
International  Journal  of

Environmental Research

and Public Health

Review

Artificial Intelligence and Computer Vision in Low Back Pain:
A Systematic Review

Federico D’Antoni 1 , Fabrizio Russo 2,* , Luca Ambrosio 2 , Luca Vollero 1 , Gianluca Vadalà 2 ,
Mario Merone 1,* , Rocco Papalia 2 and Vincenzo Denaro 2

����������
�������

Citation: D’Antoni, F.; Russo, F.;

Ambrosio, L.; Vollero, L.; Vadalà, G.;

Merone, M.; Papalia, R.; Denaro, V.

Artificial Intelligence and Computer

Vision in Low Back Pain: A

Systematic Review. Int. J. Environ.

Res. Public Health 2021, 18, 10909.

https://doi.org/10.3390/

ijerph182010909

Academic Editor: Oliver Faust

Received: 7 September 2021

Accepted: 9 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma,
Via Alvaro Del Portillo 21, 00128 Rome, Italy; f.dantoni@unicampus.it (F.D.); l.vollero@unicampus.it (L.V.)

2 Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200,
00128 Rome, Italy; l.ambrosio@unicampus.it (L.A.); g.vadala@unicampus.it (G.V.);
r.papalia@unicampus.it (R.P.); v.denaro@unicampus.it (V.D.)

* Correspondence: fabrizio.russo@unicampus.it (F.R.); m.merone@unicampus.it (M.M.)

Abstract: Chronic Low Back Pain (LBP) is a symptom that may be caused by several diseases, and it
is currently the leading cause of disability worldwide. The increased amount of digital images in
orthopaedics has led to the development of methods related to artificial intelligence, and to computer
vision in particular, which aim to improve diagnosis and treatment of LBP. In this manuscript, we
have systematically reviewed the available literature on the use of computer vision in the diagnosis
and treatment of LBP. A systematic research of PubMed electronic database was performed. The
search strategy was set as the combinations of the following keywords: “Artificial Intelligence”,
“Feature Extraction”, “Segmentation”, “Computer Vision”, “Machine Learning”, “Deep Learning”,
“Neural Network”, “Low Back Pain”, “Lumbar”. Results: The search returned a total of 558 articles.
After careful evaluation of the abstracts, 358 were excluded, whereas 124 papers were excluded
after full-text examination, taking the number of eligible articles to 76. The main applications of
computer vision in LBP include feature extraction and segmentation, which are usually followed by
further tasks. Most recent methods use deep learning models rather than digital image processing
techniques. The best performing methods for segmentation of vertebrae, intervertebral discs, spinal
canal and lumbar muscles achieve Sørensen–Dice scores greater than 90%, whereas studies focusing
on localization and identification of structures collectively showed an accuracy greater than 80%.
Future advances in artificial intelligence are expected to increase systems’ autonomy and reliability,
thus providing even more effective tools for the diagnosis and treatment of LBP.

Keywords: low back pain; orthopaedics; artificial intelligence; computer vision; digital image
processing; deep learning; decision support systems; computer aided diagnosis

1. Introduction

In the last decade, a significant increase in the use of Artificial Intelligence (AI) has been
experienced in the most disparate fields, ranging from vocal assistants commonly employed
during our daily life to self-driving cars. Thanks to the unique ability of intelligent machines
to be trained and automatically acquire new tasks based on previous experience or provided
data, the use of AI is being increasingly investigated for applications in medical research [1].
Indeed, AI-based computers have already shown to potentially revolutionize drug design
and discovery [2,3], automatic segmentation and relevant data extraction from radiological
datasets [4] as well as the formulation of diagnosis, outcome prediction and treatment
planning in different medical fields [5–7]. The adoption of this ground-breaking technology
is being explored in spine surgery as well [1]. Indeed, thanks to its interdisciplinary nature
and the wide utilization of radiological images to inspect the anatomical structures of the
spine, the use of AI may be of particular value in determining, for example, which are the
pathological discs [8], classifying a scoliotic curve [9] and predict its progression [10]. In
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this study, we have systematically reviewed the available literature on the use of AI, and
more specifically computer vision, in the prevention, diagnosis, and treatment of chronic
Low Back Pain (LBP).

LBP is mainly caused by intervertebral disc degeneration, and it is currently the
leading cause of disability worldwide, as well as the most common reason for workers’
compensation claims [11]. AI has improved the clinical practice with regards to the
treatment, prevention and outcome prediction of subjects suffering from LBP. This is
mainly due to the ever-growing amount of clinical data available to practitioners, which
allow to train and develop increasingly sophisticated AI methodologies. With particular
regards to LBP, a huge amount of digital clinical images are gathered daily in order to
detect signs of disease in the spinal structures. For this reason, several machine learning
algorithms have been developed in recent years in order to speed-up the diagnostic process
and to optimize patients’ recovery. The latest AI improvements were accompanied by the
outbreak of deep learning and by an increase of computing capacity, which allow to develop
models that are getting more and more autonomous and accurate. In particular, computer
vision techniques applied to clinical images allow to detect some image features that are
invisible to the human eye. The importance of computer vision in relation to LBP is multi-
faceted: it allows to perform a plethora of tasks that may improve the clinical practice, such
as automatically localizing and detecting lumbar structures with segmentation. Moreover,
it allows to extract a set of features from the image that can be used as an input for further
machine learning algorithms in order to provide a decision support to the physician or,
in other cases, directly suggest the most appropriate diagnosis. For this reason, we have
systematically reviewed the available literature on the application of computer vision
on the diagnosis and treatment of LBP in order to describe the state of the art of such
technology and its potential applications.

2. Materials and Methods

In order to perform an exhaustive research of AI articles related to LBP, we per-
formed a query research on PubMed (Query research used: (((Artificial intelligence [Ti-
tle/Abstract]) OR ((feature extraction[Title/Abstract]) OR ((segmentation[Title/Abstract])
OR (Computer Vision[Title/Abstract]) OR (Machine learning[Title/Abstract])) OR (deep
learning[Title/Abstract]) OR (neural network[Title/Abstract]))) AND ((Low Back Pain
[Title/Abstract]) OR (lumbar[Title/Abstract]))). All the search words had to be included
in the title or in the abstract of the articles: the terms “low back pain” and “lumbar” were
considered for the pathological part, and the terms “artificial intelligence”, “feature ex-
traction”, “segmentation”, “computer vision”, “machine learning”, “deep learning” and
“neural network” were considered for the AI part. We selected all the articles that included
at least one term of the pathological part and at least one term of the artificial intelligence
part in their title or abstract.

2.1. Inclusion and Exclusion Criteria

The aim of this work was to gather all the works concerning the utilization of AI, and
particularly of computer vision, in the diagnosis, prevention, and treatment of chronic
LBP and related diseases. Straightforwardly, all the selected articles had to meet all the
following inclusion criteria:

• Chronic LBP or lumbar diseases must have been among the main topics of the article.
We included works on the prevention, diagnosis or treatment of chronic LBP and
treating at least one of the structures involved in LBP (i.e., vertebrae, discs, muscles);

• AI must have been used in the work with application to clinical images. We included
articles exploiting AI methods falling in the areas of computer vision, machine learning
and artificial Neural Networks (NNs);

• Subjects of the study: all the articles must have been based on studies of human
low back and related pathology, regardless of the age or employment of the subjects
included in the study;
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• Language: all articles must have been written in English.

Conversely, articles that were excluded did not meet the inclusion criteria for one of
the following reasons:

• A different medical problem was considered: we excluded articles which did not
consider chronic LBP and its related physical structures and medical data. For example,
we excluded studies that considered only cervical or thoracic vertebrae, or that focused
on osteoporosis, metastases, traumatic LBP, and other causes of non-discogenic LBP;

• AI was not considered: some articles in the search results proposed definitions and
practice for LBP based only on medical observation without utilization of AI;

• Computer vision and clinical images were not considered in the study, regardless of
whether AI was utilized for developing diagnosis or support systems;

• Animal studies: we excluded studies based on vertebral structures of animals;
• Embryonal studies: we excluded studies performed on embryos and concerning the

embryogenesis of spinal structures.

A preliminary screening of the article selection allowed us to define three main
categories in which the utilization of AI in LBP might be split, namely computer vision,
computer aided diagnosis, and decision support systems (DSSs) (Figure 1). Computer
vision is the field of AI that deals with how computers can gain high-level understanding
from digital images or videos. With regards to LBP, its main applications concern feature
extraction and image segmentation. Feature extraction is a dimensionality reduction
process which is applied to images obtained using Magnetic Resonance Imaging (MRI),
ultrasound, X-rays, and Computed Tomography (CT). The main goal of feature extraction is
to retrieve a restricted number of relevant features from an image without losing important
information, in order to facilitate subsequent tasks such as classification or regression.

Image segmentation is the task of dividing an image into subregions corresponding
to different elements of the image. More in depth, the goal of image segmentation is
the labeling of each pixel of an image with a corresponding class, e.g., foreground or
background, in order to detect the relevant elements of an image. It mainly resorts to two
principal techniques: deep learning, in which the image is directly given as input to an
artificial NN which is trained on other images to automatically identify subregions, and
digital image processing (DIP) techniques, which process digital images to find the edges
of different regions based on semantic characteristics, exploiting methods such as gradient
thresholding or statistical shape models.

Computer aided diagnosis is a group of techniques which help medical practitioners
in identifying a pathology or in quantifying the grade of a disease. It can be split into
classification and regression, in which machine or deep learning models are used to assign
a predefined label or to generate a numeric output, respectively. In practice, classification
is used to identify or categorize a pathology, whereas regression is used to produce a
quantitative evaluation of some measure.

Decision support systems (DSSs) are software systems that allow medical practitioners
to enhance the decision making and improve the outcome of patients suffering from a
specific disease. The goal of the vast majority of DSSs is the outcome prediction, i.e., the
prediction of the improvement that a patient would experience after exposure to a defined
therapy. By predicting the extent to which a patient would benefit from a specific treatment,
DSSs provide the physician with practical tools to assess whether or not surgery may be
preferable to conservative treatment. Finally, DSSs can be used for prevention, e.g., by
providing the user with recommendations or correct practice for preventing the onset of a
disease. It is worth noting that computer vision techniques can be used as preprocessing
for developing a DSS, as well as a for computer aided diagnosis.
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Figure 1. Schematic partitioning of the works concerning the application of AI in LBP.

2.2. Evaluation Metrics

Different tasks use different metrics to evaluate the performance of AI systems. How-
ever, considering the large amount of works reported in this review, different metrics
were also considered within the same task. With regards to the feature extraction task, no
specific evaluation metric was considered. This is because, in most cases, feature extraction
is exploited as a preliminary step for further tasks such as classification and regression, and
most papers only report the performance for the latter.

With regards to the classification task, we reported the results in terms of accuracy
(Acc), where available. For brevity purposes, let us consider a binary classification task, e.g.,
positive vs. negative. Given a test set composed of N samples, defined the True Positives
(TP) as the number of positive samples correctly classified, and the True Negatives (TN) as
the number of negative samples correctly classified, then accuracy is defined as:

Acc% =
TP + TN

N
× 100 (1)

Thus, greater values correspond to a better performance. For each class, recall and
precision can be computed as well. Defined the False Positives (FP) and False Negatives
(FN) as the number of misclassified positive/negative samples, then recall and precision
are computed as:

Recall =
TP

TP + FN
Precision =

TP
TP + FP

(2)

In binary problems, recall is also called True Positive Rate and corresponds to sensitivity,
whereas the True Negative Rate is also called specificity. In the case of multi-class problems,
accuracy is computed by considering the TP for each class, and recall and precision per
class can be computed. For imbalanced datasets, the F1-Score can be computed for each
class. The F1-Score for class c is defined as:

F1-Scorec =
2 · Recallc · Precisionc

Recallc + Precisionc
(3)

and takes into account both recall and precision of the class. Another widely used evalua-
tion metric is the Area Under the Curve (AUC), which corresponds to the area under the
Receiver Operating Characteristic (ROC) curve showing the performance of a classification
model at all classification thresholds, which is plotted considering the True Positive Rate
against the False Positive Rate. Its values range from 0 to 1 (the closer to 1, the better the
performance).

With regards to the regression task, let us consider a sequence of original values x(t)
and a sequence of predicted values x̃(t). The Mean Absolute Error (MAE) for a sequence
of N timestamps is defined as:

MAE =
N

∑
t=1

|x(t)− x̃(t)|
N

(4)
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Thus, the closer to 0 the value, the better the performance. In some cases, percentage
error values are used to evaluate performance, the meaning of which varies with the
investigated task.

With regards to the segmentation task, two main percent performance indices are used
which evaluate to what extent the segmentation result is close to the desired segmentation.
As stated, segmentation consists in labeling each pixel of an image. Given two sets of data
A and B, corresponding to the desired and the effective segmented areas, the Sørensen–Dice
coefficient (DICE) is defined as:

DICE(A, B) =
2 · |A ∩ B|
|A|+ |B| (5)

where |A| and |B| are the cardinalities of the two sets. It divides the number of common
elements of the two sets by the total number of elements of the two sets. When applied to
binary data, it is equivalent to the F1-Score. Differently, the Jaccard index is defined as:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| (6)

and is also known as Intersection Over Union. For both indices, the closer to 100% the
value, the better the performance. It is worth noting that DICE(A, B) ≥ Jaccard(A, B) for
any couple of sets (A, B), and the relation Jaccard = DICE/(2− DICE) exists to compute
one value from the other.

3. Quality of Evidence

The methodological quality of the included studies was graded independently by two
reviewers (L.A. and F.R.), and any disagreement was resolved by the intervention of a third
reviewer (G.V.) The risks of bias and applicability of the included studies were assessed
by using customized assessment criteria based on the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) [12]. This tool is based on 4 domains: patient selection,
index test, reference standard, and flow and timing. Each domain is evaluated in terms
of risk of bias, and the first 3 domains are also assessed in terms of concerns regarding
applicability. Sixty-eight studies were rated on a 3-point scale, reflecting concerns about
risk of bias and applicability as low, unclear or high, as shown in Figure 2 (the details of
analysis are presented in Tables S1 and S2).

Figure 2. Summary of the methodological quality of included studies regarding the 4 domains
assessing the risk of bias (A) and the 3 domains assessing applicability concerns (B) of the QUADAS-
2 score. The portion of studies with a low risk of bias are highlighted in green, studies with an unclear
risk of bias are depicted in blue and studies with a high risk of bias are represented in orange.
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4. Results

The search was performed on 18 March 2021, and resulted in 558 articles. Nonetheless,
many of these articles focused on a different topic from that of this review, so after a first
screening based on the article titles and abstracts we reduced the number of eligible articles
to 200. A second screening phase was performed after having read the full text of each
article, which led the total amount of included articles to 76. We created a flow-chart
diagram according to the PRISMA protocol that shows the selection process of the studies
(Figure 3). The articles were screened by two independent reviewers and, in the event of
discrepancies regarding the inclusion or exclusion of an article, they discussed together
until consensus was reached.

Figure 3. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
flow diagram.

It is worth noting how the amount of published work is increasing year by year, and
that the number of articles published in 2020 is almost double that of 2019. This may be
due to two main reasons: first, the ever-increasing amount of clinical images and data
available to researchers and, secondly, the improvement of computing capacity observed
in recent years. The final results of the search also include five reviews. One of them,
published in 2020 by Tagliaferri et al. [13], is specifically focused on LBP, but considers only
the diagnosis and prognosis capability of AI in comparison with the McKenzie and the
STarT Back methods, and without taking into account works that exploit clinical images.
The other four reviews do not focus specifically on LBP. In detail, in 2019 Tack [14] focused
on musculoskeletal medicine in general, and determined in which fields AI had reached
human prediction levels; in 2020, Azimi et al. [15] focused on the use of NNs for the
treatment of the whole spine; in 2019, Galbusera et al. [1] described the application of
AI to problems related to the whole spine; finally, in 2016 Yao et al. [16] performed a
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multi-center milestone comparative study for vertebral segmentation methods based on
CT images. Two articles presenting databases were also found: LUMINOUS, which is a
database of ultrasound images from 109 patients for multifidus muscle segmentation [17],
and MyoSegmentum, which includes MRI images of 54 patients for the segmentation of
lumbar muscles and vertebral bodies [18].

The remainder of this section reports the results of the search that include works
concerning computer vision. In particular, we have listed manuscripts that performed a
feature extraction task or that performed semantic segmentation, and we have described
papers that used DIP/NN approaches in two different subsections.

4.1. Feature Extraction

Feature extraction is a dimensionality reduction process aimed at identifying a re-
stricted set of relevant features in order to improve the predictive capability of a system. In
this review, we identified a total of 8 papers, whose main characteristics are reported in
Table 1, aiming to extract relevant features from several types of LBP-related images. In
detail, we included:

• six articles on MRI (1 of which considers 3D MRI);
• one article on 3D images of the back surface;
• one article on X-ray imaging.

Table 1. Feature extraction. For each work, it is reported whether or not other tasks are performed following feature
extraction. The reported results are related to the task following feature extraction. Abbreviations are used for Magnetic
Resonance Imaging (MRI), Low Back Pain (LBP), Accuracy (Acc), Mean Absolute Error (MAE), Machine Learning (ML),
Support Vector Machine (SVM).

Author/Year Main Task Data Type # Patients Structures Involved Results Model

Adankon, 2012 [19] Feature Extraction and Classification 3D image of the back surface 165 Vertebrae Acc = 95% Local Geometric Descriptors and SVM

Castro-Mateos, 2014 [20] Feature Extraction and Segmentation 3D MRI 59 Discs DICE = 88.4% Statistical shape model space and B-Spline space

Raudner, 2020 [21] Feature Extraction MRI 58 Discs / GRAPPATINI

Abdollah, 2020 [22] Feature Extraction MRI 28 Discs, Vertebrae / Random Forest and texture analysis

Yang 2020 [8] Feature Extraction and Classification MRI 109 Discs Acc = 88.3% Gabor wavelet transformation and KLT feature tracker

Ruiz-España, 2015 [23] Feature Extraction and Classification MRI 67 Discs Acc > 90% Gradient Vector Flow, several ML models

Ketola, 2020 [24] Feature Extraction and Classification MRI 518 LBP Acc = 83% Texture feature extraction and Logistic Regression

Garcia-Cano, 2018 [10] Feature Extraction and Regression X-rays 150 Vertebrae Cobb angle MAE = 4.79° Independent component analysis and Random Forest

Intervertebral discs (IVDs) are the most investigated lumbar structures (five papers),
followed by vertebrae (three papers), whereas one paper evaluated LBP without focusing
on a specific structure. It is worth noting that only two out of eight articles have exclu-
sively focused on feature extraction, i.e., the work of Raudner et al. [21] in which the
GRAPPATINI method is presented for IVD feature extraction from MRI, and the work of
Abdollah et al. [22] in which a Random Forest and a Texture analysis are exploited on MRI
for feature extraction from IVDs and vertebrae, respectively. The remaining six articles
described the performance of further tasks after feature extraction. In detail, four of them
performed classification, one performed regression, and one performed segmentation tasks.

All the works that performed further tasks following feature extraction exploited ma-
chine learning techniques rather than deep learning: this is one of the advantages of feature
extraction, as it allows to achieve results using much faster and less computationally-
expansive methods. With regards to classification, Adankon et al. [19] were the only ones
to use 3D images of the surface of the human back: they extracted features for 165 pa-
tients using local geometric descriptors, and fed them to a least-squares Support Vector
Machine (SVM) for the classification of scoliosis curve types, achieving 95% accuracy.
Yang et al. [8] used a Gabor wavelet transform to extract features from MRI of 109 subjects,
and a Kanade–Lucas–Tomasi (KLT) feature tracker to identify lumbar degenerative changes
with an accuracy of 88.3%. Ruiz-España et al. [23] extracted features from MRI of 67 pa-
tients using Gradient Vector Flow, and tested several machine learning models to classify
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degenerated IVDs achieving accuracies greater than 90%. Ketola et al. [24] performed tex-
ture feature extraction from 518 MRI and used Logistic Regression to discriminate between
symptomatic and asymptomatic LBP with an accuracy of 83%.

With regards to the regression task, Garcia-Cano et al. [10] extracted features from
X-ray images of 150 patients through the medium of Independent Component Analysis,
and used Random Forest Regression to predict the spinal curve progression in adolescents
with idiopathic scoliosis, achieving a MAE of 4.79° for the Cobb angle.

With regards to the segmentation task, Castro-Mateos et al. [20] extracted features
from 3D MRI of 59 subjects and performed IVDs segmentation using statistical shape
model space and B-Spline space, achieving an average DICE score of 88.4%.

4.2. Segmentation

Image segmentation is the task of dividing an image into sub-regions corresponding
to different elements of the image, with the aim of accurately identifying the borders
of different elements in the image. This approach usually exploits manually-segmented
images to train an AI model. Several manuscripts included in the reviewed performed a
segmentation task, and some used segmentation as a preliminary step for further tasks.
For this reason, in the next sections we report, where applicable, not only the segmentation
results, but also those of the successive tasks for which segmentation is used with the aim
of localizing and/or identifying structures. In this review, we refer to the task of detecting
specific components (e.g., vertebrae) as “localization”, whereas we refer to the task of
assigning a label to specific components (e.g., L1, L2, etc.) as “identification”. Moreover,
we have differentiated included papers based on whether they exploited DIP techniques
or NNs. In this review, we identified 38 manuscripts using DIP techniques, and 23 using
NNs. However, it is worth noting how most recent research efforts are moving towards
deep learning techniques: taking into account the articles published in the last 5 years
(2016-2021), this review includes 16 papers using DIP, and 23 using NNs.

4.2.1. Digital Image Processing

DIP segmentation techniques process digital images to find the edges of different
regions based on semantic characteristics, exploiting methods such as gradient thresholding
or statistical shape models. In this review, we identified a total of 38 papers that performed
DIP segmentation on different types of images (Table 2):

• 15 articles on MRI (2 of which considered 3D MRI);
• 15 articles on CT images;
• 1 articles on both MRI and CT images;
• 3 articles on fluoroscopic images;
• 2 articles on ultrasound images;
• 2 articles on X-ray images.

Vertebrae are the most investigated lumbar structures (26 papers), followed by IVDs
(10 papers) and muscles (6 papers). It is worth noting that only one [25] out of the 21 works
using CT, X-ray or fluoroscopic images did not involve segmentation of vertebral struc-
tures. In total, 20 articles focused only on segmentation without further tasks. Among
the others, 12 performed successive structure localization, 6 conducted successive struc-
ture identification (4 of which performed both localization and identification), whereas
regression, tracking, and 3D reconstruction were investigated by 1 manuscript for each
task, respectively.
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Table 2. Segmentation—Digital Image Processing. For each work, the main task is reported, whether it concerns only the segmentation of lumbar components, or if it aims to localize
specific parts (e.g., the center of mass) of the components, or if it aims to identify each component (e.g., differentiating vertebrae between each other). If more structures are investigated,
the correspondent results are reported in the same order in which structures are presented in the column “Structures involved”. Abbreviations are used for Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), Accuracy (Acc), Sensitivity (Sen), Specificity (Spec), Area Under the Curve (AUC), Gradient Vector Flow (GVF), Support Vector Machine (SVM).

Author/Year Main Task Data Type # Patients Structures Involved Results Model

Haq, 2015 [26] Segmentation 3D MRI 21 Discs DICE = 91.7% Shape-aware models

Neubert, 2012 [27] Segmentation and Identification 3D MRI 28 Discs and Vertebrae DICE = 89 and 91%, Sen = 100%, Spec = 98% Statistical shape model

Haq, 2020 [25] Segmentation CT images 18 SpineWeb Discs DICE = from 91,7 to 95,4% Shape statistics deformable model

Li, 2018 [28] Segmentation CT images 115 (Microsoft R.+ SpineWeb) Vertebrae DICE = 92.1% Gaussian Mixture Model + threshold

Ibragimov, 2017 [29] Segmentation CT images 30 vertebrae Vertebrae DICE = 84.7% Landmark detection and deformable models

Yu, 2018 [30] Segmentation CT images 21 images Vertebrae DICE = 93.9% Bone-sheetness assisted grid cut

Korez, 2015 [31] Segmentation CT images 220 Vertebrae DICE = 94.6% Shape-constrained deformable model

Al-Helo, 2011 [32] Segmentation CT images 50 Vertebrae Visual evaluation Active shape models and GVF-snake

Ruiz-España, 2015 [33] Segmentation CT images 10 Vertebrae DICE = 95% Selective Binary Gaussian Filtering Regularized Level Set

Huang, 2013 [34] Segmentation CT images 56 Vertebrae DICE = 94% Otsu thresholding, edge- and region-based level set

Mahdy, 2018 [35] Segmentation and Localization CT images 10 Vertebrae Visual evaluation Threshold and adaptive K-Means

Courbot, 2016 [36] Localization CT images 15 Vertebrae Visual evaluation, Acc = 89.4% Hidden Markov Chain segmentation

Rasoulian, 2013 [37] Localization CT images 32 Vertebrae Visual evaluation, Center of mass MAE = 2mm Multi-object shape model

Mastmeyer, 2006 [38] Segmentation CT images 41 Vertebrae DICE > 98.6% Volume growing and morphological operations

Jimenez-Pastor, 2020 [39] Localization and Identification CT images 272 images Vertebrae Localization error = 13.7mm, Acc = 74,8% Decision forest + morphological image processing

Lee, 2011 [40] Localization and Identification CT images 19 Vertebrae Localization error = 0.14mm, Acc = 93.2% Threshold and thinning-based integrated cost

Klinder, 2009 [41] Localization and Identification CT images 64 Vertebrae Localization error = 1.1mm, Acc = 92% Triangulated shape models

Štern, 2009 [42] Localization MRI and CT images 13 and 29 images Discs and Vertebrae Localization error = 2.8 and 1.8 mm Analysis of the geometry of spinal structures

Wong, 2008 [43] Segmentation and Tracking Fluoroscopic images 2 videos Vertebrae Visual evaluation Wavelet and shape-active contour based

Zheng, 2011 [44] Segmentation and 3D reconstruction Fluoroscopic images 4 Vertebrae Mean reconstruction error<1.6mm Statistical shape models

Michopoulou, 2009 [45] Segmentation MRI 34 Discs DICE = 90% Atlas-robust-fuzzy C-Means

Fallah, 2018 [46] Segmentation MRI 50 Discs and Vertebrae DICE = 92.5 and 91.4% Hierarchical conditional random field and Random Forest

Ghosh, 2014 [47] Segmentation MRI 212 Discs and Vertebrae DICE = 87 and 84% Random Forest and context features

Kim, 2018 [48] Segmentation MRI 19 Vertebrae DICE = 90% Graph-based and line-based segmentation algorithms

Gaonkar, 2017 [49] Segmentation MRI 63 Vertebrae DICE = 83% Multi-parametric ensemble

Gawel, 2018 [50] Segmentation MRI 50 Vertebrae DICE = 91.4% Cascade classifier and Active Appearance Model

Engstrom, 2011 [51] Segmentation MRI 20 Muscles DICE = 87% Statistical shape model

Baum, 2018 [52] Segmentation MRI 10 Muscles DICE = 83% Average shape model and dual feature model
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Table 2. Cont.

Author/Year Main Task Data Type # Patients Structures Involved Results Model

Zheng, 2004 [53] Segmentation Fluoroscopic images 1 Vertebrae Visual evaluation Hough transform and Fourier descriptors

Jurcak, 2008 [54] Segmentation MRI 20 Muscles DICE = 77% Probabilistic atlases and geodesic active contours

Fortin, 2017 [55] Segmentation and Regression MRI 30 Muscles Reliability coefficient = 97-99% Threshold

Neubert, 2013 [56] Segmentation and Localization MRI 44 Discs DICE = 92.3%, AUC = 0.98 Active shape model, Linear Discriminant Analysis, SVM

Oktay, 2011 [57] Localization and Identification MRI 40 Discs Localization rate = 95.4%, Acc = 97% Probabilistic model and SVM

Castro-Mateos, 2016 [58] Identification MRI 48 Discs Sensitivity = 87% Active contour model and Feedforward NN

Kim, 2020 [59] Localization Ultrasound 50 Muscles 2mm discrepancy Fuzzy C-Means Clustering

Lui, 2014 [60] Localization Ultrasound 10 Muscles F1-Score = 90.9% Decoupled Active Contour

Ribeiro, 2010 [61] Segmentation X-rays 41 Vertebrae DICE = 91.7% Gabor Filters and NN

Sa, 2016 [62] Localization X-rays 30 Vertebrae True Positive Rate = 75% GVF-snake and SVM
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With regards to the papers that focused exclusively on segmentation, Haq et al. [26]
used shape-aware models on 3D MRI of 21 patients for the segmentation of IVDs, achieving
an average DICE of 91.7%. In addition, in a successive article Haq et al. [25] utilized a shape
statistical deformable model for the segmentation of IVDs on CT images of 18 subjects
from the SpineWeb dataset, achieving DICE scores ranging from 91.7 to 95.4%. Li et al. [28]
applied a threshold to the results of a Gaussian Mixture Model for segmenting vertebrae
on a total of 115 CT images from the SpineWeb and the Microsoft Research datasets, with
an average DICE of 92.1%. Ibragimov et al. [29] used landmark detection and deformable
models for segmenting 30 vertebrae on CT images, with a DICE of 84.7%. Yu et al. [30]
utilized bone-sheet assisted grid cut to segment vertebrae from 21 CT images, achieving
an average DICE of 93.9%. Korez et al. [31] applied a shape-constrained deformable
model for vertebrae segmentation from CT images of 220 patients, with a DICE of 94.6%.
Al-Helo et al. [32] combined Active-shape models and GVF-snake for the segmentation
of vertebrae from CT images of 50 subjects, assessing the segmentation quality by visual
evaluation. Ruiz-España et al. [33] used a Selective Binary Gaussian Filtering Regularized
Level Set to segment vertebrae on CT images of 10 subjects, achieving an average DICE of
95%. Huang et al. [34] exploited Otsu thresholding, Edge- and Region-based level sets to
segment vertebrae on CT images of 56 subjects, with a 94% DICE. Mastmeyer et al. [38]
utilized volume growing and morphological operations to segment vertebrae on CT images
of 41 subjects, achieving DICE scores greater than 98.6%. Zhang et al. [53] applied Hough
transform and Fourier descriptors for vertebrae segmentation on one fluoroscopic image,
assessing the segmentation quality by visual evaluation. Michopoulou et al. [45] used an
Atlas-robust-fuzzy C-Means for segmenting IVDs on MRI of 34 subjects, achieving a 90%
DICE. Fallah et al. [46] exploited Hierarchical Conditional Random Fields and a Random
Forest for the segmentation of IVDs and vertebrae, respectively, on MRI of 34 subjects,
achieving a DICE of 92.5 and 91.4%, respectively. Ghosh et al. [47] combined Random
Forest and context features for the segmentation of IVDs and vertebrae, respectively, on
MRI of 212 subjects, achieving a DICE of 87 and 84%, respectively. Kim et al. [48] used
graph-based and line-based segmentation algorithms for segmenting vertebrae on MRI of
19 patients, achieving a 90% DICE. Gaonkar et al. [49] applied a multi-parametric ensemble
to segment vertebrae on MRI of 63 subjects, with an average DICE of 83%. Gawel et al. [50]
combined a cascade classifier and an Active Appearance Model to segment vertebrae
on 50 MRI, achieving a DICE of 91.4%. Engstrom et al. [51] used a Statistical Shape
model for the segmentation of the quadratus lumborum muscle on MRI of 20 patients,
achieving a DICE of 87%. Baum et al. [52] exploited an Average Shape model and a Dual
Feature model for paraspinal muscle segmentation on MRI of 10 subjects, with a DICE
of 83%. Jurcak et al. [54] applied Probabilistic atlases and Geodesic Active Contours for
the segmentation of quadratus lumborum muscle on MRI of 20 subjects with a 77% DICE.
Ribeiro et al. [61] used Gabor Filters and an ANN to segment vertebrae on X-ray images of
41 patients, achieving a DICE of 91.7%.

With regards to the articles that performed localization following segmentation,
Mahdy et al. [35] used a threshold method followed by an adaptive K-Means for the
segmentation and localization of lumbar vertebrae on CT images of 10 subjects in order to
identify degenerated IVDs, and evaluated the performance by visual evaluation. Courbot
et al. [36] exploited a Hidden Markov Chain for semi-automated segmentation of vertebrae
on CT images of 15 subjects, achieving a localization accuracy of 89.4%. Rasoulian et
al. [37] developed a multi-object shape model for vertebrae localization on 32 CT images,
correctly localizing the centers of mass with a MAE of 2 mm with the aim of identifying the
optimal location for spinal needle injection. Štern et al. [42] performed an analysis of the
geometry of the spinal structures to localize the centers of IVDs and vertebrae on 13 MRI
and 29 CT images, respectively, with a localization error of 2.8 and 1.8 mm, respectively.
Neubert et al. [56] used an Active Shape model to segment IVDs on MRI of 44 subjects
achieving a DICE of 92.3%, and an AUC of 0.98 for localization of degenerated IVDs using
Linear Discriminant Analysis and SVM. Kim et al. [59] exploited Fuzzy C-Means Clustering
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for the localization of lumbar multifidus muscle on ultrasound images of 50 subjects, with
a 2 mm localization discrepancy. Lui et al. [60] utilized Decoupled Active Contour for the
localization of lumbar multifidus muscle on ultrasound images of 10 subjects, achieving
an F1-Score of 90.9%. Sa et al. [62] used Gradient Vector Flow Snake and SVM for the
localization of vertebrae on X-ray images of 30 subjects, achieving a True Positive Rate
of 75%.

With regards to the papers that performed identification following segmentation,
Neubert et al. [27] used a Statistical Shape model on 3D MRI of 28 subjects to segment and
identify IVDs and vertebrae, achieving segmentation DICE of 89 and 91%, respectively,
and 98.3% specificity and 100% sensitivity for the identification of degenerated IVDs.
Castro-Mateos et al. [58] described an Active Contour Model for the segmentation and a
Feedforward NN for the identification and classification of IVDs on MRI of 48 subjects,
achieving 87% Sensitivity.

With regards to the papers that performed both localization and identification, Jimenez-
Pastor et al. [39] used a Decision Forest and morphological image processing to localize
and identify vertebrae on 272 CT images, achieving a localization error of 13.7 mm and an
accuracy of 74.8%. Lee et al. [40] exploited threshold and thinning-based integrated cost on
CT images of 19 subjects, for the localization and identification of lumbar pedicles in order
to increase accuracy and safety during transpedicular screw placement, with a localization
error of 0.14 mm and 93.2% accuracy. Klinder et al. [41] used a Triangulated Shape model
on CT images of 64 subjects, achieving a vertebrae localization error of 1.1 mm and 92%
accuracy. Oktay et al. [57] combined a Probabilistic model with an SVM to localize and
detect IVDs on MRI of 40 subjects, achieving a localization rate of 95.4% and an accuracy
of 97%.

In addition, Wong et al. [43] used Wavelets and a Shape-Active Contour-Based model
for vertebrae segmentation and Tracking on 2 videos of fluoroscopic images, evaluating
the performance by visual evaluation. Zheng et al. [44] utilized Statistical Shape models
for vertebrae segmentation and 3D reconstruction on 4 fluoroscopic images, achieving a
mean reconstruction error of less than 1.6 mm. Finally, Fortin et al. [55] used a threshold
algorithm for segmentation and quantification of paraspinal muscle composition with a
reliability coefficient ranging between 97 and 99%.

4.2.2. Deep Learning

Deep learning is a class of AI algorithms based on Artificial Neural Networks. More
in detail, an NN is said to be “deep” if it is composed of more than 2 hidden layers.
Deep learning techniques for segmentation take as an input the whole original image,
and perform feature extraction, feature selection, segmentation and any further step (e.g.,
classification, regression) in one single model. In this review, we identified a total of 23
papers that performed deep learning segmentation, and their main characteristics are
reported in Table 3. In detail:

• 13 articles on MRI (2 of which considered 3D MRI and 1 with the addition of clinical
notes);

• 5 articles on CT images;
• 4 articles on X-ray images (1 of which in combination with Moire images);
• 1 article on ultrasound images.

Vertebrae were the most investigated lumbar structures (16 papers), followed by IVDs
(11 papers), spinal canal (7 papers), and muscles (5 papers). In total, 9 articles focused
exclusively on segmentation without further tasks. Among the others, 5 manuscripts
performed successive structure identification, 3 carried out a regression task, 3 performed
successive structure reconstruction, 1 work performed classification, 1 performed structure
localization, and 1 carried out both structure localization and identification. It is worth
noting that the vast majority of the works included in this section exploited Convolutional
Neural Networks (CNNs) or models that derive from them.
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Table 3. Segmentation—Deep Learning. For each work, the main task is reported, whether it concerns only the segmentation of lumbar components, or if it aims to localize specific
parts (e.g., the center of mass) of the components, or if it aims to identify each component (e.g., differentiating vertebrae between each other). If more structures are investigated, the
correspondent results are reported following the same order by which structures are presented in the “Structures involved” column. Abbreviations are used for Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), Mean Absolute Error (MAE), Accuracy (Acc), Convolutional Neural Network (CNN), Support Vector Machine (SVM), Regression Trees (RT).

Author/Year Main Task Data Type # Patients Structures Involved Results Model

Iriondo, 2020 [63] Segmentation 3D MRI 31 Discs DICE > 85% Coarse-to-fine context memory NN

Staartjes, 2021 [64] Segmentation and Reconstruction 3D MRI 3 All structures Visual evaluation CNN

Lee, 2020 [65] Segmentation and Reconstruction CT images 280 images All structures MAE = 21 pixels Generative Adversarial Networks

Fan, 2020 [66] Segmentation and Reconstruction CT images 108 All structures Kambin triangle = 161 mm2 U-net

Malinda, 2020[67] Segmentation CT images 120 Vertebrae DICE = 94.2% Generative Adversarial Networks

Siemionow, 2020 [68] Identification CT images 45 Vertebrae Acc = 96 to 99% CNN

Netherton, 2020 [69] Localization and Identification CT images 330 images Vertebrae Localization error = 2.2 mm, Acc = 94% X-net ensemble

Watanabe 2019 [70] Regression Moire images + X-rays 1996 Vertebrae Cobb angle MAE = 3.42° CNN

Kim, 2018 [71] Segmentation MRI SpineWeb 20 Discs DICE = 89.4% CNN (BSU-net)

Shen, 2021 [72] Segmentation MRI 120 Discs, Spinal canal and Muscles Jaccard: 87, 82 and 85% Feedforward NN

Gaonkar, 2019 [73] Segmentation MRI 39295 Discs and Spinal canal DICE = 88 and 87% Discs: U-net, Canal: SVM and RT

Huang, 2020 [74] Segmentation MRI 100 Discs and Vertebrae Jaccard = 92.6 and 94.7% U-net

Li, 2021 [75] Segmentation MRI 120 Vertebrae and Spinal canal DICE = 92.5% CNN

Li, 2019 [76] Segmentation MRI 120 Muscles DICE > 91.3% Deformed U-net

Zhou, 2020 [77] Segmentation MRI 57 Vertebrae DICE = 84.9% U-net

Jamaludin, 2017 [78] Classification MRI 2009 Discs and Vertebrae Acc = 95.6% CNN

Natalia, 2020 [79] Regression MRI 515 Discs and Spinal canal Mean error: 0.9 mm SegNet and Contour Evolution Algorithm

Zhou, 2019 [80] Identification MRI 1318 Vertebrae Acc = 98.9% CNN

Forsberg, 2017 [81] Identification MRI with clinical notes 475 Vertebrae Acc = 97% CNN and parts-based graphical models

Baka, 2017 [82] Identification Ultrasound 19 data sets Vertebrae Acc = 92% CNN and matching strategy

Cho, 2020 [83] Segmentation and Regression X-rays 629 Vertebrae DICE = 82.1%, MAE = 8,055° U-net

Li, 2016 [84] Identification X-rays 110 Vertebrae Acc = 80.4% CNN

Sa, 2017 [85] Localization X-rays 1081 images Discs Precision = 90.5% Faster R-CNN
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With regards to the articles that focused exclusively on segmentation, Iriondo et al. [63]
used a Coarse-to-fine context memory NN to segment IVDs on 3D MRI of 31 subjects,
achieving a DICE greater than 85%. Malinda et al. [67] utilized Generative Adversarial
Networks (GANs) for vertebrae segmentation on CT images of 120 subjects, achieving a
DICE of 94.2%. Kim et al. [71] exploited a BSU-net for IVDs segmentation on 20 MRI from
the SpineWeb dataset, achieving a DICE of 89.4%. Shen et al. [72] used a Feedforward NN
on MRI of 120 subjects, achieving a Jaccard index for the segmentation of IVDs, spinal canal
and muscles of 87, 82 and 85%, respectively. Gaonkar et al. [73] applied a U-net to segment
IVDs on 39295 MRI images, achieving an 88% DICE; they also combined an SVM with a
Regression Tree to segment the spinal canal with a DICE of 87%. Huang et al. [74] used a
U-net to segment IVDs and vertebrae on 100 MRI achieving a Jaccard index of 92.6 and
94.7%, respectively. Li et al. [75] utilized a CNN to segment vertebrae and spinal canal on
MRI of 120 patients achieving an overall DICE of 92.5%. Moreover, they used a deformed
U-net [76] for the segmentation of paraspinal muscles on 120 MRI achieving an overall
DICE greater than 91.3%. Zhou et al. [77] utilized a U-net for vertebrae segmentation on
MRI of 57 subjects, achieving a DICE of 84.9%.

With regards to the papers that performed structure identification following segmen-
tation, Siemionow et al. [68] used a CNN to identify vertebrae on CT images of 45 subjects,
with an overall accuracy ranging from 96 to 99%. Zhou et al. [80] combined a CNN and
similarity with a beforehand lumbar image for vertebrae identification on MRI images of
1318 healthy and unhealthy subjects, achieving an accuracy of 98.9%. Forsberg et al. [81]
combined a CNN and graph-based graphical models on MRI enriched with clinical notes
to identify vertebrae of 475 patients, achieving an accuracy of 97%. Baka et al. [82] utilized
a CNN and a matching strategy for vertebrae identification on ultrasound images from
19 datasets, achieving an accuracy of 92%. Li et al. [84] were the only to perform verte-
brae identification on X-ray images. They applied a CNN on 110 images, achieving an
80.4% accuracy.

With regards to the articles that performed a regression task, Watanabe et al. [70]
used a CNN to estimate spinal alignment on 1996 Moire images, with a Cobb angle MAE
of 3.42°. Natalia et al. [79] combined a SegNet and a Contour Evolution Algorithm to
measure anteroposterior diameter and foraminal widths on MRI of 515 patients suffering
from lumbar spinal stenosis with a mean error of 0.9 mm. Cho et al. [83] used a U-net
for the automated segmentation and measurement of lumbar lordosis on X-ray images of
629 patients, achieving a DICE of 82.1% and a MAE of 8.06°.

With regards to the articles performing a Reconstruction task, Staartjes et al. [64]
developed a CNN to segment and reconstruct the lumbar structures from 3D MRI of 3
patients, evaluating the performance by visual evaluation. Lee et al. [65] used GANs to
generate synthetic spine lumbar structures MRI from 280 CT images, with a MAE of 21
pixels. Fan et al. [66] axploited a U-net to reconstruct lumbar structures from CT images of
108 subjects, with a Kambin triangle of 161 mm2.

With regards to the articles performing a classification task, Jamuladin et al. [78] used a
CNN for classification of IVDs and vertebrae on MRI of 2009 subjects achieving an accuracy
of 95.6%.

In addition, Sa et al. [85] fine-tuned a Faster Region-based CNN (R-CNN) for IVD
localization on 1081 X-ray images with a 90.5% precision. Finally, Netherton et al. [69]
used an X-net ensemble to localize and identify vertebrae on 330 CT images, achieving a
localization error of 2.2 mm and an accuracy of 94%.

5. Discussion

Due to the extensive use of advanced imaging modalities and the complexity of
anatomical structures involved in the development of LBP and its sequelae, a vast body of
research has been investigating the utilization of AI in the elaboration of digital images
for different purposes. The vast majority of the works in the literature exploit MRI or CT
imaging, whereas a minority of works exploit X-ray, fluoroscopic or ultrasound imaging.
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It is worth noting that vertebral structures are the main focus of articles performing
segmentation, both with DIP and deep learning techniques; conversely, articles performing
feature extraction are mainly focused on IVDs.

With regards to feature extraction, which is the capacity of a system to recognize a
specific set of relevant features, all included studies collectively showed an accuracy > 80%
in identifying the location of vertebrae [24] and IVDs [8,20–24], with the ability to even
detect annular tears and lumbar disc herniation [21–23]. Although the majority of the
studies were conducted on MRI images [8,20–24], one study utilized X-ray imaging [10]
and another study built a 3D model of patients’ backs using a noninvasive surface acqui-
sition technology [19]. Moreover, some of these studies also reported the capacity of the
described systems to perform classification and regression tasks on extracted data, such as
estimating the degree of IVD degeneration [8,22–24], scoliosis curve type classification [19]
and prediction of curve progression [10], the presence of spinal stenosis [23] and to explore
the correlation between degenerative changes and the presence of LBP [24].

However, most studies focused on segmentation, which is the differentiation of specific
subregions of an image based on distinct parameters. Traditionally, segmentation tasks
have been performed by DIP systems via subdivision of elements within an image based
on gradient thresholding or statistical shape models, which fall under the definition of
semantic segmentation [86]. However, recent research has been exploring the use of
deep learning-based AI systems which are able to perform multiple tasks at the basic
and advanced level in a single model [1]. Vertebrae are by far the most investigated
structure, with AI systems reaching > 90% DICE and > 90% accuracy in the majority
of studies included in our review, both using DIP [28–41,43,44,48–50,53,61,62] and deep
learning models [67,69,77,80–84]. In particular, a study from Lee et al. [40] proposed a
model to obtain an automated segmentation of lumbar pedicles from CT images in order
to increase accuracy and safety during transpedicular screw placement. On the other
hand, a study from Watanabe and colleagues [70] described a CNN able to estimate spinal
alignment, vertebral rotation and Cobb angle with a mean absolute error of 3.6 pixels
for vertebral position, 2.9° for vertebral rotation and 3.42° with regards to the estimated
Cobb angle. Similarly, Cho et al. [83] presented a CNN capable of segmenting lumbar
vertebrae and subsequently calculate lumbar lordosis, with a mean absolute error of 8.055°.
In this manuscript, Several AI systems for automated segmentation of IVDs have been
described as well [25,26,45,48,56–58,63] with a reported DICE > 90% in nearly all studies.
Besides, performance of systems developed for the segmentation of paraspinal muscles
have reported a higher variability compared to other structures [51,52,54,55,60,71], with
higher DICE values for systems based on deep learning models [76]. In addition, some
studies evaluated the simultaneous segmentation of multiple structures, in particular IVDs
and vertebrae [27,42,46,56,74,78], with a DICE > 90% in DIP-based systems [27,42,46,56]
and a reported accuracy > 95% in most deep learning-based systems [68,71,74,78,85].
Furthermore, some of the latter have been used in order to synthesize CT images from MRI
and vice versa. For example, Staartjes et al. [64] introduced a CNN-based system able to
generate synthetic CT images from spine MRI, so as to acquire more precise information
about osseous structures compared to traditional MRI without the need to expose patients
to additional radiation. On the other hand, Lee and colleagues [65] presented a model
based on GANs capable of producing a synthetic MRI from spine CT scans, which resulted
in a mean overall similarity with real MRI scans of 80.2%. This study demonstrated the
possibility to extract accurate information about soft tissues from spine CT without the
necessity to order an MRI, which is often expensive and time-consuming. Other studies
have also shown the possibility to automatically calculate the spinal canal area [73] as well
as segmenting and reconstructing multiple structures at the same time [47,66,72,75,79] with
an elevate degree of accuracy.

Figure 4 shows a boxplot that summarizes the results for the segmentation of IVDs,
vertebrae and lumbar muscles, and the identification accuracy for different lumbar struc-
tures. With regards to the segmentation of IVDs and vertebrae, it is worth noting that DIP
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and deep learning techniques achieve very similar results, with DIP methods perform-
ing slightly better. This is mainly due to the regular and homogeneous surface of such
structures, whose well-defined edges can be effectively identified using DIP techniques
such as threshold and region-growing methods. Conversely, lumbar muscle segmentation
performance of deep learning techniques is sensitively better than that of DIP methods.
Indeed, the structure of muscles is irregular and more challenging to detect properly, and
deep NNs provide a better tool for such a task. With regards to the identification accuracy,
deep learning provides generally better results; nonetheless, DIP methods followed by
machine learning techniques are typically faster and less computationally expensive, and,
in some cases, provide similar performance.

Figure 4. Boxplot summarizing the results for different structures and tasks. The three left columns
refer to the DICE scores for the segmentation of IVDs, vertebrae and muscles; the right column refers
to the identification accuracy for different structures.

Although the application of computer vision to the elaboration of radiological images
of the spine is continuously increasing, some concerns still exist. Indeed, system validation
still largely depends on multiple user interventions and cannot replace the human counter-
part for obvious reasons, from both clinical and ethical perspectives. Furthermore, the best
performing methods are based on the application of NNs, which usually require a large
amount of images and computational capacity for training, which are not available to all
researchers. However, some DIP techniques provide equal or better performance in the
segmentation of regular-shaped structures such as vertebrae and IVDs, while requiring
a smaller amount of data for training and limiting the computational burden. Moreover,
some methods already exist for the automatic detection and grading of conditions such as
spondylolisthesis, disc herniation and scoliosis.

6. Conclusions

In the last decade, the utilization of AI has increased considerably in all fields, and
medical research made no exception. Indeed, AI-based computers have already shown the
potential to revolutionize the medical field, including spine surgery. In this study, we have
systematically reviewed the available literature on the use of AI, and more specifically com-
puter vision, in the prevention, diagnosis, and treatment of LBP. In conclusion, computer
vision techniques bear promises for effectively improving clinical practice in coming years,
thanks to the availability of public datasets and to the natural upcoming increase of the
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computational capacity. Furthermore, steps are being taken towards the interpretability
of AI and, in particular, of deep learning models. Such improvements will lead to the
development of systems that will not require multiple user interventions, thus providing
a valid assessment tool for physicians. LBP diagnosis and treatment often require the
utilization and integration of advanced imaging modalities. In addition, several structural
alterations, often subtle and nonunivocal to interpret, concur to define the clinical scenario.
In this picture, the use of AI and computer vision may effectively assist and implement the
diagnostic process, thus possibly improving clinical outcomes and diagnostic accuracy.
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