
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.0122113

RadioPathomics: Multimodal Learning in
Non-Small Cell Lung Cancer for
Adaptive Radiotherapy
MATTEO TORTORA1, (Student Member, IEEE), ERMANNO CORDELLI1, ROSA SICILIA1,
LORENZO NIBID2, EDY IPPOLITO3, GIUSEPPE PERRONE2, SARA RAMELLA3, PAOLO
SODA1,4, (Member, IEEE)
1Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, 00128 Rome, Italy
2Anatomical Pathology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
3Radiation Oncology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
4Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Sweden

Corresponding author: Matteo Tortora (e-mail: m.tortora@unicampus.it)

This work was partially founded by: i) Università Campus Bio-Medico di Roma under the programme “University Strategic Projects”,
within the project “a CoLlAborative multi-sources Radiopathomics approach for personalized Oncology in non-small cell lung cancer
(CLARO)”; ii) by PON “Ricerca e Innovazione 2014- 2020, Azioni IV.4 – Dottorati e contratti di ricerca su tematiche dell’innovazione”
and by Regione Lazio under the program “PO FSE 2014-2020 Azione Cardine 21”; iii) PNRR MUR project PE0000013-FAIR; iv)
FONDO PER LA CRESCITA SOSTENIBILE (F.C.S.) Bando Accordo Innovazione DM 24/5/2017 (Ministero delle Imprese e del Made
in Italy), under the project entitled “Piattaforma per la Medicina di Precisione. Intelligenza Artificiale e Diagnostica Clinica Integrata”
(CUP B89J23000580005).

ABSTRACT Current practice in cancer treatment collects multimodal data, such as radiology images,
histopathology slides, genomics and clinical data. The importance of these data sources taken individually
has fostered the recent rise of radiomics and pathomics, i.e., the extraction of quantitative features from
radiology and histopathology images collected to predict clinical outcomes or guide clinical decisions using
artificial intelligence algorithms. Nevertheless, how to combine them into a single multimodal framework
is still an open issue. In this work, we develop a multimodal late fusion approach that combines hand-
crafted features computed from radiomics, pathomics and clinical data to predict radiotherapy treatment
outcomes for non-small-cell lung cancer patients. Within this context, we investigate eight different late
fusion rules and two patient-wise aggregation rules leveraging the richness of information given by CT
images, whole-slide scans and clinical data. The experiments in leave-one-patient-out cross-validation on
an in-house cohort of 33 patients show that the proposed fusion-based multimodal paradigm, with an
AUC equal to 90.9%, outperforms each unimodal approach, suggesting that data integration can advance
precision medicine. The results also show that late fusion favourably compares against early fusion, another
commonly used multimodal approach. As a further contribution, we explore the chance to use a deep
learning framework against hand-crafted features. In our scenario characterised by different modalities and
a limited amount of data, as it may happen in different areas of cancer research, the results show that the
latter is still a viable and effective option for extracting relevant information with respect to the former.

INDEX TERMS Late Fusion, Machine Learning, Multimodal Learning, Non-Small-Cell Lung Cancer,
Radiomics, Pathomics

I. INTRODUCTION

Nowadays, lung cancer is recognised worldwide as one of
the most common types of cancer and the leading cause of
tumour death, despite the recent increase in the number of
treatment options [1]. There are two main types of lung can-
cer: small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). The latter, accounting for approximately

80-85% of new lung cancer cases [2], is the focus of our
study. The current clinical decision-making process relies
on multiple data sources to improve the detection and the
classification as well as the prognosis of the tumours, such as
radiology-based data (e.g. X-ray, CT scan, ultrasound, MRI
and metabolic imaging), digital pathology slides, genome
profiling and clinical data [3]. Such a variety of modalities
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catch different clinical aspects of the cancer disease and can
help clinicians to pursue the paradigm of precision medicine,
i.e., tailoring the treatment to the specific patient. Indeed, the
wide variety of complementary quantitative bio-markers ex-
tracted from the various modalities can lead to more accurate
diagnosis and more efficient treatment plans.

In the last decades, the artificial intelligence (AI) com-
munity has directed large efforts towards the detection and
the classification of tumours using one or more modalities.
However, only in recent years we have assisted to a growing
interest directed to the disease outcome prediction using
different data modalities. In this respect, the emerging areas
of research are:

• Genomics: it is an interdisciplinary field of science that
focuses on genomes, highlighting the role of human
genetic variation in disease diagnosis, prognosis, and
treatment response. However, genomics biomarkers still
have limitations that hinder the possibility to collect
such data in clinical routine due to their complexity and
still high cost [4].

• Radiomics: it is based on the extraction of quantitative
features from radiology images routinely collected in
order to predict clinical outcomes or guide clinical deci-
sions using AI algorithms [5], [6].

• Pathomics: it refers to the combination of digital
pathology, omic science and AI to extract embedded
information in digitised high-resolution whole-slide im-
ages of tissue biopsy sections to obtain quantitative bio-
markers [7].

Given the growing availability of public oncological
datasets containing paired samples from different modalities,
in the last few years researchers started to take into account
the multimodal learning paradigm. Multimodal learning re-
lies on the integration of heterogeneous data from multiple
sources into a single machine learning framework. Although
several works use genomics, radiomics or pathomics data
alone, few works still aim to fuse these modalities together
[8]–[12], reporting performance improvement. Despite the
importance of radiomics and pathomics taken individually,
to the best of our knowledge, only one work to date has
combined them together into a single machine learning
framework [12]. Hence, we present here another investiga-
tion that combines radiomics, pathomics and clinical data to-
gether into a single multimodal late fusion scheme to predict
radiation therapy treatment outcomes for NSCLC patients.
In this work, we do not take into account genomics data,
because in clinical practice, pending the results of ongoing
studies, in patients with locally advanced NSCLC consid-
ered for chemoradiation treatment, knowledge of oncogene-
dependent characteristics does not change the therapeutic
strategy. The late fusion scheme permits us to combine
uncorrelated data flows that vary significantly in terms of
dimensionality and sampling rates, as in our case. To sum-
marise, the contributions of this work are:

• We proposed a multimodal late fusion scheme taking

into account features extracted from radiomics, path-
omics and clinical data.

• We show that the integration of heterogeneous data into
a multimodal learning paradigm permits to predict the
radiation therapy treatment outcomes in lung cancer.

Furthermore, to offer a deeper analysis of multimodal learn-
ing in this context, this work provides other two contribu-
tions:

• We compare the proposed multimodal late fusion
scheme with the early fusion approach, showing that the
latter has lower performance.

• Since deep learning has shown its potential in several
healthcare applications, both in unimodal and multi-
modal learning, here we compare the hand-crafted fea-
tures against the use of deep neural networks, thus offer-
ing a complete analysis of the main different methodolo-
gies to process our data.

The rest of this manuscript is organised as follows: sec-
tion II presents a short overview of the multimodal learn-
ing framework and its applications to oncology. Section III
introduces the materials, overviewing the multimodal data
sources available. Section IV presents the proposed multi-
modal learning framework, whilst section V and section VI
describe the experimental setup and the results respectively.
Finally, section VII provides concluding remarks.

II. BACKGROUND
In this section, we first overview the various architectures in
the multimodal learning framework, and then we summarise
the current state-of-the-art on multimodal-based learning on
oncology (section II-B).

A. MULTIMODAL LEARNING
Multimodal learning involves the integration of heteroge-
neous data from multiple sources extracted from the ob-
servation of the same phenomena or problem. Hence, the
use of multimodal data sources allows the extraction of a
complementary, more robust and richer data representation,
with the aim of improving performance compared to the use
of a stand-alone modality. Although there is not any formal
proof, this intuition has brought interesting results in many
applications, medical imaging included [13].

Multimodal data integration can be performed at different
levels using three types of fusion: early, joint, and late fu-
sion [14], [15], respectively (Figure 1), as now described.

Early fusion, also known as data-level fusion or repre-
sentation learning, concerns the integration of raw inputs
from multiple data source modalities into a single feature
vector before passing it into a single machine learning model
(Figure 1, left panel). In the early fusion, raw input data can
be merged into an embedded space according to different
policies, such as simple concatenation, addition, pooling, or
applying a gated unit [16]. Although the promising results
achieved in several applications, how to manage one or more
missing modalities, how to handle different sampling rates
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FIGURE 1. Model architectures for different multimodal learning frameworks. From left to right: early or data-level fusion, joint or intermediate fusion, late or
decision-level fusion.

and/or the time-synchronicity between multiple data sources,
and the possible redundancies occurring while generating
very large embedded spaces are the main issues of this
multimodal approach.

With respect to joint and late fusion, these two combi-
nation schemes work by aggregating different classification
models. Joint fusion, also known as intermediate-level fusion
or hybrid fusion, concerns the combination of the extracted
intermediate feature vectors from trained neural networks,
one per modality, into an abstract fusion layer, also known as
a shared representation layer (Figure 1, central panel). Then,
this combined feature vector feeds a final classification model
whose loss is back-propagated to the feature extracting neural
networks during training. Since the loss is back-propagated
during the training process, this fusion scheme improves the
feature representation at each iteration leading to better mul-
timodal embedded feature spaces. Although joint learning
is a very flexible framework, its main issue concerns the
design of the architecture in terms of how, when, and which
modalities can be fused [15].

Let us now delve into late fusion approaches, as our
proposed approach works at this level. In the early- to mid-
2000s, late- or decision-level fusion has received consid-
erable interest from the machine learning community due
to its potential to improve the performance of stand-alone
classifiers. Late fusion concerns the training of indepen-
dent systems, one per modality, which are then combined
by an aggregation function to reduce individual error rates
(Figure 1, right panel). This aggregation function takes as
input the unimodal decision values provided by the different
classifiers that are combined according to a fusion rule (e.g.
minimum, maximum, mean, majority vote, etc.). There is a
consensus that the key to the success of late fusion is that it
builds a mixture of diverse classifiers [17], providing differ-
ent and complementary points of view to the ensemble. Def-
initely, the late fusion approach is a well-suited multimodal
strategy when input modalities are significantly uncorrelated
and they vary significantly in terms of data dimensionality
and sampling rates [15]. These are the major reasons that led
us to explore this multimodal framework, which will be also
experimentally compared against early fusion in section VI.

B. MULTIMODAL ONCOLOGY
Nowadays, the current clinical practice for cancer treatment
requires collecting multimodal data for each patient, such as
radiological images (e.g. X-ray, CT scan, ultrasound, MRI
and metabolic imaging), histopathology slides, genomics and
clinical data. Such a variety of modalities describes different
clinical aspects of cancer disease and can provide a wide
range of complementary bio-markers leading to more accu-
rate diagnosis and more efficient treatment plans. Although
there are several works in the current state-of-the-art dealing
with the detection, classification and prognostic task taking
the aforementioned single modalities individually [18]–[22],
there are still few works in oncology that aim to fuse these
modalities together. Hence, in recent years, researchers fo-
cused their efforts on the fusion of these modalities into a
single machine learning framework [8]–[12].

In [8] the authors proposed a novel multimodal radiomics
model for preoperative prediction of lymphatic vascular in-
filtration (LVI) in rectal cancer based on hand-crafted fea-
tures extracted from magnetic resonance (MR) and com-
puted tomography (CT) modalities. The authors validated
their method on a retrospective cohort of 94 patients with
histologically confirmed rectal cancer. The results show as
the multimodal (MR/CT) radiomics models can serve as an
effective visual prognostic tool for predicting LVI in rectal
cancer. It demonstrated the great potential of preoperative
prediction to improve treatment decisions over the stand-
alone modalities.

In [9] the authors proposed a multimodal deep learning
method for NSCLC survival analysis leveraging CT images
in combination with clinical data. The authors validated their
framework using data from The Cancer Imaging Archive
(TCIA), which contains paired samples of CT scans and
clinical data for 422 NSCLC patients [23]. The results show
that there is a relationship between prognostic information
and radiomics images. In addition, the proposed multimodal
model improves the analysis of survival in NSCLC patients
compared to the current state-of-the-art which only works
with clinical data.

In [10] the authors proposed a deep multimodal fu-
sion framework for the end-to-end multimodal fusion of
histopathological images and genomics features (mutations,

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3275126

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



M. Tortora et al.: RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for Adaptive Radiotherapy

CNV, mRNAseq) for survival outcome prediction. This work
implements the Kronecker product to model pairwise fea-
ture interactions across modalities and controls the expres-
siveness of each modality through a gating-based attention
mechanism. The authors validated their framework using
glioma and clear cell renal cell carcinoma datasets from
The Cancer Genome Atlas (TCGA), which contains paired
samples of whole-slide images of hematoxylin-and-eosin-
stained specimens, genotype, and transcriptome data for 769
patients [24]. Based on a 15-fold cross-validation, results
show that the proposed multimodal fusion paradigm leads to
an improvement over the current state-of-the-art in predicting
survival outcomes when using each modality independently.

In [11], the authors proposed a hybrid deep multimodal
fusion model that merges patients’ gene modality data with
pathological images to predict breast cancer sub-types. To
extract features from the different forms and states of the
data, the authors set up separate feature extraction networks
and then fused the output of the two networks using a
weighted linear aggregation method. The authors used Prin-
cipal Component Analysis to reduce the dimensionality of
the gene modality data and filter the image modality data. The
fused features were then used to predict breast cancer sub-
types. The authors validated their framework TCGA-BRCA
dataset as a sample set for their molecular sub-type prediction
of breast cancer. It contains gene expression data, CNVs,
and histopathological images for 1098 breast cancer patients.
Results show that the model achieved 88.07% accuracy in
sub-type prediction, outperforming traditional DL models by
7.45%.

In [12] the authors proposed a deep model merging to-
gether radiology scans, molecular profiling, histopathology
slides and clinical factors to predict the overall survival of
glioma patients. The authors validated their framework by
collecting data from the TCIA repository, which contains
paired samples of whole-slide images of hematoxylin-and-
eosin-stained specimens, MRI scans, DNA sequencing data,
and clinical variables for 176 glioma patients. Results show
that their model, with a median C-index of 0.788±0.067, sig-
nificantly outperforms the best performing unimodal model,
which has a median C-index equal to 0.718±0.064. Further-
more, the proposed model successfully stratifies patients into
clinical subgroups based on overall survival, adding further
granularity to clinical prognostic classification and molecular
subtyping.

Despite the importance of radiomics and pathomics data
taken individually, to the best of our knowledge, at the time
this work was written, only one study has combined them
into a single machine learning framework for the outcome
prediction of radiation therapy treatment [12]. Hence, this
paper proposes the second attempt to combine radiomics,
pathomics and clinical data into a single model to predict out-
comes for NSCLC patients. As mentioned in section I, since
in the current clinical practice the knowledge of oncogene-
dependent characteristics does not change the therapeutic
strategy, in this work we do not consider genomics data

III. MATERIALS
In this work we used an in-house cohort of 33 patients with
Locally-Advanced stage III NSCLC, who were enrolled from
November 2012 to July 2014 and treated with concurrent
chemoradiation at a radical dose with an adaptive approach.
The adaptive protocol was approved by Ethical Committee
Campus Bio-Medico University on 30 October 2012 and reg-
istered at ClinicalTrials.gov on 12 July 2018 with Identifier
NCT03583723 after an initial exploratory phase. Enrolled
patients underwent a clinical evaluation after chemoradiation
treatment and were classified into two groups according to
target reduction: (i) adaptive, i.e., patients who achieved
a reduction in tumour volume, assessed by two radiation
oncologists on weekly chest CT simulations, leading to the
implementation of a new treatment plan with which the pa-
tient would continue radiation therapy (adaptive approach);
(ii) not-adaptive, i.e., patients who did not achieve target
shrinkage and continued the chemoradiation with standard
treatment. The a priori probability of this patients’ cohort
consists of 11 and 22 adaptive and not-adaptive patients,
respectively.

For this patient cohort we collected heterogeneous data
including histological slides, CT scans, as well as clinical
data, therefore forming the following unimodal data streams
(i.e., pathomics, radiomics and semantics) in the multimodal
learning framework investigated in this study:

• Pathomics modality: This modality includes sam-
ples generated from biopsy slides of lung cancer tis-
sue, stained with haematoxylin and eosin (HE). HE
(haematoxylin/eosin) tumour tissue slides were re-
viewed by a pathologist to confirm sample adequacy.
Slides were digitised (APERIO CS2 Leica Biosystems
or NanoZoomer 2.0 RT Hamamatsu) at 20x magnifica-
tion. The digitised slides were loaded and segmented on
QuPath. Regions of interest (ROIs), also called crops in
the following, were manually defined by lung pathology
experts to identify tumour areas avoiding histological
artefacts, macrophage clusters and inflammations, fibro-
sis and necrosis. A total of 1113 tumour areas were
manually segmented for the 33 tissue samples, one per
patient.

• Radiomics modality: This modality includes initial
CT scans collected prior to the start of concomitant
chemoradiation therapy treatment. The CT scans con-
sisted of single layer spiral computerised tomography
- Siemens Somatom Emotion. Acquisition parameters
were 140 Kv, 80 mAs, and 3 mm for slice thick. The
scans were pre-processed applying a lung filter (ker-
nel B70) and a mediastinum filter (kernel B31). The
characteristics investigated in this work and presented
in section IV-B were extracted from 3D ROIs given by
the Clinical Target Volume (CTV), manually countered
by expert radiation oncologists. The CTV is the volume
containing the Gross Tumour Volume (GTV), i.e., the
macroscopically demonstrable disease, and therefore,
with a probability considered relevant for therapy, the
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FIGURE 2. Example images for both pathomics and radiomics modality. To the left: examples of crops countered by pathologists. To the right: examples of CTVs
manually defined by expert lung pathology on CT scans. For the sake of presentation, we show both the crops and the CTVs scaled to the same size.

microscopic disease at the subclinical level. It is worth
noting that in [25] the authors showed that CTV should
be preferred to GTV when computing radiomics fea-
tures. In total, this modality contains 39 manually con-
toured CTVs for the 33 patients. It is worth noting that
the number of CTVs exceeds the number of patients as
multiple tumours can occur in a patient.

• Semantic modality: Two experienced radiation oncol-
ogists independently reviewed all CT scans and scored
each tumour for four semantic imaging features, divided
into tumour staging scores (T, N and tumour stage), and
histological evaluation. They also added the age and sex
of the patients. Each radiation oncologist blindly as-
signed staging scores, and, in case of disagreement, they
reviewed the CT scans together and any discrepancies
were resolved through discussion until consensus was
reached.

As can be seen from these descriptions, the data sources
used are highly heterogeneous and are uncorrelated unimodal
flows. Thus, as we previously mentioned in section I, this
motivated the choice of using the late fusion approach as a
multimodal approach.

Figure 2 shows four examples of both crops extracted by
the pathologists from the high-resolution whole-slide images
which contain the selected tumour area of interest, and CTVs
extracted by expert oncological radiotherapist by CT scans
weekly collected during the radiation therapy treatment.
Moreover, the first three rows of Table III.1 summarise the
a priori sample distribution for each of the three different
modalities.

IV. METHODS
This section introduces the proposed fusion framework to
handle the binary classification task introduced before. It is
composed of four main blocks shown in Figure 3 identified
by the bars at its bottom and presented in the following.
First, a pre-processing phase is applied to the different uni-
modal flows (section IV-A). This stage uniforms the data,

Modality Adaptive Not-Adaptive Total

Raw Data
Pathomics Crops 303 810 1113
Radiomics CTVs 13 26 39

Semantic 11 22 33

Pre-Processed
Data

Pathomics Patches 10869 42681 53550
Radiomics Slices 301 627 928

TABLE III.1. A priori distribution of samples for each unimodal flow.

increases the dimensionality of unimodal flows, and encodes
categorical features into numerical ones. The second step,
presented in section IV-B, extracts the features from both
images belonging to the pathomics and the radiomics flows.
The third step consists in patient aggregation, i.e., we merge
each instance of the same patient of a single modality to get a
single label for each patient (section IV-C). This is necessary
so that the following data fusion step can work on consistent
samples, i.e., one sample per patient, and not on single
histologicals (patches or CTs’ slices). Section IV-D presents
the eight fusion rules we investigated that belong to three
different paradigms, this offering a view of how different
fusion techniques can fuse three sources of information. On
the one side, they are the product, maximum, minimum, mean,
decision template and Dempster-Shafer, and all of them are
based on the decision profile, i.e., a matrix organising the
output of l different soft classifiers in a multiple classier
framework, with l = 3 in our case. On the other side, the
other two are the majority voting rule that works with the
crisp labels and the confidence rule, which is a classifier
selection technique.

A. PRE-PROCESSING
This section presents the pre-processing applied to each
unimodal flow which differs for each modality due to the
heterogeneity of the data.

In the case of pathomics images, we applied a patch
extraction operation to the original crops manually contoured
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FIGURE 3. Proposed late fusion classification framework consisting of four blocks identified by the bars at the bottom of the figure. Let M be a multiplexer that
allows us switching between two patient aggregation modes, A1 and A2, respectively. If mode A1 is active, mode A2 is deactivated by a control signal passing
through the logic NOT port, and vice versa.

by expert pathologists on the high-resolution whole-slide
images. The patch extraction phase was performed by a
sliding window with a size equal to 100 × 100 and a stride
equal to 60, both chosen empirically. This step permits us to
increase the cardinality of the available images by exploiting
the variability typical of different regions of the same image.
Furthermore, it also provides homogeneous images, as the
original ones are characterised by a wide size variability.
After this operation, we empirically removed the extracted
patches with more than 20% of pixels belonging to the
background to keep only the most informative images. In the
end, the new repository of pathomics patches is composed of
53550 instances.

Let us now focus on the pre-processing for radiomics.
As already reported in section III, the radiomics modality
consists of CTVs manually contoured by expert radiation
oncologists on CT scans. To increase the dimensionality of
this modality, we decomposed the CTVs, i.e., the volumes
containing the macroscopically demonstrable tumour mass
and the microscopic disease at the sub-clinical level, into
their component slices. Thus we passed from having few 3D
CTVs per patient to multiple 2D slices per patient, for a total
of 928 slices.

Finally, in the case of semantic information, in order to
have numerical features, we applied an ordinal encoding for
T, N and stadium features, and one-hot encoding for sex and
diagnosis features as no ordinal relation exists for these latter
categorical variables.

The second part of Table III.1 shows the a priori distribu-
tion of instances obtained after the pre-processing.

B. FEATURES EXTRACTION
This section describes the features extraction stage imple-
mented for both the pathomics and the radiomics unimodal

flows. It is straightforward that this step is not applied to the
semantic unimodal flow, since it includes patients’ medical
data already processed. Note also that the features computed
for each modality were selected to optimise each unimodal
flow, but this is out of the scope of this work and, for the sake
of brevity, we do not present this phase here. Nevertheless,
the starting feature set consists of 2D intensity and texture
features well established in the medical image processing
scenario [26] and, specifically, in radiomics [27] and digital
pathology [28]. They are statistical features extracted from
the first-order image histogram, and several descriptors ex-
tracted from the results provided by both the Grey Level Co-
Occurrence Matrix (GLCM) and the Local Binary Pattern
(LBP) operators. Please note that we also investigated the use
of deep learning, as we will discuss in section V.

1) Pathomics

Among the descriptors mentioned before, histopathological
images are represented by measures derived from the GLCM,
computed from each patch1. The GLCM is a texture feature
used to analyse the spatial distribution of grey levels within
a 2D image at the microscale [29]. This operator can be
parameterised in terms of δ and θ. The former represents the
relative distance in pixels between two points in I , while the
latter is the relative orientation between two points in I . Here,
taking into account preliminary experiments and findings in
related fields [30]–[33], for pathomics we used δ = 1 and
θ ∈ [0◦, 45◦, 90◦, 135◦], so that each patch has four GLCMs.

From each of these matrices we extracted six Haralick
descriptors [29], i.e., contrast, dissimilarity, homogeneity,
energy, correlation and the angular second moment, listed

1Note that the GLCM operator is applied on the S-channel of the HSV
colour model.
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in depth in Appendix B. Their concatenation provides 24
textural descriptors per patch.

2) Radiomics

For the radiomics modality, we used the same features as
presented in our previous work [34]. Hence, for each slice
that makes up the 3D ROI extracted from the CT scans by
the radiologists, we computed 12 statistics features and 104
textural features.

Statistical features consist of the moments up to the fourth-
order of the first-order image histogram, i.e., the mean, the
standard deviation, the skewness and the kurtosis. Further-
more, the picture of grey-level distribution is also grasped by
the histogram width, the energy, the entropy, the value of the
histogram absolute maximum and the corresponding grey-
level value, the energy around such maximum, the number
of relative maxima in the histogram and their energy. These
statistics are listed in depth in Appendix B.

Texture features are derived from the GLCM and from
the LBP. The former is parameterised by a unit distance δ
between pixels and an orientation θ ∈ [0◦, 45◦, 90◦, 135◦]
and we extracted six second-order statistical features as the
pathomics flow. The latter is an operator that describes the
local texture by assigning each pixel in an image a binary
code according to its local circular neighbourhoods of P
points located on the circumference of radius R centred on
the pixel itself [35]. In this work, we used an extension of the
original operator making it invariant to both local monotonic
greyscale variations and rotation [36]. Once we have applied
this operator to each pixel in the image, we can compute a
histogram of the LBP decimal codes’ occurrences.

In this work, we empirically parameterised R with a unit
distance and we set P equal to 8. Finally, the same 12
statistical features reported above on the top of this section
(i.e., mean, standard deviation, skewness, kurtosis, etc.) are
then computed from the histogram of LBP distribution.

C. PATIENT AGGREGATION RULE

As mentioned above, each patient is composed of several
samples both for the pathomics and the radiomics flows. For
the former, the samples correspond to the patches extracted
from the crops contoured by the pathologists, whilst for the
latter, the samples correspond to the various slices included
in the segmented CT VOIs.

For this reason, in order to have a single classification
per patient and consistent sample fusion, a samples’ patient-
wise aggregation is necessary. In this work, we used two
different patient-wise aggregation rules, denoted as A1 and
A2 in Figure 3, respectively.

The former is applied before the classification step, and it
averages out each component of the feature vector x ∈ ℜn

belonging to the same patient p:

xp =
1

Np

∑
x∈Xp

x

where X p is the set of feature vectors computed from all the
samples of the same patient p (i.e., histopathology patches or
CT slices), and Np is its cardinality.

The latter works after the classification process, and it
averages the soft labels of all the instances of a patient.
Formally, given a classification problem with C class labels
and L unimodal flows2, and assuming one classifier per
modality, let D = {Di}Li=1 denotes the set of classifiers.
Hence, given x, a soft classifier outputs a C-dimensional
vector given by

Di (x) = [di,1 (x) , . . . , di,C (x)]
T
,

where di,j (x) ∈ [0, 1] is the soft label and it represents the
degree of support provided by classifier Di for the hypothesis
that x comes from the class ωj . On this premise, the A2
patient-wise aggregation rule is defined by:

dpi,j =
1

Np

∑
x∈Xp

di,j (x)

where, thus, dpi,j represents the average soft label per class
computed over all the instances of the i-th modality of the
same patient (i.e., x ∈ X p).

D. LATE FUSION RULES
This section introduces the late fusion rules that merge the
multimodal information extracted from the different uni-
modal flows.

Using the notation already introduced, in a multimodality
framework we organise the outputs returned by the L uni-
modal classifiers into a patient-wise decision profile DP p,
defined by the following matrix:

DP p =


µ1,1 · · · µ1,j · · · µ1,C

...
. . .

...
...

µi,1 · · · µi,j · · · µi,C

...
...

. . .
...

µL,1 · · · µL,j · · · µL,C


where µi,j is computed according to A1 or A2 aggregation
rule. This implies that, using A1, µi,j = di,j(x

p), whereas
using A2 we have µi,j = dpi,j . Thus, the patient-wise data
is projected into a new feature space with dimension L × C
and this new representation combining the unimodal classifi-
cation stages is depicted by the symbol

⊗
in Figure 3.

The fusion methods calculate the support χj for the class
ωj by applying some mathematical procedure described be-
low on the DP p representation and, using the maximum
membership rule, we then assign the patient p to the class
ωs if:

χs ≥ χz, ∀ z = 1, . . . , C

In this work, to compute χj we apply eight late fusion
techniques, represented with the tag LFt, with t = 1, . . . , 8,
in Figure 3. They include four fusion rules computing the

2Note that in our case C = 2 and L = 3.
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support for the j-th class independently of the support of the
other classes:

1) Product rule (LF1): it computes the support χj for
the class ωj as:

χj =

L∏
i=1

µi,j

2) Max rule (LF2): it computes the support χj for the
class ωj as:

χj = max
i

µi,j

3) Min rule (LF3): it computes the support χj for the
class ωj as:

χj = min
i

µi,j

4) Mean rule (LF4): it computes the support χj for the
class ωj as:

χj =
1

L

L∑
i=1

µi,j

We also investigated others two rules computing the class
supports comparing the entire DP p feature space with the
decision templates (DTs) of each class. DTs-based meth-
ods have been found to be among the best combination
techniques and show stable performance over a range of
experimental settings [37]. They are:

1) Decision Templates, DTs (LF5): its use was proposed
in [37] and consists of calculating C DTs, one per
class, that capture the pattern of each. The decision
template DTi for class ωi is the centroid of class ωi

in the training L × C feature space DP p and it is
calculated as follows:

DT i =
1

Ni

Ni∑
p=1

DP p,

where Ni is the number of patients belonging to the
class ωi.
Finally, the p-th patient’s support degree χi for the
class ωi is computed by measuring the similarity be-
tween the current DP p and DTi:

χi = 1− 1

L · C

C∑
j=1

L∑
i=1

(
µk,j − dtik,j

)2
,

where dtik,j is the k, j-th entry in the i-th decision
template DTi.

2) Dempster-Shafer rule (LF6): it is still based on the
use of DTs. The p-th patient’s proximity Φp between
the output of the i-th classifier Dp

i and DT i
j is defined

as [38]:

Φp
j,i =

(
1 +

∥∥DT i
j −Dp

i

∥∥2)−1

∑C
k=1

(
1 +

∥∥DT i
j −Dp

i

∥∥2)−1 ,

where DT i
j denotes the i-th row of decision template

for the class ωj , Dp
i denotes the output of the i-th

classifier on the p-th patient and ∥·∥ is any matrix norm.
Then, the final support degree for the j-th class is:

χj = K

L∏
i=1

Φp
j,i

∏
k ̸=j

(
1− Φp

k,i

)
1− Φp

j,i

[
1−

∏
k ̸=j

(
1− Φp

k,i

)]
where K is a scaling factor.

For the sake of completeness, we also investigated other
two rules working with different paradigms.

On the one side, we use the majority voting rule (LF7) that
works with crisp label outputs of each modality by assigning
the patient p the class label ωs that is most represented among
those returned by the L unimodal classifiers. Formally:

s = argmax
j

L∑
i=1

µcrisp
i,j , for j = 1, . . . , C

where

µcrisp
i,j =

{
1, if j = argmaxw µi,w

0, Otherwise
, ∀ i = 1, . . . , L ∧ j = 1, . . . , C

On the other side, we also applied the confidence rule
(LF8), which assigns patient p the class label ωs:

s = argmax
j

DP p
q , for j = 1, . . . , C

which corresponds to the q-th unimodal classifier output with
the largest degree of support:

q = argmax
i

(maxDP p
i ), for i = 1, . . . , L

where DP p
i denotes the i-th modality whose classifier output

is represented by row the i-th of DP p.

V. EXPERIMENTAL SETUP
Here we introduce the experimental setup adopted, present-
ing in section V-A the set of experiments carried out, and in
section V-B the validation adapted as well as the evaluation
metrics used.

A. SET OF EXPERIMENTS
The first set of experiments consists of evaluating the late
fusion paradigm through all the different combinations of the
fusion and aggregation rules, LFx and Ay , respectively, for
a total of 16 combinations since x ∈ {1, . . . , 8} and y ∈
{1, 2}, which are summarised in Table IV.1. Furthermore,
these 16 experiments were performed for all combinations
of modalities, i.e. Pathomics + Radiomics + Semantic
(P +R+S), Pathomics+Semantic (P +S), Radiomics+
Semantic (R + S), and, finally, Pathomics + Radiomics
(P +R), for a total of 64 experiments.

Then, we compared the late fusion approach with an
early fusion framework. Concerning this last approach, in
this work we considered two early fusion rules: a simple
approach in which the different modalities are concatenated
without any processing on the feature space, and a concate-
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Product Max. Min. Mean Decision
Template

Dempster
Shafer

Majority
Vote Confidence

Features
Mean A1 + LF1 A1 + LF2 A1 + LF3 A1 + LF4 A1 + LF5 A1 + LF6 A1 + LF7 A1 + LF8

Score
Mean A2 + LF1 A2 + LF2 A2 + LF3 A2 + LF4 A2 + LF5 A2 + LF6 A2 + LF7 A2 + LF8

TABLE IV.1. Summary of the 16 rule combinations performed in this work.

nation given by the application of the Kronecker product,
as presented in [10]. Indeed, the latter rule was chosen to
bring out a correlation of the different modalities in the
various combinations of them. For the sake of consistency
of samples, in the early fusion paradigm we only applied the
A1 aggregation rule, i.e. samples’ patient-wise aggregation
is performed by averaging each component of the feature
vectors belonging to the same patient.

In all the experiments, we used the same learning paradigm
in the classifier blocks of Figure 3, in which is a Random
Forest [39] with entropy as a function to measure the quality
of a split, whilst, for all the other parameters, we used the
default values provided by the Scikit-learn framework [40],
without any fine-tuning. Indeed, it was empirically observed
in [41] that in many cases the use of tuned parameters cannot
significantly outperform the default values of a classifier sug-
gested in the literature, as also confirmed in other works [42]–
[44].

Although we focus on the potential of multimodal learning
in outcome prediction for NSCLC, in this work we also
compare hand-crafted features with a deep learning frame-
work to provide a thorough and complete analysis. For this
comparison, the 64 experiments described above were also
performed using deep features extracted from both path-
omics and radiomics modalities using the ResNet-18 [45]
and GoogLeNet [46] networks respectively, pre-trained on
ImageNet dataset. The choice of using ImageNet as a pre-
training tool is motivated by the fact that this dataset provides
enough rich image detail of different objects and targets, and
therefore we believe that these pre-trained network feature
extraction capabilities can be transferred to both pathomics
and radiomics tasks. For each patient we trained the CNNs
with a transfer learning process performed with all samples
from the other patients for 20 epochs, as suggested by our
previous work [47]. Furthermore, given the reduced amount
of training samples, during the training, we froze the weights
for all the layers except the ones of the new final fully
connected layer. Straightforwardly in this last layer, we re-
moved the original 1000 neurons, which are replaced by two
softmax neurons with random weights. These experiments
were performed using the PyTorch framework [48].

Aggregation
Rules

Modalities
Pathomics Radiomics Semantic

- - - .705
A1 .686 .870 -
A2 .711 .731 -

TABLE VI.1. Results for the unimodal flows in terms of AUC.

B. EVALUATION METHODS
We tested all the proposed approaches with a leave-one-
patient-out (LOPO) cross-validation paradigm so that we
performed a number of runs equal to the number of patients.
Therefore, in each run, the test set consisted of all samples
belonging to one patient, whereas all the others were allo-
cated to the training set.

The patient-wise performances were computed by averag-
ing the Area under the ROC curve (AUC) of each run, where,
as a reminder, the positive and negative classes correspond to
adaptive and non-adaptive patients, respectively. It is worth
recalling that AUC is a figure of merit widely adopted in
the medical community to characterise the performance of
a prediction model. Furthermore, to compare the results we
also applied some statistical tests that will be introduced
hereinafter and formally presented in Appendix A.

VI. RESULTS AND DISCUSSION
This section presents and analyses the results in several direc-
tions, starting from the raw outputs reported in Table VI.1 and
Table VI.2. The former reports the scores attained by every
single modality, eventually using one aggregation rule to
combine the features describing the samples. The radiomics
modality with the use of the feature mean as patient aggre-
gation rule is the best unimodal flow with an AUC equal
to 0.870. Furthermore, this performance score confirms the
effectiveness of the radiomics signature identified in our
previous work [34], as the AUC obtained there, equal to
0.82, is of comparable magnitude to the one presented in
this work. Nevertheless, the cohorts of patients included
in the two studies are not directly comparable in terms
of the dimensionality of the dataset. Table VI.2 shows the
performance attained by the pairwise fusion approaches and
by the trimodal combination, for all the 16 fusion rules.
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Rules
Combination

Modalities Combinations
P+R R+S P+S P+R+S

A1 +LF1 .853 .888 .752 .866
A1 +LF2 .909 .837 .756 .860
A1 +LF3 .812 .864 .740 .824
A1 +LF4 .903 .893 .764 .907
A1 +LF5 .888 .909 .748 .905
A1 +LF6 .901 .781 .731 .909
A1 +LF7 .903 .893 .764 .907
A1 +LF8 .853 .876 .748 .857
A2 +LF1 .756 .752 .756 .793
A2 +LF2 .760 .688 .684 .709
A2 +LF3 .715 .754 .760 .777
A2 +LF4 .793 .752 .748 .798
A2 +LF5 .789 .756 .748 .810
A2 +LF6 .769 .740 .731 .773
A2 +LF7 .793 .752 .748 .798
A2 +LF8 .715 .740 .740 .764

TABLE VI.2. Overall results for the 64 experiments performed in terms of
AUC, where P, R and S stand for pathomics, radiomics and semantic,
respectively.

With an AUC equal to 0.909, the best results are achieved
by the multimodal triplet P + R + S, and the pairwise
combinations R + S and P + R, with the following fusion
rules respectively: A1 + LF6, A1 + LF5 and A1 + LF2.
Hence, all of them are given by the use of the feature mean
as patient aggregation rule at the feature level followed by
the Dempster-Shafer, Decision Template, and Maximum as
fusion rule, respectively.

To discuss these results, the rest of this section deep-
ens the results in three directions. First, we present the
results provided by the late fusion approaches introduced in
section IV-D and schematically depicted in Figure 3 (sec-
tion VI-A). Second, in section VI-C we compare late fusion
and early fusion approaches. Third, in section VI-C we show
a comparison of hand-crafted and deep features.

A. LATE FUSION RESULTS
The contribution of this experiment is three-fold, so it permits
us to answer the following three questions:

1) What is the best combination of modes?
2) Within the multimodal combination, which is the uni-

modal mode contributing more to the best perfor-
mance?

3) What is the best fusion rule?
Let us now explore each of these questions. In all the cases
we will introduce figures that offer a high-level synthesis of
the huge amount of results provided by all the experiments.

1) Best multimodal combination
Figure 4 shows a radar chart plotting the performances in
terms of AUC of the various unimodal and multimodal ap-

proaches. As mentioned above and summarised in Table IV.1
we have a total of 16 different rules, given by the different
combinations of the aggregation rules (Ay) and the late
fusion rules (LFx). So for each of these rule combinations
we rank each approach so that the one with the highest
performance receives a score of 7, whilst the one with the
lowest performance gets a score of 1. At the end of this
iterative process the rank of each stream is given by the
sum of the ranks received for each of the 16 experiments
mentioned above. We then normalise for the maximum rank
achievable. In the figure, we adopt a filled circle to mark the
flow with the highest rank, while the blank circles denote
those approaches with a lower rank, whose performances
are statistically different from the best one according to the
Friedman test with the Iman-Davenport amendment followed
by the Bonferroni-Dunn pairwise post-hoc test (p < 0.1).
Furthermore, we do not report any circle when the rank of
a flow is lower than the best one and the corresponding
performance are not statistically different.

Under these premises, in this figure the lengths of the
spokes show how the multimodal approaches generally per-
form better than the unimodal ones, as the latter always
differ from the best combination in a statistically significant
way. Furthermore, as you can see from the filled circle, the
trimodal combination given by P+R+S is the best approach
and it significantly differs from all unimodal approaches (i.e.
P , R, S) P + S. Although in a different clinical context,
similar considerations about the inherent superiority of mul-
timodal approaches over the unimodal flows were obtained
from [12], [49]. Indeed in [12] and [49], the overall survival
analyses performed for glioma and lung cancer, respectively,
show how the multimodal combination significantly outper-
forms the best performing unimodal flows. Furthermore, as in
our work, in both studies the triplet multimodal combination
emerged as the best approach.

2) Most informative unimodal approach
Let us now rank the unimodal approaches in order to under-
stand which flow is the most informative in terms of AUC.
The ranks are computed as described before. Indeed, given a
fusion rule, the multimodal approaches are ranked so that the
flow with the best performance gets rank 4, as we have four
different multimodal approaches. Then, all the unimodal ap-
proaches that make up the multimodal flow get the same rank
as the multimodal one. So, for instance, if the case P +R+S
multimodal flow got rank 3, the unimodal approaches of
pathomics, radiomics and semantic all get the rank 3. This
operation is repeated for all 16 different rule combinations
and the final ranks are updated by accumulation and, finally,
normalised for the maximum rank achievable.

Hence, with a rank equal to 0.667, the radiomics approach
is the most informative unimodal flow, outperforming both
the pathomics and semantic flows which got a rank equal to
0.549 and 0.535, respectively. Similar considerations were
obtained from [12] where, although in a different clinical
context, the overall survival analysis of glioma dealing with
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FIGURE 4. Radar chart showing the performance in terms of AUC of the unimodal and multimodal approaches, where P stands for Pathomics, R for Radiomics,
and S for Semantic. The filled circle represents the flow with the highest rank, whilst blank circles represent unimodal or multimodal approaches with statistically
different performances from the best approach according to Friedman test with the Iman-Davenport amendment followed by the pairwise Bonferroni-Dunn post-hoc
test (p < 0.1).

FIGURE 5. Radar chart showing the performance in terms of AUC of the fusion rules given by the combination of LFx and Ay (Figure 3) and varying the
modalities combination. Filled circles represent the fusion rule combination with the highest rank, whilst blank circles represent models with statistically different
performances from the best model according to the Wilcoxon signed-rank test (p < 0.1).

the radiomics unimodal flow emerges as the most informative
modality in terms of Cox Loss.

3) Best fusion rule
Figure 5 shows a radar chart plotting the performance in
terms of AUC of the various fusion rules varying the way we
combine the modalities. Let us remember that, as mentioned
above and summarised in Table IV.1, the rules represented
in the figure are the combination of the aggregation and late
fusion rules, Ay and LFx, respectively. For each multimodal
combination, we ranked each fusion rule in terms of AUC so
that the worst rules receives rank 1, whilst the best receives
rank 16. Filled circles in the figure represent the fusion rule

combination with the highest rank, whilst blank circles rep-
resent models with statistically different performances from
the best fusion rule according to the Wilcoxon signed-rank
test (p < 0.1). Note that here we used such test rather than
Friedman’s method since, for each late fusion rule, we com-
pared the four different multimodal combinations, a number
limiting the application of Friedman’s test. Furthermore, we
do not report any circle when the rank of a flow is lower
than the best one and the corresponding performance are not
statistically different.

The chart shows that the patient aggregation rule named as
score mean aggregation (A2) performs generally worst than
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Multimodal Combination Simple Concatenation Kronecker

Pathomics + Radiomics + Semantic 5-2-1 8-0-0
Pathomics + Semantic 8-0-0 8-0-0
Radiomics + Semantic 4-1-3 7-0-1
Pathomics + Radiomics 5-0-3 7-1-0

TABLE VI.3. Exhaustive comparison of late and early multimodal learning for
the various modality combinations in terms of AUC. Each cell shows the
amount of win–tie–loss of a combination of the corresponding multimodal
combination handled in the late fusion paradigm. For each modalities
combination, the cells are highlighted in grey when the late fusion approaches
are significantly better than the early fusion rules according to the one-tailed
sign test (p < 0.05).

the feature mean rule (A1). On the other hand, if we focus
on the late fusion rules, we observe that they perform almost
equally well on all multimodal combinations.

Moreover, the best combinations of rules depend on the
modality combination considered. For the P +R+S combi-
nation, the best rule combination is denoted as A1 + LF6,
which is therefore given by the use of the feature mean
as patient aggregation rule at feature level followed by the
Dempster Shafer as fusion rule working on the outputs of
each classifier. For the P + S combination, the best rules are
denoted as A1 + LF4 and A1 + LF7, which are given by
the combination of the feature mean as patient aggregation
rule and, respectively, the mean and majority vote as fusion
rule. For the R+S combination, the best rule combination is
denoted as A1 + LF5, which is therefore given by the use of
the feature mean followed by the Decision Template as fusion
rule. For the P + R combination, the best rule combination
is denoted as A1 + LF2, which is therefore given by the use
of the feature mean followed by the maximum as fusion rule.
Globally, the best fusion rules are A1 + LF4 and A1 + LF7,
since on average they ranked highest across all modality
combinations. It suggests that these rules are well adapted
to different situations, generalising successfully across dif-
ferent types of datasets, which, in turn, are characterised by
different data types, sizes and dimensionalities.

B. LATE VS EARLY FUSION
Table VI.3 shows an exhaustive comparison of late and early
multimodal learning for the various modality combinations
in terms of AUC. As we already mentioned, with the early
fusion paradigm we only tested the A1 aggregation rule for
the sake of consistency of samples. Each cell reports the
amount of win–tie–loss of the corresponding multimodal
flow handled in the late fusion paradigm. Since early fusion
only handles the A1 aggregation rule, the comparison was
restricted to only the 8 late fusion rules that use this method
of aggregation. Given the number of patient data, we statis-
tically validated this comparison with the sign test, a simple
but powerful statistical test. In Table VI.3, for each modalities
combination, the grey cells highlight when the late fusion
approaches are significantly better than early ones according
to the one-tailed sign test (p < 0.05). The table shows that
the late fusion paradigm almost always outperforms the early

Deep Features

P+R+S P+S R+S P+R

H
an

d-
cr

af
te

d
Fe

at
ur

es

P+R+S 16-0-0 16-0-0 16-0-0 16-0-0
P+S 11-0-5 15-1-0 10-3-3 16-0-0
R+S 16-0-0 16-0-0 14-2-0 16-0-0
P+R 16-0-0 16-0-0 13-1-2 16-0-0

TABLE VI.4. Exhaustive comparison between the performance of modality
combinations expressed in terms of AUC, where P stands for Pathomics, R for
Radiomics, and S for Semantic. Each cell shows the amount of win–tie–loss of
a combination in a row compared with a combination in a column, respectively
performed using hand-crafted and deep features. The cells highlighted in grey
represent the modality combination significantly better than another according
to the one-tailed sign test (p < 0.05).

fusion paradigm for the performance metric considered. This
suggests us that there is a certain difficulty in the data-level
fusion process when the data are significantly uncorrelated,
and have such a different nature and dimensionality, as in the
medical task we are dealing with in this work.

C. HAND-CRAFTED VS DEEP FEATURES

This experiment compares the discriminant capacity of hand-
crafted features (as discussed in section IV-B) with that of
deep features, using the same multimodal late fusion frame-
work (as depicted in Figure 2). Hence, for the two descriptor
groups, we have the same number of experiments, i.e., 64 as
discussed in section V-A.

We summarised the comparison in Table VI.4, which
offers an exhaustive comparison between the modality com-
binations in terms of AUC. Each cell shows the amount of
win–tie–loss of a pair of modality combinations indexed by
row and column, respectively performed using hand-crafted
and deep features. For instance, the second cell in row 1, with
indexes (1, 2), counts the wins, ties and losses obtained by the
modalities triplet P + R + S performed with hand-crafted
features against the modalities pair P + S performed with
deep features. Since for each combination we have a total of
16 different combinations of the fusion and aggregation rules,
LFx and Ay respectively, the total amount of scores for each
cell is equal to 16.

Again, we statistically validated this comparison with the
sign test. In Table VI.4 the grey cells represent the modality
combination significantly better than another according to
the one-tailed sign test (p < 0.05). From the table we can
see how the hand-crafted features perform better than the
deep features. The reason for this result can be found in
the low dimensionality of the dataset, as could be expected.
Indeed, this limits the ability of the deep neural networks to
fully express their power of abstraction, generalisation and
discrimination.
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VII. CONCLUSION
In this work, we have presented a multimodal late fusion
framework combing radiomics, pathomics and clinical data
to predict radiation therapy treatment outcomes for NSCLC
patients. We fed the proposed framework with hand-crafted
features extracted from the aforementioned data sources.
Here, we explored the combinations of eight different late fu-
sion rules (i.e., product, maximum, minimum, mean, decision
template, Dempster-Shafer, majority voting, and confidence
rule) with two samples’ patient-wise aggregation rules (i.e.,
feature mean and score mean) implemented to have a single
classification per patient and consistent sample fusion, for a
total a 64 experiments.

The take-home message emerging from this work is that
the multimodal learning framework leads to a significant
improvement of a learning system in terms of performance.
Indeed, in this work the simultaneous fusion of the three
modalities is the best approach and it significantly differs
from all the models fed with the stand-alone data flows. Al-
though in a different clinical context, similar considerations
about the inherent superiority of multimodal approaches over
the unimodal ones were obtained from [12], [49].

While our work demonstrates the potential of the
multimodal framework to predict radiotherapy outcomes,
some limitations must be acknowledged. Although hand-
crafted features still show remarkable performance in low-
dimensional datasets, such as the one in our study, they may
be prone to human biases, which could adversely affect the
accuracy and limit the generalisability of the results.

Future work will focus on the following directions to over-
come these limitations. External validation on independent
datasets, when will be available, would help us robustly
assess the performance of the proposed multimodal frame-
work on new patient cohorts. Furthermore, by increasing the
dimensionality of the dataset, deep learning approaches can
be reconsidered. These have the potential to automatically
learn complex patterns from the data, which could poten-
tially improve the accuracy, reliability, and robustness of
the prediction model, as happened in other fields. Next, we
deem that incorporating the eXplainable AI paradigm into
the proposed multimodal late fusion framework is a direction
worth investigating. Indeed, it underlies the mechanisms that
drive predictions, which is required to help clinicians to
justify and make informed evidence-based decisions [50].
By making the proposed framework interpretable, we can
facilitate the adoption of AI techniques into current medical
practice and improve patient outcomes.
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APPENDIX A
STATISTICAL TESTS

In this work, we used various statistical tests to validate and
compare our approaches, which are outlined in the following
sections. We recommend referring to [51] for interested
readers to provide further insight into these methods.

A. FRIEDMAN TEST WITH IMAN AND DAVENPORT
AMENDMENT

The Friedman test with an amendment by Iman and Dav-
enport is a non-parametric statistical test used to compare
multiple models. For each of the 16 different combinations
of fusion rules (Ay + LFx), each flow is ranked so that the
best receives rank 1, whilst the worst receives rank 7. Tied
ranks are shared equally as explained above. The test statistic
with the amendment proposed by Iman and Davenport is the
following:

FF =
(N − 1)χ2

F

N (M − 1)− χ2
F

which follows the F -distribution with (M − 1) and
(M − 1) (N − 1) degrees of freedom and where:

χ2
F =

12N

M (M + 1)

 M∑
j=1

R2
j −

M(M + 1)
2

4


where Rj = 1

N

∑N
i=1 r

j
i is the average rank of the j-th flow

and rji is the rank of the j-th flow when considering the i-th
fusion rule, where i = 1, . . . , N and j = 1, . . . ,M (N =
16,M = 7). Once the F -statistic has been computed, we can
carry out the test comparing it with the critical value for the
chosen level of significance. If it is greater than this value we
can reject the null hypothesis H0 and accept that there is a
difference between the flows.
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Bonferroni-Dunn post-hoc test
If H0 is rejected, Bonferroni-Dunn post-hoc test is applied to
find exactly where the differences are:

z =
R1 −Rj√
M(M+1)

6N

where R1 is the average rank of the best flow and Rj is the
average rank of j-th flow. Two flows are statistically different
if the obtained p-value from this z-value is smaller than α

M−1 ,
where α is the desired level of significance.

B. WILCOXON SIGNED RANK TEST
The Wilcoxon signed-rank test is a non-parametric statistical
test that tests if two models are statistically different. Given
the error estimates of two models for the N folds of the
LOPO validation paradigm, the test computes the differences
of these errors di. Then it ranks the absolute values of the
differences |di| so that the smallest value receives rank 1,
whilst the largest one receives rank N . If there is a tie, all the
ranks are shared so that the total sum stays 1 + 2 + · · ·+N .
Subsequently, it splits the ranks into positive and negative
according to the sign of di and calculates the following
amounts:

R+ =
∑
di>0

ri +
1

2

∑
di=0

ri, R− =
∑
di<0

ri +
1

2

∑
di=0

ri

Finally, the test computes the following statistic:

z =
T − 1

4N (N + 1)√
1
24N (N + 1) (2N + 1)

which is approximately distributed as a normal distribution
and where T = min (R+, R−). Once the z-statistic has
been computed, we can carry out the test comparing it with
the critical value for the chosen level of significance. If it
is greater than this value we can reject the null hypothesis
and state that the two methods have statistically different
performances.

C. SIGN TEST
The sign test is simply performed counting wins, ties
and losses, with or without statistical significance, of each
method pair. This test is based on the intuition that if two
methods are equivalent, each one will perform better than
the other one on approximately N/2 of the tests. Hence,
following the binomial distribution, we can claim that the
first method is significantly better than the second one if its
amount of wins is greater than N/2 + 1.96

√
N/2, at a level

of significance of 0.05.

APPENDIX B
STATISTICAL DESCRIPTORS
The following are the statistical measures extracted from
the intensity histogram and used in this work to provide
a synthetic description of both the LBP and the grey level
histogram:

• Mean:

m =

l−1∑
k=0

rkp (rk)

• Standard deviation:

σ =

√√√√ l−1∑
k=0

(rk −m)
2
p (rk)

• Smoothness:

R = 1− 1

(1 + σ2)

• Skewness:

skewness =
l−1∑
k=0

(rk −m)
3
p (rk)

• Kurtosis:

kurtosis =
l−1∑
k=0

(rk −m)
4
p (rk)

• Energy:

energy =

l−1∑
k=0

p (rk)
2

• Entropy:

entropy = −
l−1∑
k=0

p (rk) log2 [p (rk)]

• Absolute maximum:
l−1
max
k=0

[p (rk)]

• Maximum value:
l−1

argmax
k=0

[p (rk)]

where l is the number of grey levels in the image I and p (rk)
is the number of pixels with a grey level equal to rk.

Given instead a grey-level co-occurrence matrix G ex-
tracted from image I , the following are the formal definition
of Haralick features used in this work:

• Contrast:
l−1∑
i,j=0

Gi,j (gi − gj)
2

• Dissimilarity:
l−1∑
i,j=0

Gi,j |gi − gj |

• Homogeneity:
l−1∑
i,j=0

Gi,j

1 + (gi − gj)2
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• Angular Second Moment (ASM):
l−1∑
i,j=0

G2
i,j

• Energy: √
ASM

• Correlation:
l−1∑
i,j=0

Gi,j

 (gi − µi) (gj − µj)√
(σ2

i )(σ
2
j )


where Gi,j denotes the i, j-th entry of G, l is the number of
grey levels in the image I , gi and gj denote two grey level
values ∈

[
0, 2l − 1

]
, and, finally, µi denotes the mean value

of the one-dimensional marginal distributions of G.
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