after a meal, the proposed models do not exploit carbohydrate informa-
tion to perform such a prediction, in the view of a fully-automated system that does
not require the patient to provide meal data manually. We outperform by more than
33% the only ones who reported hyperglycemia precision (Gadaleta et al. [29], 56%),
although the same study outperforms our hyperglycemia recall (95%). Nonetheless,
their proposed SVM model produces many false alarms (hypo/hyperglycemia precision
equal to 36/57%). In general, the proposed meta-learning approaches outperform the
previously presented ones. However, these comparisons are qualitative because tests are
performed on different datasets.

The F1-Score per class, which can be interpreted as the ability of the model to
perform accurate predictions while generating few false alarms, is greater than 86%
for every class. It proves that the proposed approach could be reliable in a real-life
application without stressing patients with many false alarms, which is rarely achieved
in the literature. However, a value of α=1 means that predictions are performed at least
5 minutes in advance, which may not be a sufficient time to prevent adverse events. It
is the reason why we investigated the performance with different values of α.

For sake of completeness, we report in Table 8.2 the performance of the proposed
meta-learning models with the sample-based approach, albeit it is not fully indicative
of a model’s real performance, as widely discussed in the previous sections. The results
achieved are highly competitive compared to those reported by the models listed in
Table 1.2 that pursue a sample-based approach, since only the study from Dave et
al. [40], who proposed a model composed of two Random Forests, one day-specific and
one night-specific, achieves better hypoglycemia recall (93.7%) but at the expense of a
considerably lower precision (15.1%). The opposite approach was pursued by Marcus et
al. [47], who aimed to reduce as much as possible the number of false alarms per day,
achieving a 4% false-positive rate; nonetheless, their recall is considerably lower than
ours (64% and 61% for hypo- and hyperglycemia).

Finally, we report in Table 8.3 the results achieved by the proposed models when a
longer PH of 60 or 120 minutes is considered. The performance worsens sensitively for
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Table 8.2.: Results with a sample-based approach.

Model Class Recall [%] Precision [%] F1-Score [%]
Hypo 90.6 71.2 79.7

ME-LSTM-DT Norm 91.1 96.0 93.5
Hyper 94.7 90.2 92.4
Hypo 78.2 77.6 77.9

ME-CNN-DT Norm 91.8 92.2 92.0
Hyper 89.5 88.9 89.2

Table 8.3.: Average percentage results over the 12 Ohio T1DM patients with the event-
based approach of the two proposed models with a PH of 60 and 120 minutes.

Model Class Recall Precision F1-Score
Hypo 29.1 44.7 35.2

ME-LSTM-DT Norm 80.1 97.6 87.9
PH = 60 min Hyper 41.6 47.4 42.9

Hypo 25.3 43.8 31.2
ME-CNN-DT Norm 83.4 98.0 90.1
PH = 60 min Hyper 42.9 56.5 47.9

Hypo 26.3 21.9 21.7
ME-LSTM-DT Norm 60.3 92.8 73.0
PH = 120 min Hyper 55.8 31.0 39.3

Hypo 24.6 24.8 24.7
ME-CNN-DT Norm 65.7 92.9 76.9
PH = 120 min Hyper 55.3 37.2 43.9

both models. Although a longer PH would provide patients with more time to react to
an incoming adverse event, a prediction over such a long temporal horizon necessarily
increases the uncertainty in the predictions, for example, due to the attempt of the
algorithm to maximize the performance for the minority classes, which leads to the
generation of many false alarms, as demonstrated by the considerably lower recall scores
for class normoglycemia. In light of this analysis, a 30-minute PH seems appropriate for
event detection. However, the results achieved by the proposed model are comparable to
those of other recent studies that investigate a longer PH for the prediction of nocturnal
hypo- or hyperglycemia [43, 122], which also suffer from a lower recall or precision score.
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8.4.1.2. Results of the comparison with other methods on the Ohio T1DM
dataset

In this section, we compare our performance to the performance of the competitors
listed in section 8.3.2.1. The results are referred to the event-based approach and are
computed on the total confusion matrix with a Leave-1-Patient-Out Cross Validation
approach. All the competitors have undergone a grid search to select the optimal model
parameters. To provide a compact overview of the performance for different values of
α, we report the results of each model in terms of the F1-Scores per class and of the
geometric mean G of the F1-Scores per class, because they provide an overview of the
model capability to achieve good performance for each class.

Table 8.4 reports the results of the comparison with the other methods when ex-
ploiting only CGM as an input feature. Results are reported in terms of the F1-Score
for classes hypoglycemia (FHypo), normoglycemia (FNorm), and hyperglycemia (FHyper),
together with the geometric mean G of the F1-Scores per class. Considering all values of
α, both the proposed models outperform all the competitors by a large margin, except
for class normoglycemia for which the SVM with radial basis function always achieves
better results. However, this is the majority class and is less important to predict ac-
curately. The best competitors are the other CNN-based models for α ≤ 2, and the
ME-LSTM for greater values.

Let us focus on the comparison between the results achieved with and without resort-
ing to meta-learning. With regard to hyperglycemia, a small improvement is observed for
F1-scores, as the slight precision increase is balanced by the slight recall decrease. The
major advantage of the meta-learning is observed with regard to hypoglycemia, where
an increase of 10 to 15% is observed for all the F1-scores. In detail, although the recall is
slightly decreased by 3 to 7%, a considerable improvement of about 20% is observed for
the precision, resulting in a much lower amount of false alarms. We can conclude that
using a meta-learner considerably improves the capability of predicting adverse events
while producing a low amount of false alarms. We also tested two other meta-learners
(Naive-Bayes classifier and SVM) which returned very high recall scores (above 99%)
for both hypo- and hyperglycemia, at the expense of very low precision (below 15%).
We do not report these results for the sake of brevity. From a comparison with the
ME-LSTM, the ME-CNN, and the Random Forest, it is clear that the utilization of the
meta-learning approach as whole guarantees sensitively better performance than any of
the models it is composed of. It is also interesting to note that the multi-expert systems
ME-LSTM and ME-CNN outperform the correspondent three-class model, suggesting
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8. Layered meta-learning algorithm for predicting adverse events in Type 1 Diabetes

that the ensemble strategy is more effective for this task.
Finally, we tested our models and the competitors using a multivariate approach, i.e.,

using all four available features as input (Model-4F); these results are reported in the
bottom panel of Table 8.5, whereas the top panel reports the results of the proposed
univariate approach. The reported results are extracted from the total confusion matrix
computed by adding the confusion matrices of all patients. In general, all the competi-
tors perform better when using CGM alone as an input feature. The proposed models
outperform all the competitors. The only exception concerns class normoglycemia, for
which the SVM with a polynomial kernel always achieves better results. The analysis
is very similar to that provided for the models which exploit only CGM. An interest-
ing behavior is observed for hyperglycemia prediction, for which the ME-CNN-DT-4F
outperforms all the other models, including its univariate counterpart. This is probably
due to the information concerning insulin boluses, which allows an easier prediction of
postprandial hyperglycemia; however, such a feature complicates the data management,
and the improvement compared to the univariate model is not very marked (3-4%).

In conclusion, by testing different models on the same dataset we observed that:

1. resorting to multi-expert systems with a majority-based decision policy provides
better performance compared to utilizing a single model for a 3-class classification
task;

2. using meta-learning considerably improves the performance of multi-expert base
learners.

8.4.2. Test 2: results and performance analysis

We tested a private dataset to evaluate the capability of the proposed approach to
adapt to the data of new patients. The UCBM dataset includes patients that utilize a
different CGM sensor than the patients enrolled in the Ohio T1DM dataset, and who
regularly perform physical activity. This test was performed twice: 1) by training the
meta-learner only on the Ohio patients, and 2) by training the meta-learner on the Ohio
dataset joined with the UCBM dataset with a leave-1-patient-out approach. Table 8.6
reports the results of these tests (we do not report the results for the normoglycemia
class, which are all above 95%).

Let us focus on the results of the first implementation of the test, in which only
the Ohio T1DM dataset was used to train the meta-learner. The performance wors-
ens considerably, particularly for larger values of α. The main worsening concerns the
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8. Layered meta-learning algorithm for predicting adverse events in Type 1 Diabetes

hyperglycemia prediction of the ME-CNN-DT; however, also the ME-LSTM-DT model
is able to predict only a few more than half hyperglycemic events with any advance.
This suggests that the different cohort of patients, with different habits and lifestyles,
joined with a different CGM sensor, presents completely different patterns preceding
hyperglycemia. Conversely, the worsening for class hypoglycemia is less pronounced,
suggesting that common patterns exist between the two datasets.

Let us now focus on the results achieved including part of the UCBM dataset in
the training set. It is worth stressing that data from the UCBM dataset were used
only to train the meta-learners, whose training requires a very small amount of time;
differently, only the public dataset was used (once) for the more onerous training of the
base learners. Again, the performance is considerably worse than Test 1; nonetheless,
a pronounced improvement is observed for all classes and for all values of α, with the
exception of class hypoglycemia of the ME-LSTM-DT model, which already achieved the
best performance in the first configuration. The improvement is particularly noticeable
for larger values of α and for the ME-CNN-DT, whose F1-scores increase by up to 4
times.

Although the results achieved with the second experimental setup are in line with
those presented in previous works (e.g. an F1-score of 72% for hypoglycemia is presented
in [48]), these results are considerably worse than those achieved in Test 1. This could be
expected in light of the huge difference between the two datasets under observation and
considering the limited size of the UCBM dataset for training. In addition, it has been
widely investigated how the prediction of T1D events and glycemic levels is particularly
challenging on patients that perform physical activity [88, 123]. In conclusion, the
take-home message of this test is that the predictive performance of the proposed meta-
learning approach can be considerably improved using a very limited amount of data
from the new dataset. Such an improvement is achievable in the time required to train
the meta-learner, which is far less than a second, as discussed in the next subsection.

8.4.3. Test 3: results of the edge implementation

The tests on the edge system were carried out following the pipeline described in sub-
section 8.3.4. The results concerning training, conversion and inference time are shown
in Table 8.7.

From the data collected, on the one hand, it can be observed that the training of
CNNs is more onerous in terms of time required when compared to that of LSTMs; on
the other hand, the transformation times of the CNN models are less time-consuming,
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8. Layered meta-learning algorithm for predicting adverse events in Type 1 Diabetes

Table 8.6.: Total results of the tests performed over the private dataset. Results are
reported for the ME-LSTM-DT (left) and the ME-CNN-DT (right) in terms
of recall [%], precision [%] and F1-Score [%] per class for the different values
of α investigated. The top panel reports the results of the tests performed
using only the Ohio dataset to train the meta-learner, whereas the results
in the bottom panel are referred to the model in which the meta-learner
is updated using data from the UCBM dataset using a leave-1-patient-out
approach.

ME-LSTM-DT ME-CNN-DT
Training

α
Hypoglycemia Hyperglycemia Hypoglycemia Hyperglycemia

dataset Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score
1 81.3 97.5 88.7 51.4 79.7 62.5 70.8 80.1 75.1 32.2 80.0 45.9
2 67.9 96.7 79.8 39.9 74.0 51.9 38.8 55.8 45.7 25.9 76.7 38.8

Ohio 3 60.5 96.7 74.5 33.5 70.1 45.3 27.5 48.4 35.0 16.3 45.0 24.0
4 46.8 95.0 62.7 21.5 65.0 32.3 19.5 41.4 26.5 14.3 45.0 21.7
5 39.2 93.3 55.2 12.4 52.7 20.1 11.5 29.6 16.6 10.3 43.3 16.7
6 34.6 90.0 50.0 8.4 46.0 14.2 11.5 29.6 16.6 7.3 23.3 11.2
1 91.8 90.9 91.3 84.6 91.2 87.8 88.4 66.3 75.7 63.3 73.6 68.1

Ohio 2 82.1 89.8 85.8 70.3 89.7 78.9 74.2 62.5 67.8 59.9 70.1 64.6
+ 3 64.6 87.7 74.4 47.1 87.8 61.3 74.2 62.5 67.8 52.8 65.3 58.4

UCBM 4 56.2 86.6 68.2 32.7 82.0 46.7 65.5 59.8 62.5 43.5 59.0 50.1
5 40.6 77.1 53.2 23.8 78.0 36.5 53.0 50.2 51.5 39.1 56.9 46.4
6 39.2 76.7 51.9 14.9 74.7 24.9 42.4 42.2 42.3 36.8 54.7 44.0

by a factor of 5, with respect to the LSTM ones. This is due to the steps needed for the
conversion into .tflite; in fact, in order to transform an LSTM, or in general an RNN,
into .tflite it is necessary to build the graph of the model itself, an operation that can
be performed through the use of the concrete functions of Tensor Flow. This operation,
which is not required for the CNN transformation, results in a longer transformation time
for this type of model. In all cases, no appreciable loss in performance was observed.

As far as inference times are concerned, it can be observed that, regardless of the
model under consideration, they are around values of less than a tenth of a millisecond.
We can therefore state that the time required to perform this operation has little or
any influence on the total time count, thus allowing both the considered models to work
effectively in real-time when considering the 5-minute sampling window typical of CGM
sensors. Moreover, the training and transformation times of the networks are in both
cases greater than the single window required for prediction, but considerably shorter
for LSTM. Therefore, in case of a possible implementation of an online learning system,
i.e. a system capable of updating itself directly on the edge device using new incoming
data, the use of multi-expert LSTMs would be preferable due to their speed in the
training phase. The only data collected not shown in table 8.7 are those concerning
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8. Layered meta-learning algorithm for predicting adverse events in Type 1 Diabetes

Table 8.7.: Average time required with standard deviation for the edge implementation
of the multi-expert architecture. The results for both individual experts and
the two multi-expert approaches are reported.

Model Training time (s) Transformation time (s) Inference time (s)
LSTM hypo 51.4 ± 19.4 55.2 ± 2.6 1 · 10−4 ± 5 · 10−5

LSTM norm 181.5 ± 62.9 55.2 ± 2.7 2 · 10−4 ± 8 · 10−5

LSTM hyper 147.7 ± 43.6 55.1 ± 2.8 2 · 10−4 ± 6 · 10−5

CNN hypo 1133.4 ± 415.2 10.6 ± 1.1 3 · 10−4 ± 8 · 10−4

CNN norm 1358.3 ± 610.0 10.6 ± 1.0 2 · 10−4 ± 5 · 10−5

CNN hyper 1467.3 ± 456.3 10.6 ± 0.9 2 · 10−4 ± 5 · 10−5

ME-LSTM 380.7 ± 125.9 165.5 ± 8.2 5 · 10−4 ± 2 · 10−4

ME-CNN 3958.9 ± 1481.6 31.8 ± 3.0 6 · 10−4 ± 9 · 10−4

the training and inference time of the decision trees. We made this choice because, for
both the ME-LSTM-DT and the ME-CNN-DT, the results obtained are overlapping
with a mean time for training the decision tree of 0.055 ± 0.002 s and inference time of
9.86 · 10−8 ± 1.86 · 10−8 s and therefore, similarly to the inference times of the models,
negligible for a real application scenario. This suggests that updating the meta-learners
on the edge with new incoming data would have a very limited impact on the device in
terms of computational time.

120



9. A New Glycemic closed-loop control
based on Dyna-Q for
Type-1-Diabetes

Current T1D management based on CGM devices is based on hybrid closed-loop control,
i.e., the patient is asked to close the control loop with the CGM sensor and the insulin
pump by taking the final decision on the amount of insulin to be administered, and thus
providing the actual control on their glycemia, while the automated system limits to
give suggestions on the amount of bolus based on additional information provided by
the patients themselves, such as the amount of ingested CHO. This should be avoided in
the light of a fully closed-loop artificial pancreas system capable of properly controlling
glycemic levels without the patient’s intervention. In this respect, RL has shown to be
promising in many recent studies [124, 62], but two main concerns prevent the application
of such control systems on real artificial pancreas devices. First, the vast majority of
the studies use model-free RL algorithms [62] which directly perform their actions on
the patients. This is a limitation because, in the light of the exploration-exploitation
approach which is typical of model-free RL, many incorrect insulin boluses would be
injected into the patients with tremendous consequences before the agent has learned the
correct control policy. Moreover, to achieve such a control, the most performing methods
to date utilize large amounts of data, ranging from several months to years [57], which is
not feasible in real life. The second limitation concerns the input features utilized for the
control models. Most of the existing methods, including the only previously presented
model-based approach [63], utilize input features that the patient is asked to supply
manually, such as the amount of ingested CHO. As mentioned, this should be avoided in
the light of a fully-automated artificial pancreas system capable of properly controlling
the glycemic levels. We aim to utilize only direct measures that depend exclusively
on the reading from sensors, without utilizing indirect measures that depend on the
input from the patient and are thus error-prone. Recent studies [9] demonstrated that a
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9. A New Glycemic closed-loop control based on Dyna-Q for Type-1-Diabetes

Figure 9.1.: General Dyna architecture.

fully closed-loop artificial pancreas can achieve performance non-inferior to commercial
hybrid closed-loop devices which depend on carbohydrate counting, which is a burden for
patients and an error-prone task, with an estimation error of around 20% in adults [125].
In such an approach, planning, acting, learning, and direct RL happen continually. A
model is learned from real experience with a precision medicine approach and generates
a simulated experience, while planning is made by the application of RL methods to the
simulated experiences as if they had happened. The interaction with real and simulated
experience improves the value function and the policy. A schematic representation of
the general Dyna architecture is shown in Figure 9.1.

For the reasons above, in this study [126] we present a model-based Dyna-Q RL algo-
rithm, i.e., that uses an environment-patient model on which to train the agent. After
having tested the safety of the proposed action, it is carried out in the real environment,
that is, the patient themselves. In our case, the actions are insulin boluses and are
chosen by the agent implemented via a deep Q-network (DQN). The agent’s hypoth-
esized bolus of insulin is tested on the simulated environment which, in the presented
model, is a recurrent neural network that, trained on patient-specific data, learns the
relationships underlying the patient’s glucose-insulin system dynamic. Furthermore, in
our model, CHO information is never taken into consideration, as the neural network
is trained based on CGM and insulin data only, and the agent considers CGM alone as
a state variable of the environment. Finally, we aim to train the whole system with a
reasonable amount of data, as we acknowledge that using years of monitoring data is
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9. A New Glycemic closed-loop control based on Dyna-Q for Type-1-Diabetes

hardly achievable in practice.

9.1. Dataset
Since the proposed model-based control is based on a glucose levels predictor that must
be trained, in this study we considered data from both a private dataset and data of
virtual patients generated using a simulator.

9.1.1. Simulated dataset and preprocessing

10 adult subjects with T1D have been produced by running different simulations in the
UVA/Padova simulator. Such software was approved in 2008 by the FDA as a substitute
for animal trials for preclinical tests of insulin treatments and it can describe the glucose-
insulin dynamic model of an in silico population, including adults, adolescents and
children [32]. In particular, two different datasets have been generated, both consisting
of 30 days of simulation and obtained by setting GuardianRT and Insulet as simulated
CGM sensor and insulin pump, respectively. In fact, the UVA/Padova simulator allows
the generation of in silico data of both ideal (without any error) and realistic sensors,
such as GuardianRT and Dexcom. Our choice to generate data from the GuardianRT -
a sensor used in the MiniMed system by Medtronic for diabetes therapeutic automation
- arises from the attempt to make the simulated data as similar as possible to the
real-world ones, in order to take into account the bias derived from a real sensor. To
run the simulations, a scenario defining meal schedules is required. Information to be
specified to create a scenario include the amount of CHO to be ingested at each meal, the
corresponding time of the day, and the insulin doses to be injected. In the scenarios used
for the generation of the two datasets, the first two settings are the same; conversely, the
insulin administrations differ. In particular, data regarding meal schedules (CHO intake
and meal times) are returned by a Matlab function defined in such a way that each day
consists in (at least) three meals: breakfast, lunch, and dinner. In addition to these
standard meals, morning and afternoon snacks are randomly introduced to generate
variability between days. In order to make the artificially created datasets even more
realistic, the variability between simulation days is not only given by the different number
of meals per day, but also by changing the CHO amount in daily meal schedules. This was
achieved by first defining a vector with fixed CHO quantity per meal, according to the
Dietary Reference Intakes for Carbohydrate [93]; then, we modified such standard vector
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by adding random noise taken from uniform distributions, each one chosen properly for
the different meals involved. The whole algorithm implemented to generate the standard
meal schedule for each individual is reported in Algorithm 2.

Algorithm 2 Generate standard scenario
Require: Input Data

num_day = 30 ▷ Simulation duration
cho_st = [45, 20, 70, 20, 80] ▷ Standard CHO quantities
a_cho = [5, 2.5, 10, 2.5, 10] ▷ Right-hand limit of the uniform distribution linked to each meal
hours_st = [8, 10.5, 13, 17, 20] ▷ Standard meal time
a_hours = [1, 0.5, 1, 0.5, 1] ▷ Right-hand limit of the uniform distribution linked to each mealtime
▷ CHO VECTOR
b_cho = −a_cho ▷ Left-hand limit of each uniform distribution for cho quantities

1: i = 0 to length(cho_st)
2: CHO(:, i) = cho_st(i) + [b_cho(i) + (a_cho(i) − b_cho(i)) ∗ rand(num_day, 1)] ▷ CHO

modified
▷ Generating random logical vector to decide when morning and afternoon snacks are present
snk_1 = logical(randi(2, [1num_day]) − 1) ▷ Morning snack
snk_2 = logical(randi(2, [1num_day]) − 1) ▷ Afternoon snack
▷ Multiply the logical vector with the column corresponding to the snack to obtain the snacks CHO per each day
CHO(:, 2) = snk1 ∗ CHO(:, 2)
CHO(:, 4) = snk2 ∗ CHO(:, 4)
Ameals = [] ▷ Initialize the vector Ameals that will contain the final CHO

3: i = 0 to num_day
4: if CHO(i, 2) == 0 then
5: CHO(i, 2) = 0.000001;
6: if CHO(i, 4) == 0 then
7: CHO(i, 4) = 0.000001;

Ameals = [Ameals, CHO(i, :)]; ▷ Final CHO vector to set in the scenario file

▷ TIME VECTOR
b_hours = −a_hours ▷ Left-hand limit of each uniform distribution for timing

8: i = 0 to length(hours_st)
9: timing(:, i) = hours_st(i) + [b_hours(i) + (a_hours(i) − b_hours(i)) ∗ rand(num_day, 1)] ▷

Time vector modified
day_in_hours = 0 : 24 : (24 ∗ (num_day − 1)) ▷ Vector with days expressed in hours (24, 48, 72...)
Tmeals = [] ▷ Initialize the vector Tmeals that will contain the final meal timing

10: i = 0 to num_day
11: meal_hour_per_day = [day_in_hours(i) + timing(i, :)];
12: Tmeals = [Tmeals, meal_hour_per_day] ▷ Final time vector to set in the scenario file

The scenario for the first dataset (standard dataset) involves the built-in control algo-
rithm of the UVA/Padova simulator, which automatically computes the insulin dosages
to be administered, thus simulating an ideal T1DM management. Differently, in the
second scenario, the presence of hyperglycemic and hypoglycemic events is forced in
order to test the predictor robustness with a more realistic dataset. In fact, in real
life, abrupt increases or decreases in blood sugar levels happen mostly due to incorrect
calculation of the ingested CHO amount. Nonetheless, to reproduce such situations, the
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algorithm simulates the wrong insulin bolus administrations. To achieve this goal, we
first exploited the UVA/Padova simulator with its own optimal bolus control to extract
the vector of injected boluses; then, the ideal bolus vector was manually modified by
adding random noise sampled from a uniform distribution in the interval [−3, 3] [127].
This vector was then customized for each patient by taking into account their specific
carbo-to-insulin ratio (CR) according to the following formula:

ibCR(i) = ib(i) + 10/CR (9.1)

where ibCR is the personalized insulin bolus vector, ib is the bolus vector modified
through the normal distribution, and CR is the specific carbo-to-insulin ratio for the
specific patient. According to its definition, a CR = 10 means that for 10g of CHO, the
subject needs 1 unit of insulin. Therefore, for a fixed CHO quantity, the higher the CR,
the fewer units of insulin will be needed to cover that meal. As a consequence, according
to equation 9.1, the variability added to the normal insulin bolus is higher when CR is
low and vice versa. In particular, the adverse event is induced only once per day. The
specific daily meal in which the error that will cause the abnormal blood glucose will be
introduced by increasing/decreasing is chosen randomly through a logical vector with
1 × 5 dimension, where 5 is the number of meals per day, containing only one nonzero
value, corresponding to the position that will contain the erroneous bolus. Finally, the
modified bolus vector was given as an effective bolus vector to the UVA/Padova to run
the simulations for this scenario. As a result, the final dataset (dataset with outliers) is
characterized by more occurrences of hypo/hyperglycemia, which makes it more similar
to real data.

Both the generated datasets contain information extracted directly from the results of
the UVA/Padova simulations and, among these, the ones of interest are CGM and insulin
data (bolus and basal insulin were added together and considered as one). Moreover, a
third manually-generated feature has been added to the datasets: the Insulin-On-Board
(IOB), which represents an estimate of the amount of insulin still active in the patient’s
body after a bolus injection. For the Insulet pump, which is the one considered by the
simulator, the active insulin time is equal to 3 hours and the shape of the insulin action
plot is linear [94]. Thus, the value of IOB for each timestamp t, as defined in previous
chapters and reported here to facilitate the reader is computed as:

IOB(t) =
179∑
k=0

a(k)I(t − k) (9.2)
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Figure 9.2.: Architecture of the Reinforcement Learning model for closed-loop glycemic
control. The green text shows how blocks of the proposed model and their
respective connections to each other reflect the general Dyna-Q algorithm
architecture shown in Figure 9.1.

where I(t − k) represents the value of insulin injected at timestamp (t − k), a(k) =
(180 − k)/180 is the coefficient corresponding to the insulin decay curve discretized in
accordance with a 1-minute timestamp of insulin delivery, and k = 0, 1, 2, ..., 179 are the
total timestamps for the 3 hours of active insulin chosen for the Insulet pump. Therefore,
the final patient-specific datasets, needed for the neural networks offline training, collect
information on 3 time series for 30 days of simulation, 70% of which is used for training,
10% for validation, and the remaining 20% for testing. Before being given as input
to the neural networks, the features undergo a pre-processing phase, consisting in a
Z-score standardization that brings all the values to a normal distribution with zero
mean and unit standard deviation. The forecasted value is then processed through a
denormalization step to bring the CGM back into its normal range of variation using
the mean and standard deviation values computed on the training set.

It is worth noting that the 30 days of data generated for each patient were utilized
only for the training, validation, and test of the predictors to evaluate their performance
retrospectively. Conversely, the simulations concerning glycemic control are performed
on new data that are independent of the previous ones, in order not to introduce bias,
and to evaluate the feasibility of the proposed approach for different scenarios.
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9.1.2. Real validation dataset

It is known in the literature that prediction performance achieved on data from in
silico patients could lead to an overestimation of the prediction capability. In order
to evaluate the performance of the predictive model utilized in this study, we collected
anonymized data from 12 real patients that were supplied from the Unit of Endocrinology
and Diabetology of the Campus Bio-Medico University Hospital in Rome, Italy. All
patients (8 females and 4 males, aged between 24 and 69) used a Medtronic GuardianTM
sensor 3 with Medtronic Minimed 640G insulin pump and were monitored for a time
ranging from 5 to 25 days (average 10.6 ± 5.1), for a total of 127 days of monitoring.
Relevant clinical information of such patients, including gender, age, duration of T1D,
average glycemic level, time in the target glycemic range of 70-180 mg/dL, C-peptide
amount, HbA1c, comorbidities and T1D-related complications are reported in Table 9.1.

We performed tests on such patients twice: first, we trained the predictor only on
patient-specific data; second, we trained the predictor on data from all the virtual
UVA/Padova patients, and then fine-tuned the model on patient-specific data. In all
tests, we maintained the normalization procedure and the 70/10/20 split utilized for the
training, validation, and test of the virtual data; this ensures that at least an entire day
of data is considered as a test set for each real patient.

9.2. Methods
The system proposed for the closed-loop control, whose architecture is shown in Fig-
ure 9.2, combines two Artificial Intelligence branches: a CGM predictor, implemented
through a neural network, and an insulin controller, performed via a reinforcement-
learning algorithm (DQN Agent + Reward). Unlike all the model-free RL algorithms
presented in the literature, the architecture here developed is a model-based RL algo-
rithm. In this case, the decision is made based on the interaction between an agent
and a simulated environment. In practice, we use a Dyna-Q model in which the inter-
action is made with both a real and a simulated environment. As indicated in Figure
9.2, the simulated environment is the CGM predictor, which has the role of simulat-
ing the dynamics of the patient’s insulin-glucose system. With reference to the same
figure, the action I chosen by the actor is evaluated and optimized through a reward
function calculated on the CGM predicted value (CGM). Only when the insulin dosage
hypothesized by the agent is considered to be adequate, in the sense that it will lead
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to a safe blood glucose level, the bolus is actually injected into the real environment,
i.e. the UVA/Padova patient. In particular, from Figure 9.2 it can be seen that when
the predicted CGM falls within the target range (TR) of 70-180 mg/dL, a switch is
activated allowing the bolus to actually be delivered to the in silico patient. In this
way, the information on insulin is fed back into the dynamic system of the simulator
which returns the real CGM that, in turn, is given to the agent as information on the
environment state, thus closing the control loop. The green text in Figure 9.2 shows how
different parts of the proposed method mirror the general Dyna architecture. It is worth
noting how the "model learning" part of the general Dyna architecture is not reported
in this figure because the environment model is only trained "offline" on previous data
before the closed-loop RL control begins.

9.2.1. Simulated Environment: CGM Predictors

The neural networks developed to simulate the environment have a sequence-to-label
architecture: the input layer receives a sequence of 30 timestamps; it is followed by an
LSTM layer with 30 units and a dense layer with 15 units, with Softsign and ReLU
transfer functions, respectively; the output layer has only one regression neuron for the
prediction of the CGM punctual value 30 minutes later. In fact, as pointed out in [128],
an appropriate prediction horizon is required considering the timing of insulin action
on blood glucose levels. In particular, in the study carried on by Cichosz et al. [128],
by analyzing prediction lead times from 10 to 60 min on a large amount of data, it is
shown how a PH of 30 minutes can lead to rather accurate and precise predictions when
combined with an advanced machine learning model such as neural networks, because
of their ability to model non-linear and non-stationary problems. Therefore, the neural
network implemented forecasts the CGM punctual value 30 minutes later exploiting a
30-minute time window in input; in fact, in the UVA/Padova Simulator, the CGM is
sampled at 1 minute (differently from what happens in real life where the CGM sampling
happens every 5 minutes). The specific neural network architecture chosen is presented
in Figure 9.3. The UVA/Padova simulator is implemented in Simulink; thus, after the
offline training, the patient-specific tuned predictive model is included in a single block,
i.e., an element that is used to build models in Simulink. In order to schematize the
whole control, such block and the other required components were included in a .slx file,
which was then set as the Controller of the UVA/Padova simulator to run the validation
protocol.
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Figure 9.3.: Architecture of the Recurrent Neural Network developed: the model takes
in input three time series, each with 30 timestamps, and returns as output
the CGM punctual value with a prediction horizon of 30 minutes.

9.2.2. DQN Agent and Reward

The RL algorithm chosen for our model is a deep Q-Network (DQN) with 256 units
implemented in Matlab R2022b. The DQN is an algorithm that allows the description
of the space of environment state variables as continuous and the space of the possible
actions as discrete. As a consequence, this algorithm seems quite suited for the diabetes
problem, since the state variable of the CGM needs to be continuous, whereas the actions
can be chosen as a finite set. In our case, the action set chosen is [0, 1, 2, 3, 4, 5] units
of possible bolus to be injected. Since the goal of a glycemic controller is to maximize
the TIR of blood glucose levels in the TR, the reward function implemented to train
the agent is built in such a way that it returns a positive value only if the action, tested
on the predictor, leads to a CGM within the TR. In particular, we selected a reward
function that aims to maintain the glycemic level as close as possible to the center of the
euglycemic range, while decreasing quickly as the glucose level differs from the target.
The implemented reward function, reported in Figure 9.4, is expressed by the formula:

Reward = 1000 − (125 − CGM)2 (9.3)

It is worth noting that the first negative values of such a function correspond to CGM
values of 93 and 157 mg/dL, in such a way that the reward value is already sensitively
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negative when experiencing a blood glucose value of 70 or 180 mg/dL.

Figure 9.4.: The reward function chosen to train the agent such that hypoglycemic and
hyperglycemic events are penalized severely, in order to minimize as much
as possible the percentage time spent far from the center of the euglycemic
range.

9.3. Results
The validation protocol adopted to test the proposed method consists of a first part to
validate the performance of the CGM predictors and a second one to test the control
algorithm; metrics adopted to evaluate the performance are distinct for each phase.

9.3.1. CGM Predictors

All the simulations regarding the neural networks have been implemented in Python
using the Google Colab environment through the open source libraries of Keras and
TensorFlow. We trained the model for virtual patients three times, first by using a pure
precision-medicine approach (i.e. each model is trained only on patient-specific data),
then by using a Leave-1-patient-out approach (i.e. each model is trained on all the data
from patients different from that used for test), and finally by fine-tuning the models
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pre-trained with a Leave-1-patient-out approach on the same patient-specific data used
in the first approach, all by keeping the test set fixed. In addition, two different trials
were performed to assess the predictors’ performance: in both cases, the networks were
trained on the standard dataset; then, in the first trial, the testing was performed on
the test set of the standard dataset itself, whereas in the second trial on the test set
of the dataset with outliers, in order to verify the CGM predictor robustness against
sudden hypoglycemic and hyperglycemic events. The rationale behind this approach
is to evaluate the robustness of the model to unexpected events of hypoglycemia and
hyperglycemia. Similarly, we performed tests on patients from the real dataset twice,
first by training the predictor only on patient-specific data, and then by training the
predictor on data from all the virtual UVA/Padova patients, and then fine-tuning the
model on patient-specific data; the latter approach ensures a larger training set also for
patients that have been monitored for a short time.

All datasets have been divided as follows: 70% training, 10% validation, and 20%
test. In particular, after tuning and optimizing the model on the validation set, the final
performance was evaluated on the test set in terms of RMSE (equation 1.1) and MARD
(1.3). In addition, we considered the CEGA as a measure of the clinical accuracy of
the predictions. Table 9.2 reports the average results in terms of RMSE, MARD, and
percentage of samples in the C-D-E zones of the CEGA for the 3 different training
strategies adopted for the virtual patients, on both the standard dataset and on the
dataset with outliers. Table 9.3 reports the detailed results of the approach which
includes fine-tuning on patient-specific data after an initial leave-1-patient-out training,
which from a comparison between the results appears to be the safest approach as it
minimizes the MARD and the number of predictions in the C-D-E zones of the Clarke
Error Grid. The reported results are referred to the realistic virtual dataset with outliers,
whereas the detailed results on the standard dataset are omitted for brevity purposes.

With regard to the real dataset, a similar behavior can be observed, as the fine-
tuned model achieves better performance than the model trained using a pure precision-
medicine approach in terms of average RMSE, MARD, and CEGA. This could be due
to the small amount of data available for single patients, which could be not sufficient
to train a neural network for regression. Table 9.4 reports the detailed results of the
predictions for the real patients using the fine-tuning approach, and the average results
achieved using a precision-medicine approach.
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Table 9.2.: Average results of the CGM predictors in terms of RMSE, MARD, and per-
centages of samples in the C-D-E zones of the CEGA, both with the dataset
standard and with outliers. The results are reported for the 3 training ap-
proaches investigated, namely precision medicine (PM), leave-1-patient out
(L1PO), and fine-tuning (FT) on patient-specific data after an initial L1PO
training.

Training Standard Outliers Standard Outliers Standard Outliers
Approach RMSE [mg/dL] MARD [%] C-D-E zone [%]

PM 10.4 14.6 6.8 8.0 0.5 1.8
L1PO 10.0 12.9 6.3 7.4 0.2 1.2

FT 9.9 13.2 6.3 6.9 0.5 1.1

Table 9.3.: Results on the dataset with outliers of the CGM predictors shown in Fig-
ure 9.3 for the dataset with outliers using a fine-tuning approach on patient-
specific data after initial leave-1-patient-out training.

Adults RMSE [mg/dL] MARD [%] CEGA [%]
A B C D E

#001 14.2 7.6 94.4 4.7 0.0 0.9 0.0
#002 14.3 7.6 93.3 4.4 0.0 2.3 0.0
#003 12.5 6.6 95.6 3.9 0.0 0.5 0.0
#004 13.6 7.9 94.4 4.8 0.0 0.8 0.0
#005 8.6 0.9 98.9 1.1 0.0 0.0 0.0
#006 10.7 6.7 96.1 3.0 0.0 0.9 0.0
#007 21.8 9.5 90.5 7.8 0.0 1.7 0.0
#008 11.1 6.0 97.8 2.1 0.0 0.2 0.0
#009 14.2 8.8 92.2 5.8 0.0 2.0 0.0
#010 11.2 7.8 94.8 3.6 0.0 1.6 0.0

average 13.2 6.9 94.8 4.1 0.0 1.1 0.0
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Table 9.4.: Results of the CGM predictors for the dataset composed of real patients
using a fine-tuning (FT) approach on patient-specific data after initial leave-
1-patient-out training. The bottom line of the table reports the average
results when using a precision medicine (PM) approach.

Adults RMSE [mg/dL] MARD [%] CEGA [%]
A B C D E

R1 15.6 9.7 87.0 13.0 0.0 0.0 0.0
R2 14.5 6.7 95.4 4.6 0.0 0.0 0.0
R3 9.3 5.1 99.8 0.2 0.0 0.0 0.0
R4 16.3 6.1 97.2 2.8 0.0 0.0 0.0
R5 13.3 8.3 94.7 4.6 0.0 0.7 0.0
R6 25.3 13.2 78.3 19.8 0.0 1.9 0.0
R7 6.2 3.2 99.6 0.4 0.0 0.0 0.0
R8 25.5 10.0 90.1 9.8 0.1 0.0 0.0
R9 18.6 9.5 89.4 9.7 0.0 0.9 0.0
R10 11.3 5.3 96.3 3.7 0.0 0.0 0.0
R11 12.1 3.3 99.8 0.2 0.0 0.0 0.0
R12 12.6 6.1 97.2 2.8 0.0 0.0 0.0

average FT 15.0 7.2 93.7 6.0 <0.01 0.3 0.0
average PM 17.0 8.5 90.9 7.9 0.0 1.2 0.0

9.3.2. Control

The simulations implemented to test the control model proposed has been conduced
on Matlab R2022b, since it is the environment in which the UVA/Padova Simulator is
implemented. In particular, for each subject, the patient-specific control was included
in the overall Simulink block diagram of the simulator. Specifically, to evaluate the
robustness of the controller, it has been tested on 4 different scenarios, that differ in the
simulation length (from 6 to 24h) and the number of meals (from 1 to 3), as shown in
Table 9.5. The reason behind this choice is to test first whether or not our model is able
to control a single meal, over a more or less long scenario (6h and 12h). After that, in
order to level up to a more realistic simulation, the number of meals was increased, to 2
in 12h and, finally, to 3 in 24h.

The results obtained for each of the scenarios presented are listed in Table 9.6. Since
the glycemic control goal is to keep blood glucose within the physiological range and
avoid performing actions that may lead to hypoglycemic or hyperglycemic events, an
effective strategy to evaluate the soundness of the controller is to measure the percentage
of time that blood glucose is maintained in the TR, which is calculated as defined in
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Table 9.5.: Validation protocol utilized to validate the control algorithm performance.
The proposed four scenarios are aimed to test the control with a gradually
increasing number of hours and meals.

Duration [h] NÂ° Meals
Scenario 1 6 1
Scenario 2 12 1
Scenario 3 12 2
Scenario 4 24 3

Equation 1.5. This is why the performance of the implemented controller is evaluated
by measuring the percentage time during a simulation during which blood glucose is in
hypoglycemia, hyperglycemia, and TR. Also, the use of TR as a metric for assessing
controller performance allows us to compare the results obtained with those reported
in the literature. In addition, we report in Table 9.7 a detailed analysis of the 24-
hour scenario, which also reports the percentage of time spent in severe hypoglycemia
(≤ 50 mg/dL) and in severe hyperglycemia (≥ 300 mg/dL) for each patient, in order to
provide a more in-depth analysis for the simulation on the longest scenario.

9.4. Discussion
The main objective of the closed-loop control model proposed in this experimental work
is to decide, on the basis of the current glycemic value, the units of insulin bolus to be
injected into the patient. This insulin value is given as input to the predictor, which
tests its correctness by predicting the CGM value after 30 minutes. It follows that the
accuracy of the prediction returned by the neural network is a key point in order to
obtain a reliable control. In the following, we discuss separately the results achieved for
prediction and for control.

9.4.1. Predictor performance analysis

The results in Table 9.3 show that the RMSE for each patient on the dataset with outliers
varies from a minimum of 8.6 mg/dL for patient #005 to a maximum of 21.8 mg/dL

for patient #007. The trends of the CGM predicted by the best and the worst neural
networks are plotted in Figure 9.5, considering both the real and the virtual datasets
with outliers.

Considering the RMSE relative to each standard subject, it results in an average of
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Table 9.7.: Detailed and average results of the glycemic control for scenario 4 (24 hours
of simulation) for the 10 adult patients, including the percentage of time
spent in severe hypo- and hyperglycemia.

Adults Severe HYPO HYPO TR HYPER Severe HYPER
#001 0 0 79 21 0
#002 0 0 78 22 0
#003 0 13 53 31 0
#004 0 0 79 21 0
#005 0 0 28 62 10
#006 0 0 62 38 0
#007 4 2 16 56 22
#008 0 0 47 53 0
#009 0 0 81 19 0
#010 0 0 84 16 0

average 0.4 1.5 60.7 33.9 3.2

(a) Adult #005, best of dataset outliers (b) Adult #007, worst of dataset outliers

(c) Adult R7, best of real dataset (d) Adult R8, worst of real dataset

Figure 9.5.: Predicted and real CGM trends obtained for the best (left) and worst (right)
patient for the virtual with outliers (top) and the real (bottom) dataset, over
24 hours of prediction.
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9.9 mg/dL, which is a good and competitive score compared to what has been reported
in the literature. In fact, in [129] the average RMSE is equal to 22.0 mg/dL for a model
involving an LSTM neural network and trained on in silico data from the UVA/Padova
simulator. Results closer to ours were obtained in [130], where a mean RMSE of 12.6
mg/dL is obtained with an LSTM trained on a higher number of in silico patients tough
(100 against the 10 exploited in our work). The results concerning MARD and CEGA
are noteworthy as well. In addition, it is worth noting that the implemented CGM
predictors also perform well in the presence of sudden hypoglycemic and hyperglycemic
events. This consideration comes from the comparison with the mean RMSE, MARD,
and CEGA obtained on the test of the virtual dataset with induced adverse events: the
little difference between the two values (about 3.3 mg/dL) indicates how the generated
neural networks are robust to outliers. Also, RMSE values similar to ours are also
obtained in [131], even though only qualitative comparisons are possible given the large
differences in the methodology adopted. In their study, the time window of input data
is 90 minutes and the amount of data used to train the neural network is extremely large
compared to ours, but it should be emphasized that their model has been tested on a
large population of real patients.

We validated the performance of the CGM predictors using different approaches and
by testing on real data. With regard to the real patients, we achieved RMSE scores
of 17.0 mg/dL and 15.0 mg/dL using the precision-medicine and the fine-tuning ap-
proaches, respectively. With regard to the virtual subjects, we achieved RMSE scores
of 14.6 mg/dL, 12.9 mg/dL, and 13.2 mg/dL using the three precision-medicine, the
leave-1-patient-out, and the fine-tuning approaches, respectively. This shows a differ-
ence of 1.8 mg/dL between the average results achieved on virtual and real patients.
Similarly, the MARD and the number of predictions in the A+B zones of the Clarke
Error Grid are similar. The MARD scores are 8.5% and 7.0% for real patients on the two
tests, whereas the scores are 7.9%, 7.4%, and 6.9% for the virtual patients. The num-
ber of predictions in the A and B zones of the Clarke Error Grid are 98.8% and 99.7%
for real patients, and 98.2%, 98.8%, and 98.9% for simulated patients. These results
demonstrate that fine-tuning the models using a precision-medicine approach provides
sensitively better results compared to using a general-purpose model trained only on
data from patients different from the one under consideration. This could be expected
based on previous studies in the literature which demonstrated the major effectiveness
of the patient-specific approach in T1D [21, 13]. In addition, the similar results achieved
for virtual patients with outliers and real patients confirm the robustness of the proposed
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predictor. In particular, it is worth noting how only 0.3% of the predictions on the real
dataset fall outside of the safe A+B zone of the Clarke Error Grid.

9.4.2. Controller performance analysis

Moving to the actual control part, from the average percentage results shown in Table
9.6, it can immediately be observed that the time spent in the TR decreases as the
number of meals in the scenario increases. This can be expected because T1D patients
often experience postprandial hyperglycemia even in conditions of proper insulin therapy.
The proposed control algorithm is able to maintain blood glucose in the TR for an
average percentage time of 76.8 and 85.1, in scenarios 1 and 2, respectively. In both
scenarios, CGM is maintained in the physiological range by delivering a single bolus
that, in the presence of a single meal, prevents hyperglycemia, causing 0 cases in 8 out
of 10 patients. Notably, even mild hyperglycemia is avoided for adults #001, #002
and #004. Nonetheless, the algorithm produces a notable percentage of time spent in
hypoglycemia for adult #007, because the insulin bolus injected is too large, whereas
adult #003 spends 5% of the time in mild hypoglycemia, which is then adjusted by the
delayed effect of the CHO absorption. Furthermore, passing from scenario 1 to scenario
2, it can be observed that the time spent in hyperglycemia and hypoglycemia diminishes
for all patients in favor of the time in the TR, and the average TIR passes from 76.8%
to 85.1%; again, the control for adult #007 is not optimal. This stresses the fact that on
a simulation lasting twice (12 hours compared to 6 hours in scenario 1), with the same
amount of CHO ingested, the algorithm is able to control well the glycemic trend during
the fasting phase too. The performance begins to worsen as the number of meals during
the simulation increases. In fact, in scenario 3, sometimes the control continues to deliver
a single bolus even though the simulation contains 2 meals, causing an increase in the
percentage of time spent in hyperglycemia and leaving hypoglycemic events completely
unaffected, while the TIR decreases to 76.6%. This result could be due to the fact
that the DQN implementing the agent, in only 12 hours of simulation, cannot train so
well as to be able to control multiple meals. In contrast, in the 24h scenario, the agent
begins to release more boluses and this occurs just as the CGM predicted by the network
exceeds the 180 mg/dL limit. The average time spent in the TR over all the patients is
60.7% (63.8% if we do not consider adult #007). The majority of the remaining time
is spent in postprandial hyperglycemia; conversely, only 2 patients out of 10, namely
adults #003 and adult #007, experience hypoglycemia during the day. The latter result
is particularly important, as hypoglycemia is the event that should be avoided by any
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controller; in our model, the average time spent in hypoglycemia is 1.9%, all due to
adults #003 and #007. With regard to the last scenario, it is also interesting to look at
the percentage of time spent in severe hypoglycemia and hyperglycemia for each patient.
As it can be observed in Table 9.7, the vast majority of hypoglycemic and hyperglycemic
events are mild. Adult #005 experiences 10% of the time in severe hyperglycemia, due
to a missing bolus in the occurrence of the lunch, whereas adult #007 experiences both
severe hypoglycemia and severe hyperglycemia. All the other subjects do not experience
extreme conditions.

A separate discussion is necessary about adult #007. The proposed system is not
able to provide appropriate control, whatever the length of the scenario. It is interesting
to note that this is also the virtual patient for which the worst performance is achieved in
terms of future glucose prediction accuracy, as reported in Table 9.3. In order to under-
stand the optimal control strategy for this patient, we have run a simulation on scenario
4 using the UVA/Padova simulator built-in control system, which exploits knowledge of
the ingested CHO and on all the physiological features of the patient. In the occurrence
of the different meals, this control supplies 0.7, 3.3, and 2.7 units of insulin, by keeping
the glucose in the TR for 95% of the simulation time. The control system proposed
in this study is not able to provide fractions of units of insulin bolus. In an attempt
to improve the performance on this patient, we included half-unit boluses in the action
space of the DQN agent, which did not improve performance. Finally, we investigated if
some considerably different feature exists for this patient compared to the others, which
could explain such a marked difference in performance. We found out that a consider-
ably lower body weight (47 kg against an average of 76 kg for the other patients) and a
much lower value of the Michaelis-Menten constant for the computation of the insulin-
dependent utilization of glucose (184.7 against an average of 224.5 mol/m3 for the other
patients) might influence in a drastic way the glucose oscillations of this patient. This
can be observed also in Figure 9.5b, where a slight deviation of the bolus, such as the
one introduced by Equation 9.1, from its optimal value causes a dramatic increase or
decrease in the glycemic level up to 350 mg/dL or down to 0 mg/dL. It should also
be taken into consideration that, in real life conditions, a patient would hardly be able
to make an estimate of the ingested CHO and inject corresponding fragmented units
of insulin as accurately as done by the simulator, which utilizes a deterministic system
that is unrealistic to be used as a mobile device.

In Figure 9.6, the trends regarding CGM and bolus injections are reported for one
of the best patients (Adult #001) and for the worst patient in terms of total time
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spent in hypoglycemia (Adult #003); these plots are referred to scenario 4 (24h and 3
meals). The predicted CGM track has been shifted by 30 minutes in order to overlap
the prediction with the corresponding observed value. It is worth noting that the real
and predicted CGM tracks should not perfectly overlap in this plot, because the latter
reports, timestamp by timestamp, the expected glucose level based on a free glucose
variation. Regarding Adult #001, as it can be observed in Figure 9.6a, the first pre-
diction by the CGM predictor indicates high blood glucose value and, consequently, the
controller releases a bolus equal to 12000 pmol/min (2 units). This insulin injection
prevents the previously predicted hyperglycemia and leads to a blood glucose level in
the TR. Then, following lunch, there is a mild hyperglycemia lasting 11% of the total
simulation time. Although this event is predicted by the neural network, another bolus
is not injected; this could be due to a prediction of hypoglycemia in the eventuality of a
further insulin bolus. However, the effect of basal insulin alone takes the glycemic level
back into the target range. Another hyperglycemia is predicted in the proximity of the
dinner, and a further bolus is injected preventing further hyperglycemia. Finally, during
the last fasting phase, the glycemic level is taken very close to the target level of 125
mg/dL. Instead, with regard to Adult #003, as it can be seen in Figure 9.6b, there are
3 boluses released against 3 meals simulated by the scenario. Although a total time of
31% of the day is spent in mild hyperglycemia, an additional bolus of 18000 pmol/min

supplied after dinner generates a hypoglycemic event for 13% of the total simulation
time, with the blood glucose level going down to 51 mg/dL. However, the delayed effect
of the CHO absorption takes the glucose level close to the target value for the final hours
of the simulation.

9.4.3. Contributions and Limitations

In this section, the main contributions of the proposed approach are summarized, and a
comparison with different control approaches applied to the generated scenarios is pro-
posed; the main limitations are also analyzed. A significant contribution of the proposed
experimental work is the fact that the controller does not receive any information about
ingested CHO. Instead, this information is given as a state variable of the environment
in [62] (model-free DQN, 80.94% in TR) and [63] (model-based RL, 66.7% in TR). How-
ever, it should be noted that the lack of a standard scenario, to which the results can be
uniformly referred, makes possible only qualitative comparisons with studies in the lit-
erature. We can perform a comparison with the study of Yamagata et al. [63], as it was
the only one to propose a model-based approach and thus applicable in real life. They
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(a) Adult #001 specific controller

(b) Adult #003 specific controller

Figure 9.6.: CGM trends and corresponding insulin boluses obtained by simulating the
24h and 3 meals scenario using the UVA/Padova software. The specific
controllers of Adult #001 and Adult #003 are reported in (a) and (b),
respectively, in order to present one of the best and worst in silico patients.
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tested the first 3 adult patients, achieving an average TIR of 66.3%; for comparison, our
model achieves a TIR of 70.0% on the same 3 patients in the longest scenario. Thus, the
proposed approach can achieve better performance in terms of TIR without exploiting
information on CHO. A further comparison can be made with the performance of the
UVA/Padova simulator controller during the generation of the dataset with outliers.
Indeed, during that procedure, the optimal bolus value computed by the simulator was
randomly modified according to Algorithm 2 with the action of Equation 9.1 in order to
include the effect of human errors inherent in the manual calculation of ingested CHO,
and thus mimicking as much as possible the effect of a hybrid closed-loop control. Ta-
ble 9.8 reports the detailed performance of this control strategy, computed by counting
how many hypoglycemic and hyperglycemic events are observed for each patient in the
dataset with outliers. As it can be observed, the percentage of TIR is sensitively greater
compared to the proposed approach, whereas the time spent in hyperglycemia dimin-
ishes to a total of 6.9%, and severe hypoglycemia is experienced only by adult #007;
however, the control on this patient is considerably more effective. Conversely, all but
one patient experience episodes of hypoglycemia, and 7 of them experience severe hypo-
glycemia. Such behavior is observed also in real data, where, besides hypoglycemia, the
percentage of time spent in hyperglycemia is also sensitively higher. From a comparison
with the results reported in Table 9.7, the proposed control reduces by 1.1% the aver-
age time spent in hypoglycemia, and achieves considerably better performance in the
prevention of severe hypoglycemic episodes. It is worth stressing that also this type of
control, differently from the proposed one, takes into account CHO information. As a
further comparison, we tested the proposed approach using a different reward function,
which is the step reward function adopted in [58] and has the following mathematical
formula: 

R = 0.5 70 < CGM ≤ 180

R = −0.8 180 < CGM ≤ 300

R = −1 300 < CGM ≤ 350

R = −1.5 30 < CGM ≤ 70

R = −2 else

(9.4)

We report the results achieved using this function in scenario 4 in Table 9.9. Although
the average TIR is comparable to that of the proposed approach reported in Table 9.6,
the percentage of time spent in hypoglycemia is sensitively larger (7.3%) and due to 4
different patients. Since hypoglycemia is considerably more dangerous in the short term
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Table 9.8.: Control results of the built-in glycemic controller of the UVA/Padova simu-
lator with the addition of noise on the optimal amount of bolus, computed
from the virtual dataset with outliers.

Adults Severe HYPO HYPO TR HYPER Severe HYPER
#001 1 1 91 7 0
#002 1 2 94 3 0
#003 0 1 94 5 0
#004 1 2 91 6 0
#005 1 2 90 7 0
#006 0 1 92 7 0
#007 3 2 76 18 1
#008 0 0 90 10 0
#009 3 4 88 5 0
#010 1 4 95 0 0

average 1.1 1.9 90.1 6.8 0.1

than hyperglycemia, we conclude that the proposed reward function is more reliable
than the step function in a real-life application.

A second benefit is given by the absence of a real training of the agent that, instead, is
trained during the simulation period itself. This makes the proposed system feasible in
reality; classic RL algorithms, on the contrary, require long training periods and would
act directly on the patient. For comparison, the model proposed by Fox et al. [57]
utilizes 2 years of data for model-free training and achieves an average TIR of 72%.
Nonetheless, the presented study has some limitations. First, the controller is not able
to provide effective control for a patient with very specific features such as adult #007,
also due to its inability to supply fractions of units of insulin bolus. Second, the available
version of the simulator does not allow taking into consideration real-life conditions such
as physical activity, illness, or stress, which play a key role in glycemic management,
and would make glycemic control more challenging.
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Table 9.9.: Control results of the proposed approach using the step reward function
utilized in [58].

Adults HYPO [%] TR [%] HYPER [%]
#001 9 71 20
#002 0 76 24
#003 6 73 21
#004 0 63 37
#005 0 49 51
#006 0 65 35
#007 24 48 28
#008 0 61 39
#009 34 66 0
#010 0 79 21

average 7.3 65.1 27.6
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This manuscript aims to provide a significant contribution in all the fields of application
of AI methodologies to T1D management.

Studies concerning the regression task have introduced a novel neural network for the
forecasting on adult patients during daily-life activity. This neural network outperforms
state-of-the-art models although it exploits a much smaller amount of data for training.
A further study presented an analysis of different learning techniques for the training
of a neural network on data of T1D patients that regularly perform physical activity,
investigating offline training, online training, and online training with a penalty, and it
was observed that the improvement in performance generated by continuously updating
the model with the most recent data is not as large as to justify the notable increase of
the computational burden. Another study investigated the optimal amount of data for
training an AI algorithm for the application on an edge-computing device, achieving a
plateau in predictive performance when more than 60 days of data are used for training,
whereas the time necessary for predictions on the edge-computing device is far below the
time constraints imposed by the specific task. In addition, an edge-computing applica-
tion has been developed for the forecasting of glycemic levels of pediatric patients; the
analyzed deep networks outperform models in the literature in terms of clinical accuracy;
the models have been implemented on two different edge devices using two different pre-
diction reconstruction approaches, and no considerable performance decrease has been
observed when running the tests.

A study has investigated the classification task. A layered meta-learning approach
has been presented for the prediction of hypoglycemic and hyperglycemic events of adult
patients during daily-life activities and during sports, and the system has been imple-
mented on an edge-computing device. It exploits techniques for imbalanced datasets
and pursues a univariate approach by utilizing only CGM data. It was observed that
using meta-learning improves performance considerably compared to using the baseline
model alone.

With regard to the control task, a new glycemic closed-loop control based on Dyna-Q

146



10. Conclusions

has been presented that does not necessitate information on CHO, not requiring any
human intervention and thus providing a fully closed-loop controller. The proposed
system is capable of achieving a noteworthy TIR while producing a very limited amount
of hypoglycemic events, and outperforms a realistic manual control.

Despite the notable advances introduced by the application of AI models to the man-
agement of T1D, some major concerns still remain that limit the real-life application of
such technologies. First, it should be kept in mind that the prediction of future glycemic
levels, and of hypoglycemia in particular, is a challenging task [42]. On the one hand,
using a univariate approach to model these dynamics may result oversimplified because
important and influential features such as insulin, CHO, physical activity, and stress
are not taken into account; on the other hand, gathering several heterogeneous fea-
tures including unstructured data complicates considerably the data management and
integration; this task results even more complicated when running the prediction on
edge devices that need to communicate with all the data recording devices. In practice,
a trade-off has to be identified between performance and efficiency. Second, further
background and psychological factors should be taken into account when developing a
medical decision support system. Indeed, some patients that are not familiar with the
utilization of technological devices may find it difficult to utilize an AI tool; moreover,
anxiety related to T1D and fear of hypoglycemia has been observed in adolescent pa-
tients [132]. These factors could lead to the abandonment of the technological system,
with consequent detrimental effects on health outcomes. Bearing this in mind, a good
solution may consist in a digital helper that combines the predictions of the AI sys-
tem with psychological considerations and natural language processing techniques to
help patients cope with the disease [133], or, alternatively, a fully-automated glycemic
controller that the patient can completely trust, without the need to perform several
therapy adjustments. Third, the application of a fully closed-loop controller is limited
by the potentially severe consequences of malfunctioning. Indeed, although a single-
hormone, fully closed-loop system could achieve performances that are comparable to
hybrid closed-loop systems [9], the injection of an excessive bolus of insulin could lead
to catastrophic consequences, as it could not be counteracted automatically as it would
happen in a dual-hormone system; nonetheless, evidence on the effectiveness of the lat-
ter has not yet been assessed, and it could increase hyperglycemia during daytime [134].
In this frame, an optimal fully closed-loop controller could consist in a single-hormone
control that relies on an effective meal detection module, capable to accurately estimate
the amount of ingested CHO without a meal announcement [125].
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For these reasons, future works will be directed towards the validation of the al-
ready developed predictive models on real patients to evaluate the improvement in their
glycemic management through a clinical trial; several heterogeneous features will be
utilized for the predictions with the goal of utilizing the minimum necessary amount
of features to achieve the desired performances, also including a comparison with more
deep-learning strategies. A digital helper based on a chatbot developed using natural
language processing could be implemented to make the patients more aware of their con-
dition based on the prediction of the AI models, and by understanding their sentiment
expressed in a text [135]. With regard to the control task, different agents could be
developed to investigate a continuous action space, and parallel training of the predictor
and the controller could be investigated; finally, it would be interesting to study how the
performance of the proposed control varies when using a meal-detector system to inject
a bolus, or taking into account pediatric patients.
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A. Contributions in Computer Science
and Bioengineering

Artificial Intelligence in Low Back Pain

Reference D’Antoni, F., Russo, F., Ambrosio, L., Vollero, L., Vadalà, G., Merone,
M., Papalia, R., & Denaro, V. (2021). Artificial Intelligence and Computer Vision in
Low Back Pain: A Systematic Review. International journal of environmental research
and public health, 18(20), 10909. https://doi.org/10.3390/ijerph182010909

Abstract Chronic Low Back Pain (LBP) is a symptom that may be caused by sev-
eral diseases, and it is currently the leading cause of disability worldwide. The increased
amount of digital images in orthopaedics has led to the development of methods related
to artificial intelligence, and to computer vision in particular, which aim to improve
diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed
the available literature on the use of computer vision in the diagnosis and treatment
of LBP. A systematic research of PubMed electronic database was performed. The
search strategy was set as the combinations of the following keywords: "Artificial Intelli-
gence", "Feature Extraction", "Segmentation", "Computer Vision", "Machine Learning",
"Deep Learning", "Neural Network", "Low Back Pain", "Lumbar". Results: The search
returned a total of 558 articles. After careful evaluation of the abstracts, 358 were ex-
cluded, whereas 124 papers were excluded after full-text examination, taking the number
of eligible articles to 76. The main applications of computer vision in LBP include feature
extraction and segmentation, which are usually followed by further tasks. Most recent
methods use deep learning models rather than digital image processing techniques. The
best performing methods for segmentation of vertebrae, intervertebral discs, spinal canal
and lumbar muscles achieve Sørensen-Dice scores greater than 90%, whereas studies fo-
cusing on localization and identification of structures collectively showed an accuracy
greater than 80%. Future advances in artificial intelligence are expected to increase sys-
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tems’ autonomy and reliability, thus providing even more effective tools for the diagnosis
and treatment of LBP.

Reference D’Antoni, F., Russo, F., Ambrosio, L., Bacco, L., Vollero, L., Vadalà,
G., Merone, M., Papalia, R., & Denaro, V. (2022). Artificial Intelligence and Computer
Aided Diagnosis in Chronic Low Back Pain: A Systematic Review. International Journal
of Environmental Research and Public Health, 19(10), 5971. https://doi.org/10.
3390/ijerph19105971

Abstract Low Back Pain (LBP) is currently the first cause of disability in the world,
with a significant socioeconomic burden. Diagnosis and treatment of LBP often involve
a multidisciplinary, individualized approach consisting of several outcome measures and
imaging data along with emerging technologies. The increased amount of data generated
in this process has led to the development of methods related to artificial intelligence
(AI), and to computer-aided diagnosis (CAD) in particular, which aim to assist and
improve the diagnosis and treatment of LBP. In this manuscript, we have systemati-
cally reviewed the available literature on the use of CAD in the diagnosis and treatment
of chronic LBP. A systematic research of PubMed, Scopus, and Web of Science elec-
tronic databases was performed. The search strategy was set as the combinations of
the following keywords: "Artificial Intelligence", "Machine Learning", "Deep Learning",
"Neural Network", "Computer Aided Diagnosis", "Low Back Pain", "Lumbar", "Interver-
tebral Disc Degeneration", "Spine Surgery" etc. The search returned a total of 1536
articles. After duplication removal and evaluation of the abstracts, 1386 were excluded,
whereas 93 papers were excluded after full-text examination, taking the number of eli-
gible articles to 57. The main applications of CAD in LBP included classification and
regression. Classification is used to identify or categorize a disease, whereas regression is
used to produce a numerical output as a quantitative evaluation of some measure. The
best performing systems were developed to diagnose degenerative changes of the spine
from imaging data, with average accuracy rates > 80%. However, notable outcomes
were also reported for CAD tools executing different tasks including analysis of clinical,
biomechanical, electrophysiological, and functional imaging data. Further studies are
needed to better define the role of CAD in LBP care.

Reference Bacco, L., Russo, F., Ambrosio, L., D’Antoni, F., Vollero, L., Vadalà,
G., Dell’Orletta, F., Merone, M., Papalia, R., & Denaro, V. (2022). Natural language
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processing in low back pain and spine diseases: A systematic review. Frontiers in surgery,
997. https://doi.org/10.3389/fsurg.2022.957085

Abstract Natural Language Processing (NLP) is a discipline at the intersection be-
tween Computer Science (CS), Artificial Intelligence (AI), and Linguistics that leverages
unstructured human-interpretable (natural) language text. In recent years, it gained mo-
mentum also in health-related applications and research. Although preliminary, studies
concerning Low Back Pain (LBP) and other related spine disorders with relevant applica-
tions of NLP methodologies have been reported in the literature over the last few years.
It motivated us to systematically review the literature comprised of two major public
databases, PubMed and Scopus. To do so, we first formulated our research question
following the PICO guidelines. Then, we followed a PRISMA-like protocol by perform-
ing a search query including terminologies of both technical (e.g., natural language and
computational linguistics) and clinical (e.g., lumbar and spine surgery) domains. We
collected 221 non-duplicated studies, 16 of which were eligible for our analysis. In this
work, we present these studies divided into sub-categories, from both tasks and exploited
models’ points of view. Furthermore, we report a detailed description of techniques used
to extract and process textual features and the several evaluation metrics used to assess
the performance of the NLP models. However, what is clear from our analysis is that
additional studies on larger datasets are needed to better define the role of NLP in the
care of patients with spinal disorders.

Decision Support Systems

Reference Biggio, M., Caligiore, D., D’Antoni, F. et al. Machine learning for ex-
ploring neurophysiological functionality in multiple sclerosis based on trigeminal and
hand blink reflexes. Scientific Reports 12, 21078 (2022). https://doi.org/10.1038/
s41598-022-24720-6

Abstract Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and
are a critical predictive factor for future disability. Brainstem functionality can be
explored with blink reflexes, subcortical responses consisting in a blink following a pe-
ripheral stimulation. Some reflexes are already employed in clinical practice, such as
Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the explo-
ration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the
stimulated hand to the face, reflecting the extension of the peripersonal space. his work
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is to test whether Machine Learning (ML) techniques could be used in combination
with neurophysiological measurements such as TBR and HBR to improve their clinical
information and potentially favour the early detection of brainstem dysfunctionality.
HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-
Remitting form and from a healthy control group. Two AdaBoost classifiers were trained
with TBR and HBR features each, for a binary classification task between PwMS and
Controls. Both classifiers were able to identify PwMS with an accuracy comparable and
even higher than clinicians. Our results indicate that ML techniques could represent a
tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be
promising when applied in clinical practice, providing additional information about the
integrity of brainstem circuits potentially favouring early diagnosis.

Reference Conte, F., D’Antoni, F., Natrella, G., & Merone, M. (2022). A new
hybrid AI optimal management method for renewable energy communities. Energy and
AI, 10, 100197. https://doi.org/10.1016/j.egyai.2022.100197

Abstract In this study, we propose a hybrid AI optimal method to improve the ef-
ficiency of energy management in a smart grid such as Renewable Energy Community.
This method adopts a Time Delay Neural Network to forecast the future values of the
energy features in the community. Then, these forecasts are used by a stochastic Model
Predictive Control to optimize the community operations with a proper control strategy
of Battery Energy Storage System. The results of the predictions performed on a public
dataset with a prediction horizon of 24 hours return a Mean Absolute Error of 1.60
kW, 2.15 kW, and 0.30 kW for photovoltaic generation, total energy consumption, and
common services, respectively. The model predictive control fed with such predictions
generates maximum income compared to the competitors. The total income is increased
by 18.72% compared to utilizing the same management system without exploiting pre-
dictions from a forecasting method.

Reference D’Amico, N. C., Merone, M., Sicilia, R., Cordelli, E., D’Antoni, F.,
Zanetti, I. B., ... & Soda, P. (2019). Tackling imbalance radiomics in acoustic neuroma.
International Journal of Data Mining and Bioinformatics, 22(4), 365-388. https://
doi.org/10.1504/IJDMB.2019.101396

Abstract Acoustic neuroma is a primary intracranial tumor of the myelin-forming
cells of the 8th cranial nerve. Although it is a slow growing benign tumor, symptoms
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in the advanced phase can be serious. Hence, controlling tumor growth is essential and
stereotactic radiosurgery, which can be performed with the CyberKnife robotic device,
has proven effective for managing this disease. However, this approach may have side ef-
fects and a follow-up is necessary to assess its efficacy. To optimize the administration of
this treatment, in this work we present a machine learning-based radiomics approach that
first computes quantitative biomarkers from MR images routinely collected before the
CyberKnife treatment and then predicts the treatment response. To tackle the challenge
of class imbalance observed in the available dataset we present a cascade of cost-sentitive
decision trees. We also experimentally compare the proposed approach with several ap-
proaches suited for learning under class skew. The results achieved demonstrate that
radiomics has a great potential in predicting patients response to radiosurgery prior
to the treatment that, in turns, can reflect into great advantages in therapy planning,
sparing radiation toxicity and surgery when unnecessary.

Reference Sicilia, R., Merone, M., Valenti, R., Cordelli, E., D’Antoni, F., De Ruvo,
V., Dragone, P. B., Esposito, S., & Soda, P. (2018, December). Cross-topic rumour de-
tection in the health domain. In 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM) (pp. 2056-2063). IEEE. https://doi.org/10.1109/BIBM.
2018.8621580

Abstract Nowadays information diffusion has become more and more immediate and
fast thanks to social media and its services. However, lack of controls and moderation
in resources as social microblogs often leads to spread unverified information, such as
rumours, which can become a threat to the society. To improve life quality and good
information diffusion, various automatic systems have been studied for rumour detection
in microblogs at level of aggregation of posts, whereas a few effort has been tried to the
most challenging scenario where the rumour has to be recognized at level of each single
post. In this work, we direct our efforts towards individual post rumour detection:
we investigate how features describing influence potential, personal interest and network
characteristic perform on two different datasets of posts collected from Twitter using two
different health-related keywords. As a further contribution, we study what happens in
cross-topic tests, i.e. when the rumour detection system is trained with posts with an
hashtag and tested on samples with a different one.

Reference Infantino, M., Merone, M., Manfredi, M., Grossi, V., Landini, A., Alessio,
M. G., ... & Bizzaro, N. (2021). Positive tissue transglutaminase antibodies with nega-
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tive endomysial antibodies: Unresolved issues in diagnosing celiac disease. Journal of Im-
munological Methods, 489, 112910. https://doi.org/10.1016/j.jim.2020.112910

Abstract Background: The serological screening for celiac disease (CD) is currently
based on the detection of anti-transglutaminase (tTG) IgA antibodies, subsequently con-
firmed by positive endomysial antibodies (EMA). When an anti-tTG IgA positive/EMA
IgA negative result occurs, it can be due either to the lower sensitivity of the EMA test
or to the lower specificity of the anti-tTG test. This study aimed at verifying how vari-
ation in analytical specificity among different anti-tTG methods could account for this
discrepancy. Methods: A total of 130 consecutive anti-tTG IgA positive/EMA negative
samples were collected from the local screening routine and tested using five anti-tTG
IgA commercial assays: two chemiluminescence methods, one fluoroimmunoenzymatic
method, one immunoenzymatic method and one multiplex flow immunoassay method.
Results: Twenty three/130 (17.7%) patients were diagnosed with CD. In the other 107
cases a diagnosis of CD was not confirmed. The overall agreement among the five anti-
tTG methods ranged from 28.5% to 77.7%. CD condition was more likely linked to
the positivity of more than one anti-tTG IgA assay (monopositive = 2.5%, positive
with ≥ three methods = 29.5%; p = 0.0004), but it was not related to anti-tTG IgA
antibody levels (either positive or borderline; p = 0.5). Conclusions: Patients with pos-
itive anti-tTG/negative EMA have a low probability of being affected by CD. Given
the high variability among methods to measure anti-tTG IgA antibodies, anti-tTG-
positive/EMA-negative result must be considered with extreme caution. It is advisable
that the laboratory report comments on any discordant results, suggesting to consider
the data in the proper clinical context and to refer the patient to a CD reference center
for prolonged follow up.
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