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Abstract

In the last few years, Natural Language Processing (NLP) has gained impressive mo-
mentum in both academic and industrial research. Texts portray distinct characteristics
from other kinds of data (such as images, audio, etc.), being inherently discrete, com-
positional, and hierarchical. NLP techniques allow the manipulation of such a peculiar
source of information, providing researchers and practitioners with a way to automatize
the analysis of textual data, enabling humans to communicate with machines (and vice
versa) through natural language.

Understanding and generating natural language revealed to be a valuable ally in
many fields, including healthcare. The process of digitalization taking place nowadays
in healthcare, as well as in everyday life (e.g., social media), is pushing the need for tools
to manage the high volumes of textual data available today. Leveraging unstructured,
textual data from Electronic Health Records (EHRs) and Internet resources has disclosed
plenty of applications, paving the way for improvements in the care of patients and their
diseases.

The exploitation of NLP techniques in the healthcare domain is not only driven by
the digitalization process we are living in but also by the advancements in the NLP field
over the past years. In the last decade, in particular, we shifted the NLP paradigm from
classical, machine learning-driven pipelines to end-to-end, deep learning ones. Especially
in the very last few years, the NLP field was ruled by the Transformers architectures,
which achieved state-of-the-art performance on numerous tasks. Besides the large im-
provements obtained with these kinds of architectures, concerns about their explainabil-
ity have risen. The end-to-end paradigm, together with the complexity of deep learning
models, makes it difficult to understand the motivations behind their decisions, which
inhibits the interpretation from final users, linguists, or domain experts. Such an issue is
particularly felt in a sensitive domain such as healthcare. Furthermore, being unable to
understand the mechanisms behind their reasoning inhibits the researchers from getting
rid of the current models and providing new solutions.

xiv



Abstract

The present manuscript thus explores the landscape of NLP solutions in healthcare
and provides significant contributions to the field. It demonstrates the worth of investi-
gating such technology for improving healthcare, with particular focus on the explain-
ability of the state-of-the-art models, i.e., Transformers, providing new solutions and
analyses.

After providing an extensive background of NLP and its advancements, focusing on
the solutions proposed in the healthcare literature, we investigated the use of Trans-
formers in both Natural Language Understanding (NLU) and Generation (NLG). For
the former, we collected the first dataset for sentiment analysis in Italian for healthcare.
In our work we compared Transformer-based and Machine Learning (ML)-based NLP.
Quite surprisingly, the classical model outperformed the other, for which we highlighted
its sensitivity to data class imbalance.

For the latter, we faced the problem of reducing the expertise gap for patients reading
medical texts by proposing a new system to simplify such documents. We employed
Transformer-based bi-encoders (also known as Sentence Transformers) to collect new
parallel datasets we analyzed in quality and then used to train an encoder-decoder
model (again, based on the Transformers architecture). The analysis we conducted with
human evaluators assesses without doubts our system to outperform models proposed in
the past literature, while providing relevant insights on the automatic evaluation metrics
usually employed in this kind of tasks.

Finally, we contributed to overcome the explainability issues, both from the end-user
and researchers standpoints. First, we proposed two hierarchical architectures based
on Transformers to perform document classification tasks while providing document
summaries as an explanation of the decisions made. Using a well-known benchmark in
sentiment analysis, we evaluated the two proposed models, highlighting their strengths
and weaknesses. Both systems achieved good results, not so far from previous literature,
while providing extractive summaries as an explanation of the sentences that were most
relevant for the decision. Our proposed evaluation protocols ensured their ability to
explain their reasoning.

Then, we conducted a study to investigate the robustness of Transformers when
adapting to new domains through the further pre-training paradigm. By inducing min-
imal variations we disclosed surprising instabilities in fine-tuning.After testing a very
large number of combinations, which we briefly summarize, our experiments focused on
an intermediate phase consisting of a single-step and single-sentence masked language
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modeling stage and its impact on a sentiment analysis task. We discuss a series of these
unexpected findings which leave some open questions over the nature and stability of
further pre-training and Transformers themselves.
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1. Introduction

Natural Language Processing (NLP) is a discipline at the intersection between Computer
Science (CS) and Artificial Intelligence (AI), and Linguistics that leverages unstructured
human-interpretable (natural) language text. NLP aims to provide computational ca-
pabilities to either understand human language or naturally communicate with humans.
In the former case, we refer to Natural Language Understanding (NLU), and in the latter
to Natural Language Generation (NLG). In the last decades, NLP became increasingly
popular: manipulating natural languages with machines has been shown to disclose
plenty of applications, useful for both industrial and research scopes.

The explosion of NLP has affected several fields, including healthcare. Especially in
recent years, NLP has been widely applied in health-related domains, from radiology [1]
and oncology [2] to chronic diseases [3] and cardiology [4]. NLP can be used for health-
specific tasks, for example,

• for mining medical records and clinical narratives, such as doctors’ notes and
discharge summaries, to interpret (NLU) and extract relevant information, helping
to standardize and organize for easy access and analyses [5];

• for generating coherent, natural language text (NLG) based on structured data
such as lab test results, which can ease the access to the implications of such
results for patients or young medical professionals [6];

as well as more traditional ones, such as mining patients’ opinions, which healthcare
organizations can use to identify areas for improvement and track changes in patients’
satisfaction over time [7]. Overall, NLP can potentially improve the efficiency and ac-
curacy of healthcare information management and support better decision-making and
care delivery. The potential applications of NLP in the healthcare scope are uncountable,
leading to impressive benefits for all the actors involved in the healthcare process (pa-
tients, clinical personnel, etc.). The use of NLP in healthcare is an active area of research
and development, and new applications are constantly being explored and developed.
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However, the growth path of NLP in medicine and healthcare is far from reaching its
end. As the healthcare industry continues to generate large amounts of unstructured text
data, such as Electronic Health Records (EHRs) and clinical narratives, as well as other
sources, e.g., social media, there will be increasing demand for NLP techniques. Such a
path still shows numerous barriers to be faced. Researchers in the field are required to
develop sophisticated and robust algorithms, leading to new and improved applications
in a domain as particular as healthcare. In particular, they must deal with the lack of
data, mainly due to privacy issues [8]. Healthcare-related free texts are usually filled with
personal data, arising concerns about patient privacy. To be compliant with the regula-
tions provided by the legislators1 in the matter of processing and sharing personal data,
healthcare organizations are often reluctant in providing access to the real-world data
for researchers. As a result, it makes it difficult to collect and share the large amounts
of data needed to train, evaluate, and compare NLP algorithms. Another issue to face
is the demanding of explainability in automated decision-making processes [9], enforced
by the concept of the right to explanation legislated by government organizations, as
the right to provide meaningful information about the logic involved in automated deci-
sions [10]. Especially in healthcare, where decisions made by an automatic system can
have significant implications for patient care and treatment, healthcare providers need
to understand the bases for such decisions. Delivering clear and understandable explana-
tions for the decisions is directing the research on developing transparent, accountable,
and trustworthy NLP algorithms.

The explainability concern, in particular, got emphasized by the adoption of end-
to-end Deep Learning (DL) methods in the NLP literature of the last decade(s). In-
troducing technologies such as word embeddings, Recurrent Neural Networks (RNNs),
and Transformers pushed NLP towards new horizons of improved performance with less
human effort, at the cost of the interpretability of the designed systems. Prior models
exploit features based on linguistic knowledge, for which one could observe the impor-
tance assigned by a statistical NLP model for a better understanding of the model and a
justification of its output. Encoding the information end-to-end instead makes it harder
to gain such insights.

Furthermore, these systems may be particularly affected by class imbalance [11],
exacerbated by the lack of real-world data in healthcare and the particularities of such

1Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons about the processing of personal data and the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation, a.k.a. GDPR)

2



1. Introduction

a domain. Overall, thanks to, or because of, these aspects, the growth path for NLP in
healthcare is likely to continue for the foreseeable future. Hopefully, the present thesis
will stand as one of the so many building blocks of it.

1.1. Objectives, Contributions, and Organization of the
Manuscript

The main objectives of the present thesis fall into deepening the study of Natural Lan-
guage Processing in Healthcare and demonstrating its potential for improving the ef-
ficiency and quality of care delivery while also tackling the emerging challenges of
using state-of-the-art models, i.e., the Transformers neural networks. Alongside the
manuscript, we present the contributions we made during the years of my Ph.D. in this
scope.

Part I: Background To bring people unfamiliar with the topics here presented to ap-
preciate the efforts and the results obtained in these years, in the next chapter, we
introduce the reader to a technical background (Chapter 2) regarding the recent ad-
vances portrayed in NLP, and its role in the recent literature and real-world applications
in the healthcare (Chapter 3). In particular, in collaboration with the physicians of
the Department of Orthopaedic Surgery at University Campus Bio-Medico of Rome, we
deepened the contribution of NLP in the care of Low Back Pain (LBP) and the related
spine diseases, which we systematically present in Chapter 4.

Part II: Tackling Healthcare with NLP Then, we illustrate how we tackled some of
the most anticipated tasks in the healthcare context under the perspectives of under-
standing (NLU) and generation (NLG) of natural language. For the former, we covered
the demand for automatic tools for sentiment analysis for healthcare companies in Italy
(Chapter 5). Being the earliest work facing such a task for Italian healthcare, we present
the first dataset in the literature consisting of patients’ reviews of care clinics and hos-
pitals written in Italian. Our analysis highlights some flaws of the ground-breaking,
Transformers models. In particular, the evaluated Transformer model resulted to be
weakened by the class imbalance of the training data, and even the implementation of
oversampling strategies did not lead to outperforming more traditional models such as
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Support Vector Machines (SVMs). It led us to conclude that, under some conditions,
more-powerful systems are not a priori the best choice, especially in lexical tasks such
as sentiment analysis.

For the latter, instead, we aimed at developing a system for facilitating the com-
munications between physicians and patients (Chapter 6). The development required
two separate steps. First, we employed Semantic Textual Similarity (STS) techniques
to collect new parallel datasets. Each sample consists of a pair of texts, i.e., a state-
ment written for physicians (domain experts) and the version for patients (domain lay)
associated with our trained model with a given similarity (content-preservation) score.
By collecting such datasets, we overcome one of the main issues in Text Style Transfer
(TST), allowing us to train, in a supervised way, models able to simplify experts’ text
for lay people. The analysis we conducted with both automatic metrics and human
judgments shows that our system significantly outperforms state-of-the-art methods in
simplifying medical texts, which would positively impact the communication between
doctors and their patients. Furthermore, we collected a new parallel database, in which
each sample consists of a pair of sentences and a score of content similarity expressed
by physicians, which can be used for developing or evaluating new STS systems for
healthcare.

Part III: Explaining Transformers In the third part of the manuscript, we illustrate
our efforts in tackling the explainability issue of modern models, i.e., Transformers. In
Chapter 7, we present the systems we designed as hierarchical Transformers for perform-
ing document classification while providing a summary of the document as an explana-
tion of the decision made by the model by extracting the sentences that plausibly most
influenced the model. In particular, such summaries enable the possibility to check for
eventual errors in the made decision. Being interested in the validity of the proposed
methodology, instead of focusing on a task in the healthcare domain, we assessed it on a
well-known benchmark in the NLP community regarding sentiment analysis. Although,
the proposed methodology is easily transferable to any document classification task, even
in healthcare.

The success of Transformers is, in large part, given by their pre-training phase. In
many cases, general-domain models were adapted to vertical domains, such as medicine
and healthcare, with an intermediate pre-training phase. However, besides the impor-
tance covered by such phases in modern NLP, the mechanisms underlying their success
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have been questioned. In Chapter 8, we illustrate the results of our experiments in
investigating such mechanisms. In particular, we discovered a surprisingly non-robust
behavior of this kind of models. While our work partly poses even newer questions, we
believe our efforts may help to uncover new details on these models.

Part IV: Conclusions In the end, we leave space for the final considerations following
the work portrayed so far.Furthermore, in the Appendix, we report an overview of the
contributions in computer science and bioengineering made during this period but are
unrelated to the topic of the present manuscript.
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2. Natural Language Processing is
What we Need

Natural Language Processing (NLP) is a remarkable technology that is already revo-
lutionizing how we interact with computers, automatizing many language-based tasks.
Since the advent of the first computers, we dreamt about giving machines the skills to
understand and generate natural language. Such a dream lasts from the first rule-based
machine translation systems in the early ’50s [12] and domain-specific chatbots such
as ELIZA [13] to the present day. However, the human language’s vast variability and
complexity make it difficult to process (and "understand") texts for these systems. The
establishment of NLP as one of the most valuable technologies of our times occurred
around the ’90s. Then, we began to abandon deterministic, pattern-matching systems
in favor of statistical methods [14], a.k.a., the conventional Machine Learning (ML), and
later, in the early 2010s, with the adoption of end-to-end Deep Learning (DL) techniques.

2.1. What is Natural Language?
Textual data is intrinsically different from other sources of information (e.g., images,
videos, audio), presenting unique characteristics that make them particularly challenging
to handle [15]. First of all, text may be produced by different authors and languages
(e.g., English and Italian), at times (e.g., modern English and Shakespearean English are
different), and for functions (e.g., poetry and technical reports). Text is also inherently
discrete, being combinations of symbolic units (e.g., characters, words); for example, I
can use the units {I, s, h, o, t, p, a, j, m, ..., shot, pajamas, elephant} to build the
sentence

"I shot an elephant in my pajamas."

as well as hierarchical: starting from the morphemes (morphology), we create and com-
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bine words following the given language rules (syntax) to convey some meaning (seman-
tics). Furthermore, language can be ambiguous; in the sentence above, for example, the
prepositional phrase in my pajamas may either be an adverbial modifier, telling under
which conditions I shot an elephant, or an adjectival modifier indicating that it was
the elephant wearing my pajamas. Language is also compositional: units such as words
can combine to create phrases and again to create larger phrases. Combining different
words/phrases can easily lead to change in the interpretation of the rest of the text; for
example, the composition from Groucho Marx in the movie Animal Crackers

"One morning, I shot an elephant in my pajamas. How he got in my pajamas,
I don’t know."

resolves the ambiguity in the previous example. Furthermore, any human language
follows two laws:

• Zipf’s law: there will be a few very frequent words, and a long tail of rare terms;
as a consequence, NLP algorithms should be particularly robust to observations
that do not occur in the training data.

• Heaps law: given a corpus (collection of documents) of N words (or tokens), the
number of unique words (i.e., the vocabulary size |V |) is proportional with (a root
of) N , which leads to sparse representations of documents in terms of the occurring
words.

All these characteristics make it particularly difficult to work with textual data. How-
ever, natural language, in both spoken and written forms, is the primary mean of human
communication. As is, these unstructured media are a precious source of information
that cannot be ignored in today’s world.

2.2. From Rule-based Systems to Transformers
The processing of natural language presents two perspectives: linguistic knowledge-based
NLP works by transforming text into a stack of general-purpose linguistic structures to
build applications on top of these linguistic structures [15], while the "natural language
processing from scratch" [16] train end-to-end systems without linguistic annotation,
currently dominated by Deep Learning (DL) methods. Figure 2.1 shows the evolution
of NLP through time, summarizing the main pros and cons of the two paradigms.
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Figure 2.1.: NLP evolution: from linguistic knowledge to end-to-end machine learning.

Although their deterministic nature assures high precision and their being easy to
debug and interpret, rule-based methods usually present only moderate recall and are
hardly scalable to new data. Plus, they exploit plenty of linguistic knowledge, regular
expressions, and heuristics, thus requiring relevant efforts from expert developers and
linguists to design such systems.

With classical Machine Learning, we were able to mitigate the negative aspects of
past systems. By extracting meaningful features from the text, we train ML models
to obtain higher coverage in a relatively fast and scalable way. However, implementing
this kind of systems still requires human efforts in designing relevant features for the
task at hand. To manipulate text with ML models, we need to extract a mathematical
representation of words and documents, i.e., numerical vectors passed in input to the
models. To build such representations, we pull out features from the bare text. This
aspect is, perhaps, the most crucial one in classical NLP.
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We can roughly divide textual features into two categories, statistical and hand-
crafted features. In the former, considering a vocabulary V = {w1, · · · , w|V |}, where wi

represents the i-th word or character (or, generally speaking, token), we may represent
documents as vectors of dimension |V | as either

• One-hot Encodings (OhE), in which the i-th entry can assume the value of either
1 or 0, representing the presence or the absence of the token wi in the document;

• Bag of Words (BoW), in which the i-th entry is the number of occurrences of the
token wi in the document;

• Term-Frequency-Inverse Document Frequency (TF-IDF), which improves BoW by
integrating information about the frequency of the token wi in a given (training)
corpus as a weighting term [17, 18, 19].

As hand-crafted features, instead, we can extract from the raw text the linguistic in-
formation about syntactic and semantic structures, such as Part-of-Speech (POS) tags,
orthographic and dependency labels, and named entities. The practice to extract this
kind of features resides in using other ML and rule-based methods [20, 21]. Neverthe-
less, these methods are usually limited to a monolingual setting, with their performance
tending to fade when used in domains different from the one(s) they were trained at
first [22].

This kind of representation does not take into account the word orders. Recalling the
principle of compositionality of language in the previous section, a common technique is
to use n-grams of features. Consisting of n sequential features, e.g., words, they capture
more complex structures, i.e., context. For example, while good conveys a positive
meaning, not good conveys the opposite sentiment; similarly, while Paris indicates a
location entity, Paris Hilton refers to a person. By the way, recalling the Heaps law,
considering large values for n (≥ 3 for words) exacerbates the sparsity issue these kinds
of representations bring.

Besides these complexities, the ML approach is still being successfully employed: in
Chapter 5, we show how a Support Vector Machine can overcome most modern models,
i.e., BERT [23], on a sentiment analysis task, using raw and hand-crafted features.

However, with such representations is not easy to deal with single words, e.g., in
a task of token classification or in the scope of analyzing a sequence of tokens as is.
Here, the Distributional Hypothesis (DH) [24] came to help. The hypothesis states
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that each language can be described in terms of the occurrence of parts relative to other
parts [25]. Such a hypothesis led to the traditional Distributional Semantics (DS), and its
Models (DSMs), based on counting the co-occurrence of target words in the environment
(context) [26, 27, 28, 29]. In other words, difference of meaning correlates with difference
of distribution, thus similar items, e.g., words, lie as close co-occurrence representations
in the n-dimensional vector space, as shown by a simplified example in Figure 2.2 [29].

Figure 2.2.: Example of distributional vectors of the lexemes car, cat, dog, and van, in a
simplified, three-dimensional visualization.

However, in real scenarios, n represents the number of items in the entire corpus at
hand, which means that the vector space still tends to be very high dimensional.

It was in the last decade that researchers developed Deep Learning methods that
successfully embedded dense representations for words. In 2013 Word2Vec, in both its
Skip-Gram and CBOW variants [30, 31, 32] overcame the counting paradigm, advancing
the representation learning towards a predictive paradigm [33]. Later, other good tools
came out, e.g., GloVe [34] and FastText [35].
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Deep Learning has widely improved the capabilities of NLP systems, allowing them to
handle a range of languages and language styles, achieving better performance with the
drawbacks of the need for high-volume datasets for training and computational costs.
However, DL allowed the development of end-to-end systems, abandoning the feature-
engineered paradigm, thus minimizing the need and efforts of linguists and experts in the
application domain. Figure 2.31 shows the differences between classical and DL-based
NLP.

Figure 2.3.: Differences in the pipelines of classical NLP and Deep Learning-based NLP.

The success of Deep Learning in NLP is given by several factors [36], such as the
increase in computational power, the availability of high-volume corpora (e.g., from the
web), and architectures able to elaborate sequential inputs. Unlike traditional feed-
forward ones, Recurrent Neural Networks (RNNs) [37] exploit feedback connections to
let the information from previous timestamps flow through the network. Such a strategy

1https://s3.amazonaws.com/aylien-main/misc/blog/images/nlp-language-dependence-small.
png
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allows RNNs effectively process data sequences, capturing the structure and dependen-
cies from the context, especially with the bidirectional variants [38] (Bi-RNNs). Such
networks were largely implemented by the NLP researchers, even for computing contex-
tualized word embeddings by computing other NLP tasks such as Machine Translation
(MT) and Language Modeling (LM), as for CoVe [39], ELMo [40], and ULMFiT [41].
Unlike static word embedding mentioned above, in which each word is associated with
a unique vector, contextualized representations change dynamically with respect to the
context. For example, in the sentence

"I had my booster shot today."

the term shot has a completely different meaning from the example reported in the pre-
vious section. However, it would be represented with the same static word embeddings
in both contexts.

Despite their common usage in past years in complex NLP tasks, such as LM [42, 43],
such networks are affected by the exploding and the vanishing of the gradient during
training [44], which let the capture of dependency to fade for long sequences. Further-
more, their sequential nature makes them computationally expensive to train, limiting
their application to restricted corpora. While more powerful variations using Long-Short
Term Memory [45] and Gated Recurrent Unit [46] cells (LSTMs and GRUs) helped to
partially overcome these issues, their appeal faded in favor of Transformers, a very re-
cently proposed feed-forward architecture.

Introduced in 2017 by researchers at Google [47], Transformers have since become one
of the most successful architectures for NLP, becoming almost ubiquitous in the recent
literature, especially after the Bidirectional Encoder Representations from Transformers
model, a.k.a., BERT [23], came out. Their success resides mainly in the self-attention
and positional encoding strategies. Based on the idea of the attention mechanism first
introduced in computer vision [48] and neural machine translation [49], the former al-
lows to simultaneously focus on different elements in the input sequence. The latter,
instead, comes in help for recovering the information about the sequence order. Rather
than employing recurrence to sequentially process the input sequences, these strategies
allow Transformers to capture long-range dependencies in the input data and parallelize
the processing. As a consequence, researchers were allowed to self-supervised (pre-)train
deeper and deeper architectures on high-volume, unlabeled corpora. Examples of such
models are the so-called large Language Models, such as BERT [23], in its Base (110
million parameters) and Large (340 million parameters) versions, its optimized variants
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RoBERTa [50] and DistilBERT [51] (the latter, counting "only" 66 million parameters),
and the OpenAI models family, i.e., GPT [52] and its 1.5 and 17 billion parameters
successors GPT-2/3 [53, 54]. These task-agnostic pre-trained LLMs have shown ex-
tensive improvements when fine-tuned on a multitude of downstream tasks, either at
token-, sentence-, and document-level, reaching state-of-the-art performance even in a
benchmark like the GLUE one [55].

The transfer learning paradigm [56] has, indeed, shown great benefits instead of train-
ing these models from scratch on the target task. To further increase the performance,
an intermediate step of pre-training to adapt a general-domain model, such as BERT
and ALBERT, to a specific domain, such as the healthcare one, i.e., BioBERT [57] and
ClinicalBERT [58], and BioALBERT [59], also for languages different from English,
e.g., KM-BERT [60]. Although the success of this strategy is commonly attributed
to the pre-training phases which would allow learning linguistic knowledge from large
corpora [61, 62, 63, 64, 65] that is then exploited during fine-tuning, recent studies
showed the benefits of pre-training with either small, noisy or even non-human language
data [66, 67, 68, 69, 67, 70]. In Chapter 8, we present our contribution to the analysis of
further pre-trained models, discovering how tiny, numerical differences induced by one
only sentence lead to astonishing differences in fine-tuning. These recent results suggest
that such benefits are induced by pre-training mechanisms not yet fully elucidated.

Another issue in these models is the lack of interpretability. Moving along from
the more linguistically-based methods, understanding the mechanisms involved fades.
In particular, while in classical NLP we may still be able to observe the importance
given to each feature by the statistical models to figure out the reasoning behind a
model decision, in the end-to-end paradigm, the information flows through repeated
transformation processes, turning it into latent representations. The abstraction pro-
cesses make it increasingly difficult to understand what kind of linguistic knowledge
is encoded at each step [71] and explain the model decisions. Using these techniques
for increased performance is countering the trend of right to explanation legislated by
government organizations [10]. Shifting the paradigm from black-box models to mod-
els that provide understandable explanations to final users, or to domain experts [72],
without impacting the performance is a well-known problem in the XAI (eXplainable
AI) research [73, 74, 75], as well as in NLP [76].

Several methodologies have been proposed in the literature so far, such as LIME [77,
78] and integrated gradients [79]. Attention has been discussed [80, 81] as a less burden-
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some alternative, even for Transformers: the BertViz tool [82], for example, provides
an interactive interface to visualize attention weights between tokens for every attention
head in every layer. In Chapter 7, we present our approaches to exploit hierarchical archi-
tectures involving Transformers, also in combination with the attention-as-explanation
paradigm, to extract collateral summaries from the model during a document classifica-
tion task.

We can see that more advances are portrayed in the processing of natural language,
and newer problems need to be faced. As a reminder of this chapter, the research in
NLP is far from reaching its end, increasingly evolving to handle problems of more and
more complexity, making things that were inconceivable just a few years ago. A striking
example is the ChatGPT dialogue-specialized chatbot trained by OpenAI2: just released
the past November 30, in a few days, it has conquered the attention of the scientific and
NLP community, as well as renowned newspapers, becoming a trending topic on social
media and gathering 1 million users in less than a week.

2https://openai.com/blog/chatgpt/
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The healthcare industry is rapidly moving through a digital transformation. One need
only thinks of the increasing adoption of Electronic Health Records (EHRs) in hospitals
and clinics around the world [83]. These clinical documents can contain about 80% of
unstructured data [84]. While conveying various kinds of information, from videos to
images, as well as other monitored biosignals, a consistent amount of information in
the EHRs is in the form of free text. Besides allowing physicians and the other fig-
ures involved in the clinical process to provide a more comprehensive description of the
patients’ health status [85, 86], free texts often require them a longer documentation
time [87, 88], both for understanding or redact those reports. Not a case, the develop-
ment of NLP in the health-related area was concurrent with the increasing adoption of
EHRs in the clinical practice [89, 90, 91], in search of tools to efficiently manage the
unstructured data.

Analyzing patients’ medical records with NLP techniques can ease physicians’ access
to a lot of information by providing, for example, summaries contained in the notes daily
produced during the care process [92, 93]. In this way, physicians would be allowed to
examine and extract more quickly relevant information such as diagnoses, medications,
treatment plans, and so on. Also, automatically compressing the information in sum-
maries of medical records may be used to develop tools for automatic diagnoses [94]
that can be used as Computer-Aided Diagnosis (CAD) systems by physicians. In many
cases, the classification of a diagnosis or a procedure is conveyed by standard codifi-
cations. The International Classification Diseases (ICD) nomenclature, for example,
is an important tool used worldwide, maintained by the World Health Organization
(WHO) to simplify the comparison of health data within and across populations and
ease epidemiology analyses. This classification procedure is, nowadays, entrusted by
trained staff or medical personnel without professional training. Apart from physicians,
healthcare companies may benefit from an automatic coding system, too. Hospitals use
the ICD codes to group patients’ stays to Diagnoses Related Group (DRG) codes [95],
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which are used assign to determine the remunerative reimbursements from the patients’
health insurance or the national health systems. Such a classification procedure is of-
ten entrusted to medical personnel. Considering its overwhelming and time-consuming
characteristics, it is a task extremely complex even for professionally trained staff, and
highly error-prone, which may lead to financial losses and potential legal consequences
as well. Not a case, several researchers have focused their efforts on automatic systems
for ICD coding [96] from clinical notes, e.g., discharge summaries. Recurrent [97] and
convolution [98] approaches have been proposed, using attention mechanisms to high-
light the most important word n-grams as an explanation. More recent works used
Transformer-based models [99], even in hierarchical configurations [100]. Similarly, the
approaches we present in Chapter 7 may be extended to multilabel ICD classification
while providing extracts from the documents as an explanation of the decisions.

Interpretability is an essential aspect in modern research in NLP for healthcare, to-
gether with customizability and integration of heterogeneous information [9]. The lack
of interpretation, in particular, undermines the adoption of NLP systems in this sensitive
domain, leading patients and physicians to have low trust in these tools. However, NLP
researchers have to tackle other issues in developing new methodologies: more than in
other domains, the unfolding of NLP in healthcare has not been (and still is not) without
hurdles. Concerns regarding patients’ privacy restrict access to shared data, inhibiting
co-operations and reproducibility among NLP researchers’ teams. Narrative reports are
full of sensitive information regulated by legislation, as the U.S. Health Insurance Porta-
bility and Accountability Act (HIPAA) of 1996 [101, 102]. The high costs and reliability
issues of de-identifying such reports is one major barrier [8] for the NLP community in
healthcare. Not a case, the first shared task for clinical NLP proposed in 2006, the first
Integrating Biology and the Bedside (i2b2), focused on automatically removing Private
Health Information (PHI) from medical discharge records [103]. Interestingly enough,
the task was proposed by the Clinical Informatics (CI) community [104], while we had to
wait until 2013 for the first shared task in healthcare proposed by the NLP community,
in CLEF eHealth Task 2 Disorder Mention [105].

Many researchers put their efforts working on publicly available databases of clin-
ical notes. For example, the MIMIC (Medical Information Mart for Intensive Care)
databases1 [106, 107] allowed researchers to work on a large amount of (not only textual)
data overcoming regulatory obstacles. Many NLP researchers used such data for plenty

1https://mimic.mit.edu/
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of tasks, such as identifying ICD codes from discharge summaries [97, 98, 108, 109],
recognizing entities of medical interest such as drug names and their dosage [110] or
other concepts [111], as well as producing clinically, semantically meaningful word rep-
resentations exploiting the most recent models as Transformers [58].

Others have managed to create facilities like lexicons and ontologies for medical and
clinical informatics that can be exploited by NLP practitioners. Such resources can
help in tackling the challenges of the medical and clinical language [112], like several
different clinical, biological, and medical domains, each with its lexicon and its acronyms,
abbreviations, ambiguous names, entities, and variants. The Unified Medical Language
System2 (UMLS) is probably the most known compendium of the field. Started in
1986 by the National Library of Medicine to promote the development of interoperable
biomedical information systems, e.g., EHRs, it integrates and distributes key terminology,
classification and coding standards, and associated resources in the form of:

• a metathesaurus of biomedical concepts, their definitions, and relations;

• a semantic network of groups of these concepts and their semantic relations;

• a specialist lexicon [113].

NLP researchers in health-related fields can exploit data contained in this kind of re-
source to improve the ability of computer programs to "understand" the biomedical mean-
ing [114, 115, 116].

Apart from EHRs and compendiums, with the increasing growth of the World Wide
Web (WWW), the NLP community is exploiting data from resources like forums and
social media intending to help health care and services improve. The analysis of so-
cial media texts, in particular, brings several challenges, i.e., noisy and full of domain-
specific data [117], which often shows to medical-domain tools, e.g., MetaMap3 [118]
and cTakes4 [119], to fail [120]. However, such an analysis is still useful for a set of
public health applications [121]. Social media allows us to identify the trends in the
prevalence of certain diseases like influenza [122, 123, 124] and, very recently, COVID-
19 [125], or for pharmacovigilance [126, 127, 128]. Among the several scopes, mental
health surveillance is one of the most faced topics in literature [129, 130, 131, 132],
with particular focus on the identification of suicidal intentions [133, 134]. Apart from

2https://www.nlm.nih.gov/research/umls/index.html
3https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html
4https://ctakes.apache.org/
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the general-domain social media, other platforms are arising from the WWW, grouping
users with similar interests [135]. Known examples of such online health communities
are PatientsLikeMe5,DailyStrength6, and Our Data Helps, in which users donate their
“friends and family”-visible social media data and annotated numbers and dates of past
suicide attempts through the platform7.

One typical application that can exploit patients’ annotated data is the Sentiment
Analysis (SA) of online reviews. As it happens in other fields where consumers check for
reviews before purchasing a product or service, patients search for opinions from others
with similar health-related experiences [136, 137, 138]. Healthcare companies can benefit
from the automatic mining of patients’ opinions to individuate strengths and flaws of
their care services and treatments. Automatic tools would allow them to abandon the
traditional structured surveys and questionnaires, which limit patients’ expressiveness
and are costly and time-consuming to design and then analyze, while also approaching
larger amounts of reviews. Besides several sentiment analysis methods developed for
many domains, their application to the healthcare domain was not largely exploited
initially, especially for languages different but English [139]. In Chapter 5, we present
our efforts in developing SA systems for the Italian language after collecting the first
dataset for Italian health care.

The opportunities offered by the WWW can be exploited directly by patients too.
One of the main merits of the Internet is to "democratically" provide easy access to a
large amount of information. Among all the information, the Internet is full of medical
knowledge that can be reached even by people without a medical background. When
these resources are designed for medical professionals, other people may suffer from the
so-called curse of knowledge [140] of the medical information present on the web, which
may lead unskilled people to misinterpretations [141]. In Chapter 6, we present our
approach to addressing such issues and reducing the expertise gap between doctors and
patients. Issues in understanding medical information may also be a result of the pres-
ence of misinformation on the Internet, especially on social media. Several researchers
have put their efforts into recognizing health-related fake news. For example, Sager
et al. [142] collected and annotated a small database containing misinformative posts
from the Reddit dermatology forums, while Patwa et al. [143] developed systems in an
attempt to fight the infodemic, a spreading of (potentially harmful) false information,

5https://www.patientslikeme.com/
6https://www.dailystrength.org/
7https://ourdatahelps.org/
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on COVID-19 with a manually annotated database consisting of posts and articles from
Twitter.

Coming back to the analysis of the EHRs, NLP represents an unprecedented oppor-
tunity for biomedical researchers. Researchers can exploit NLP techniques to ease the
recruitment of patients for studies by identifying people meeting the study criteria from
the clinical notes [144, 145], perhaps with appropriate adjustments to handle variations
in clinical documentation between different institutions [146]. It leads to building larger
cohorts with fewer efforts, which is extremely useful for researchers in biomedical in-
formatics, too. Using NLP to annotate patients’ health status from their reports, they
can train other systems on different kinds of data, like images, in a supervised way.
This strategy allows the researchers to exploit a large amount of data to train their
CAD systems, which is often a strict requirement for data-driven methods (especially
deep learning ones). Wang et al. [147], for example, used NLP techniques for detecting
the pathology keywords in radiology reports and labeling chest X-ray images. Then,
they generated silver labels to train a multi-label classification system to detect thoracic
diseases from such images.

The NLP solutions in healthcare are not limited to research but are already being
seen in some industrial applications. A popular one is represented by chatbots, also
known as chatterbots [148], digital agents designed for conversing with specific users,
e.g., patients. Such systems can provide useful information in a quick and personalized
way, leading to better outcomes for patients’ health. Chatbots offer a friendly and
entertaining way to educate patients suffering from a chronic or mental health disease,
in particular, to entail better adherence to care treatments. For example, the education
given to patients with type 2 diabetes by their care providers has shown to be more
efficient proportionally with the number of interactions [149]. In this sense, chatbots
show promise in helping patients build new healthy habits at a scale, reducing hospital
admissions and healthcare costs and times. An example of this kind of application is the
AIDA tool8, a free web software that allows users to ask questions in Italian regarding
type 1 diabetes. Conversational agents can also help patients modify their behaviors by
providing real-time support to enhance their coping skills in decision-making. Chatbots
are a growing technology in the mobile health (mHealth) landscape: Parmar et al. [150]
reviewed the healthbots from two major digital stores for mobile apps (i.e., Google Play

8www.aidachatbot.it
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Store9 and iOS App Store10). However, not surprisingly, they found most healthbots
relying on rule-based approaches and finite-state dialogue management, directing the
user through a predefined path rather than exploiting the latest, data-driven techniques.

The panorama of applications of NLP in healthcare is extremely vast and unfeasible
to review in its entirety. Houssein et al. [151] focused on the machine learning techniques
used in the literature for biomedical NLP. To help other researchers overcome privacy
issues for their studies, Gao et al. [104] summarized the main publicly available tasks
in clinical NLP, i.e., tasks involving publicly available EHR data. Gonzalez et al. [135],
instead, reviewed works in mining either EHRs or social media posts. Most past investi-
gations of the literature focused on particular subdomains. For example, recently, Zhang
et al. [152] narratively described works in the scope of detecting mental illness, while
Chen and Baxter [153] focused on studies in ophthalmology, highlighting new potential
applications and limitations. Following their example, given the unfeasibility to discuss
in deep the whole landscape of applications of NLP in healthcare, we decided to dive
into the NLP in the care of Low Back Pain (LBP) and the related spine disorders. We
present our systematic analysis in Chapter 4.

The reminder of this chapter is that NLP in healthcare is a thriving field of research,
with applications in the real world that can help improve the current care of patients.
As NLP techniques continue improving, many opportunities are behind the corner for
researchers, leading to new resources to exploit and new tasks and benchmarks (e.g.,
[154]) to be faced.

9https://play.google.com/store/apps
10https://www.apple.com/app-store/
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4. A Case Study of NLP in Healthcare:
an In-Depth Analysis for Low Back
Pain and Spine Disorders

To provide more insights into how NLP is striking the world in healthcare, we performed
an in-depth analysis of the literature involving a specific case study: applications in Low
Back Pain (LBP) and spine disorders1. In particular, we collaborated with the physicians
of the Department of Orthopaedic Surgery at University Campus Bio-Medico of Rome.
We decided to focus on this particular topic because of the high impact these diseases
have on the patients’ health and quality of life, other than the economic burden they
bring.

The prevalence of such a musculoskeletal condition is increasing worldwide. A recent
study [156] has reported the number of people experiencing LBP at some point in their
lives increased from 377.5 million in 1990 to 577.0 million in 2017 globally. Even if the
prevalence increases with age, people experience LBP not only in their earlier adulthood
but also during adolescence [157]. In particular, chronic LBP is often considered the main
reason for disability in a large portion of the population [158]. Even in cases pain does not
imply disability, this condition often causes activity limitation and work absence [159,
160], leading to a high economic burden on workers, industries, and governments [161].

Although preliminary, studies concerning low back pain and other related spine dis-
orders with relevant applications of NLP methodologies have been reported in the lit-
erature over the last few years. It motivated us to systematically review the literature
comprised of two major public databases, PubMed and Scopus. To do so, we first
formulated our research question following the PICO guidelines. Then, we followed a
PRISMA-like protocol by performing a search query including terminologies of both

1The work presented in this chapter is an extract of our paper published in Frontiers in Surgery [155]
entitled Natural language processing in low back pain and spine diseases: A systematic review
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technical (e.g., natural language and computational linguistics) and clinical (e.g., lumbar
and spine surgery) domains. We collected 221 non-duplicated studies, 16 of which were
eligible for our analysis.

4.1. Materials and Methods
To perform an exhaustive overview of the applications of NLP in the management of
LBP, we interrogated both PubMed and Scopus databases with similar queries. For
both databases, we performed the search on November 6th, 2021.

4.1.1. Research question

AI and CS systems have already shown to be a great support to physicians in diagnosing
and treating LBP and related pathologies in humans [162, 163]. Here, we aimed to
provide a comprehensive review of the literature regarding the described applications of
NLP-related methods to the care of patients affected by LBP. Precisely, following the
PICO guidelines, we aimed to answer the following research question:

• In human subjects, with any demographic information, affected by LBP and related
spine disorders {Population/Problem}

• may NLP methodologies, {Intervention}

• compared with human operators and other already existing tools, {Comparison}

• help healthcare providers in the management of such conditions? {Outcome}

4.1.2. Research protocol

To exhaustively review the literature, we developed the following research protocol. First
of all, we elaborated on a search query. We performed the query on two public databases,
namely PubMed2 and Scopus3. For both databases, we considered the title and abstract
of the articles. For the Scopus database, in addition, we also took into account the
keywords assigned to the papers. Then, we formalized the inclusion/exclusion criteria.
We excluded papers not meeting the inclusion criteria from further analyses. After

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.scopus.com/
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conducting the first screening by removing the duplicated articles, two authors carried
out a preliminary screening after reviewing the titles and abstracts (and, eventually,
the keywords) of the total of the gathered papers. After that, the same authors went
deeper by analyzing the full texts. Whenever a discordance happened, the two authors
discussed it until reaching a consensus. Finally, we reported in the present review the
works retrieved. The developed protocol is resumed in Figure 4.1, reporting the flow-
chart diagram realized according to the PRISMA protocol employed.

Figure 4.1.: Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) flow diagram.
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4.1.3. Search query

The proposed search query consists of two parts, one including terms from the NLP
terminology and the other including terms related to LBP. In each of the two query
sections, the terms have been linked by the logical OR operation, while the inter-relation
between the two parts has been represented by the logical AND operation, meaning that
the papers resulting from the interrogation had to present at least one of the terms for
both query sections.

The NLP part contained several terms, each belonging to a particular characteris-
tic of the NLP methodologies. Of course, terms as natural language, NLP, NLG, and
NLU were directly inherent to the scope. Terms like computational linguistics and
text mining were included because directly related to the NLP field, and are often uti-
lized as interchangeable synonyms. For both of them, there are only slight differences.
Sometimes, field practitioners disagree about those differences. Usually, computational
linguistics concerns the development of computational models to study some linguistic
phenomenon, also concerning other fields such as sociology, psychology, and neurology.
For example, a successful approach in computational linguistics may be designing a
better linguistic theory of how two languages are historically related. NLP, instead, is
mainly oriented toward solving engineering problems by analyzing or generating natural
language text. Here, the success of the NLP approach is quantified by how well the
developed system resolves the specific task. Text mining, instead, usually refers to turn-
ing unstructured text into structured data to further exploit it, e.g., through statistical
analysis (data mining).

Instead, terms as tokenization, word embedding, rule based, regex, regular expression,
bert, and transformers refer to the methods to pre-process, extract features and models
used to elaborate unstructured text, while automated reporting, summarization, named
entity recognition, and topic model refer to specific tasks that can be performed on the
text and are typical in the medical domain. Furthermore, we included some other generic
terms: text analysis, free text, biomedical text, medical text, clinical text, biomedical notes,
medical notes, clinical notes; and linguistics.

The medical part, instead, contains all terms related to the LBP and spine disorders
conditions: low back pain, lumbar, intervertebral disc degeneration, intervertebral disc
displacement, spondylarthritis, spondylolisthesis, disc herniation, spine surgery, spondy-
larthrosis, and durotomy.
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4.1.4. Inclusion and exclusion criteria

This systematic review aimed to gather all the studies concerning the utilization of NLP
in the diagnosis, prevention, and treatment of LBP. Straightforwardly, all the selected
articles had to meet the following inclusion criteria:

• LBP must have been between the main topics of the articles;

• NLP techniques must have been used in the studies;

• Subjects of the studies: all the articles must have been based on studies of the
human spine pathology;

• Language: all articles must have been written in English.

Conversely, we excluded articles that did not meet the inclusion criteria for one of the
following reasons:

• Low Back Pain or spine diseases were not considered;

• No automatic tool of text analysis were exploited;

• Animal studies.

4.1.5. Quality of evidence

The methodological quality of included studies was assessed independently by two re-
viewers. Any disagreement was solved by the intervention of a third reviewer. The
risk of bias and applicability of included studies were evaluated by using customized
assessment criteria based on the Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) [164]. This tool is based on four domains: patient selection, index test,
reference standard, and flow and timing. Each domain is evaluated in terms of the risk
of bias. The first three domains are also assessed in terms of concerns regarding appli-
cability. Sixteen studies were rated on a 3-point scale, reflecting concerns about the risk
of bias and applicability as low, unclear, or high, as shown in Figure 4.2.

4.2. Results
The search queries performed on PubMed and Scopus resulted in 103 and 211 papers,
respectively. Nonetheless, many of these articles were duplicates. So, as a first screening,
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Figure 4.2.: Summary of the methodological quality of included studies regarding the
four domains assessing the risk of bias (left) and the three domains assess-
ing applicability concerns (right) of the QUADAS-2 score. The portion of
studies with a low risk of bias is highlighted in green, the portion with an
unclear risk of bias is depicted in blue, and the portion with a high risk of
bias is represented in orange.

we removed the repeated studies, resulting in 221 unique papers. Then, we analyzed
the remaining articles’ titles and abstracts. In this phase, we excluded the works not
meeting the inclusion criteria. This operation reduced the number of eligible articles
to 45. Among them, we encountered one narrative review [165], in which Groot et al.
recently focused on the role of the NLP in spine surgery in six studies from the recent
literature. However, since these papers are extensively reported here, we did not further
focus on their work here. So, the final screening was performed by reading the full text of
each paper, leading to retaining 16 of them. Figure 4.1 graphically shows the described
selection process through a flow-chart diagram according to the PRISMA protocol.

In the following paragraphs, we analyze included studies by focusing on the tasks and
models in which NLP is involved.

4.2.1. Tasks

We identified three main NLP methodologies, i.e., classification, annotation, and predic-
tion. Both first two approaches concern the identification of a category (class) to which
a document belongs, differing for what the NLP methods are applied. In the former, the
NLP system associates a label to each testing example (i.e., the patients’ document). A
classification system may be employed:
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• as a CAD system, which the physicians may exploit to decide, for example, whether
or not to operate on a patient,

• as a Decision Support System (DSS) which healthcare providers may utilize such
a system to improve quality control,

• or to gather a large cohort of patients for some research study.

In the annotation approach, NLP is used to label the documents too. However, it is
implemented as a part of the entire system, thought to provide the classification outcome
from another kind of data, such as radiological images. From this point of view, the NLP
system is a way to automatize the annotation of a large amount of data by identifying
specific phenotypes related to a disease condition. The second part of the entire system
may be trained and evaluated on a significantly wider amount of data than using only
human annotations. This approach is used to develop successful predictors of clinical
outcomes from clinical data and better define indications for surgery. It may improve
clinical outcomes, thus avoiding invasive spine care and reducing healthcare costs.

The third approach can be referenced as the identification of some categories too.
However, here the scope is to predict some outcomes by exploiting previously acquired
data (free-text notes, in this case). Healthcare providers may use such a system to
predict some outcomes from the patients and thus arrange in advance the resources
necessary for their care. Moreover, we further classified included studies based on the
timeframe regarding surgical interventions. Thus, papers may also fall in the pre-, intra-,
and post-operative task categories, whether the task interests something before, during,
or after surgery, respectively, as shown in Figure 4.3.

Classification

Pre-operative tasks We identified several studies in which the authors exploited pre-
operative notes to identify useful diagnostic clues and findings. In detail, we retrieved:

• 1 paper focusing on the identification of multiple imaging findings;

• 1 paper focusing on the diagnosis of acute LBP;

• 2 papers focusing on the identification of spinal stenosis;

• 3 papers focusing on the identification of axial SpondyloArthritis (axSpA);

28



4. A Case Study of NLP in Healthcare: an In-Depth Analysis for Low Back Pain and
Spine Disorders

Figure 4.3.: Schematic partitioning of the works concerning the application of NLP in
LBP and related spinal disorders.

• 1 paper focusing on the identification of type 1 Modic endplate changes;

Following, we describe the tasks.

Imaging findings identification
To advance the care of patients suffering from LBP, discovering distinct subgroups with
similar prognoses and intervention recommendations is a relevant task. Spine imaging
findings alone are often insufficient to diagnose the underlying causes of LBP. In addition,
they are often not of clinical significance since their frequent occurrence in asymptomatic
individuals [166]. To understand the relationships between imaging findings and LBP,
an important step is the accurate extraction of the findings, such as spinal stenosis and
disc herniation, from large patient cohorts. NLP may help identify lumbar spine imaging
findings related to LBP in large sample sizes. Tan et al. [167] worked on this task.

Acute LBP identification
LBP events can be classified either as acute or chronic. While the former is usually
treated with anti-inflammatories, with the recommendation of returning to perform daily
activities soon, care of the latter often involves physical therapy, spinal injections [168],
and even spine surgery. Thus, different conditions lead to distinct treatment recommen-
dations and costs for the healthcare systems. Miotto et al. [169] faced this task.
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Identification of axSpA
AxSpA is a serious spinal inflammatory disease characterized by the additional in-
volvement of peripheral joints, entheses, and other systems (including the eye, the gut,
etc.) [170]. As patients with axSpA often present with peculiar imaging features, de-
veloping a tool to facilitate the identification of this subset of patients is a key step to
achieve in improving the care of this condition. To exploit large datasets, NLP may be
used to identify concepts related to axSpA in text, and thus create a cohort of patients
with (a high probability of having) the disease. Zhao et al. [171] and Walsh et al. [172]
dealt with this this task. The last team also exploited their previous work in their [173]
to identify axSpA patients.

Stenosis identification
Spinal stenosis is a condition of narrowing of the spaces within the spine, which can
compress the spinal canal (spinal canal stenosis, SCS) and the nerve roots exiting at
each intervertebral level (neural foraminal stenosis, NFS). Such conditions often develop
in the lumbar spine. Here, NLP was used to classify both SCS and NFS, also with a
severity grading scale (Caton et al. [174, 175]).

Type 1 Modic Endplate Changes identification
Modic changes consist of magnetic resonance imaging (MRI) signal alterations affect-
ing the endplates of the lumbar spine and are particularly frequent in patients with
LBP [176]. For this reason, Huhdanpaa et al. [177] employed NLP to identify the Type
1 Modic changes from radiology reports.

Intra-operative tasks We identified a few studies in which authors exploited op-
erative notes to find evidence of some surgery complications. In detail, we retrieved
two papers focusing on incidental durotomy (ID) identification and another on vascular
injury (VI) identification. Such complications have potential implications for recovery,
causing the length of stay and costs to increase. Thus, an automated system for surveil-
lance of these events is relevant to healthcare providers.

Incidental durotomy (ID) identification
Incidental durotomy (ID) is a common intra-operative complication during spine surgery,
occurring up to 14% of lumbar spine surgeries [178]. It is defined as an inadvertent tear-
ing of the dura during surgery with cerebrospinal fluid (CSF) extravasation or bulging

30



4. A Case Study of NLP in Healthcare: an In-Depth Analysis for Low Back Pain and
Spine Disorders

of the arachnoid [179]. The group of Karhade and Ehresman faced the problem of au-
tomatizing detection of ID events from operative notes [180, 181].

Vascular injury (VI) identification
Vascular injury (VI) refers to the trauma of blood vessels (either an artery or a vein). It
is a common event during spine surgery, often resulting in serious bleeding, thrombosis,
and additional complications. Karhade et al. [182] dealt with the problem of detecting
VI events from operative notes.

Post-operative tasks Classification in post-operative tasks serves to identify events
occurring after the surgical intervention, i.e., venous thromboembolism (VTE). VTE
results from the formation of a blood clot that may obstruct the blood flow locally (thus
causing edema and pain) or travel to distant sites causing local blood flow arrest (such as
in pulmonary embolism). Dantes et al. [183] attempted to identify from post-operative
radiology reports the occurrence of VTE in patients who underwent various kinds of
surgeries, including spine surgery.

Annotation Among the included papers, two implemented NLP to annotate radiology
images. Lewandrowski et al. [184] classified findings related to spinal stenosis (both SCS
and NFS) from pre-operative reports, while Galbusera et al. [185] trained the NLP model
to identify several spinal disorders. In both cases, the authors retrieved the annotations
for radiology reports and then used them to label the related images. However, in the
study by Galbusera et al., it was not possible to identify the timing with respect to
surgery, since they included several types of disorders, as well as patients undergoing
post-operative radiological examination and follow-up.

Prediction Prediction tasks focus on predicting post-operative outcomes. In their first
paper, Karhade et al. [186], they attempted to identify required re-operations due to
wound infections arising after lumbar discectomy, while in a subsequent study [187] they
identified unplanned re-admissions of patients who underwent posterior lumbar fusion.
Both tasks were intended to refer to a period of 90 days.
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4.2.2. Data

Data used in the analyzed studies is the free text from clinical notes. However, the kind
of notes exploited by the authors may vary depending on the task the authors aimed
to cover. A large proportion of papers used radiology reports, aiming at identifying
imaging findings [167] and diagnosing a specific condition [171, 172, 183, 177, 174, 175],
or at annotating images [184, 185].

Other examples include operative notes, obviously used for the intra-operative tasks [180,
181, 182, 183], and post-operative ones too [186, 187]. Furthermore, the article from
Karhade et al. [187] compared different kinds of clinical notes, including discharge sum-
maries [171], and physicians and nursing notes. With the exception of [185], in which
Galbusera et al. exploited notes in Italian, all other studies referred to texts written in
English.

4.2.3. Models

The studies analyzed in this review used various kinds of NLP models. Referring to
Figure 4.4, we identified such models as belonging to the rule-based, the ML-based, or
for pipeline exploiting both, the hybrid approaches (see Section 2.2). Furthermore, the
ML-based approach may be further split into classical ML and DL models.

Also, models may be categorized as belonging to:

• Supervised approach, which exploits labeled data to train the model;

• Unsupervised approach, in which the algorithm is not provided with any labeled
data.

By taking into consideration the above definitions, it is reasonable to consider the rule-
based models as belonging to the unsupervised class of algorithms, while the ML-based
models may fall into both categories. Nonetheless, the supervised approach is usually
more performant because the model learns directly from input-output pairs, while the
unsupervised ones leverage only the input data. However, the former approach may
require a lot of labeled data, a process that can be extremely time-consuming, requiring
several human resources (annotators), especially for large datasets. Annotators in the
healthcare field should necessarily have a certain degree of expertise in the domain,
which is also one reason for automatizing the annotation process.
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Figure 4.4.: Schematic partitioning of the NLP models applied in LBP and related spine
disorders.

Rule-based models Rule-based models are concerned with simple searches of keywords
in the text of clinical notes, often by developing regular expressions (regex). These
rules may consist of both syntactic and semantic rules, leveraging knowledge from both
linguistics and the application domain (knowledge-driven approach). To identify (and
remove) negated occurrences, authors usually exploit algorithms such as NegEx [188].
Such an approach was implemented in [169] to identify acuity in LBP, and in [177] to
identify Type 1 Modic changes, while in [167, 174, 175] to identify several findings related
to LBP and stenosis from MRI and x-ray reports.

Machine learning-based models ML models are algorithms that leverage their experi-
ence on previously seen data to automatically improve their performance on some task.
Thus, they leverage a data-driven approach, by learning discriminative content from
a statistical representation of the input data. The authors of the paper encountered
focused particularly on two models from the machine learning literature: Logistic Re-
gression (LR) and eXtreme Gradient Boosting (XGBoost). The former was implemented
in [169] for the acuity identification task and in [171] to identify axSpA. In both cases,
the model was implemented together with a Least Absolute Shrinkage and Selection
Operator (LASSO) regularization. The latter was particularly employed by Karhade et
al. in several tasks [180, 186, 187, 181, 182]. Another used algorithm was the Support
Vector Machine (SVM), employed in [172] to identify clues of axSpA and in [173] both
to directly identify axSpA and to extract a feature for a multimodal random forest. Fur-
thermore, authors in [183] exploited IDEAL-X, a tool introduced in [189] which exploits
the online ML paradigm, to identify VTE following orthopedic surgery.
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Deep learning models
The DL paradigm is a subfield of ML regarding algorithms partly inspired by the brain
structure and functioning, the so-called artificial (deep) neural networks. Besides DL
models are well known to perform better than classical ML ones, to be competitive they
require a higher volume of training examples. Plus, the training phase may be expensive
in terms of time, especially when researchers do not have access to performant hardware
facilities (i.e., Graphics Processing Units, aka GPUs). Probably for these reasons, only a
few papers investigated the use of DL models. In [169], the authors compared a convolu-
tional neural network (ConvNet) with classic ML and rule-based models. More recently,
in [185] the authors fine-tuned a BERT [23] model pre-trained on general-purpose Italian
text ("bert-base-italian-uncased"). Models like BERT are based on the Transformer’s ar-
chitecture [190], introduced a few years ago. Exploiting a pre-trained Transformer-based
model to initialize the weights and then train on some downstream tasks has become a
standard practice within the NLP community.

Unsupervised models
All the above-reported studies leverage the supervised paradigm to train their models.
The authors in [169] investigated the use of unsupervised models to identify acute LBP.
They implemented a Latent Dirichlet Allocation (LDA) [191] to perform topic model-
ing, an unsupervised ML technique that captures patterns of word co-occurrences within
documents to determine words’ sets clusters (i.e., the topics). They identified a set of
keywords among the topics and then manually reviewed them to retain only those that
seemed more likely to characterize acute LBP episodes. In other words, they selected
the topics including most of the keywords with high probabilities. Then, they considered
the maximum likelihood among these topics as the probability that a report referred to
acute LBP. Furthermore, the authors in [171] exploited the so-called multimodal au-
tomated phenotyping (MAP) [192] to identify axSpA from related concepts and coded
features.

Hybrid models For what concerns the hybrid paradigm, we encountered only one
paper [167] exploiting it. Here, the authors implemented a logistic regression with
elastic-net penalization leveraging several kinds of features. In particular, they also
used features extracted with a combination of regex and NegEx.
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4.2.4. Explainability

As mentioned in past chapters, current methods may achieve high performance of a
specific task but often lack interpretability. The absence of more interpretable feedback
together with the output from the model is a great inconvenience, especially in the
clinical field. For what concerns the explainability, only Karhade and colleagues have
addressed it at both global and local (for the single subject) levels among included stud-
ies. It was possible thanks to the implementation of the XGBoost. Such an algorithm
can provide the importance of each feature in a particular task. For example, in [180]
patient-level explanations were provided by highlighting the most important words used
by the algorithm to detect ID inside the text. Global explanations were provided by
averaging the importance scores of each feature across all patients (the documents) to
demonstrate the generally most relevant factors for detection. Analogous reasoning was
applied in their other works [186].

4.2.5. Domain-Specific Knowledge

Perhaps unusual when reviewing works from the literature, we conducted a typical NLP
analysis of the papers included in this review to extract some domain-specific knowl-
edge from the articles included in this review. In particular, we treated the collection
of abstracts as a corpus from which we extracted domain-specific entities to build its
glossary.

We then retrieved the relations between them to create the knowledge graph of the
domain we can call Natural Language Processing in Low Back Pain and Spine Disorders.
To do so, we applied the T2K2 suite of tools [193] to obtain the glossary in Figure 4.5,
reporting the prototypical form of the entity (the term form most frequently attested
in the corpus), its lemmatized form, and its frequency of occurrence. It is worth noting
that these domain-specific entities may consist of single nominal terms but also complex
nominal structures. For ease of visualization, we report only the first part of the glossary
(containing the most relevant terms) in the figure: the ranking follows the domain
relevance of the entities, computed based on their C–NC value [194]. By looking at
the obtained glossary, it is easy to notice that the entities NLP (and its variations)
and lumbar spine are the most relevant ones together with patients. We then selected
these words as the most representative of the domain (we excluded the term patients
because too generic) to compute their relations with the other entities in the glossary.
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Figure 4.5.: Glossary extracted from the abstracts of the papers included in this work.
Entities are ranked following their domain relevance. For ease of visualiza-
tion, only the first part of the glossary (containing the most relevant terms)
is reported.

In particular, the relations are computed on the basis of the co-occurrence of the entity
in the core sentence (the one in which appear the entity under consideration) and the
ones immediately before and after. We report the knowledge graph obtained with such
entities and their relations in Figure 4.6. For ease of visualization, we filtered out terms
with a frequency lower than 3 and the relations not occurring at least twice.

As interpretable from the figure, the NLP entity represents the core of the graph
(and thus, in some sense, of the articles’ domain). It is worth noting the presence of
several diseases related to the NLP part (incidental durotomies, axSpa, modic changes,
etc.), suggesting the obvious importance of these terms for the domain, and of the terms
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Figure 4.6.: Knowledge graph built for the main entities of the domain extracted from
the abstracts of the papers included in this work. For ease of visualization,
only the terms with a frequency lower than 3 and the relations occurring at
least twice are reported.

related to the computational part (algorithm, models, artificial intelligence etc.) and the
data sources (radiology reports, electronic health records, etc.). However, both the lumbar
and spine entities show a few prerogative relations, such as with disc and with surgery,
respectively, that are not shared with the NLP core. Also, apart from the entity natural
language processing that is just a variant of the NLP one, the only relation shared by
all the three main entities is the one with patients. Besides being a very generic term,
this result suggests the focus the authors put on the patients of their works, which also
reflects the findings of the glossary.
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5. Capturing the Patients’ Perspective:
a Case Study for Italian

As more and more content is shared by people on the web, the use of automated sen-
timent analysis (SA) tools has become increasingly present. When people want to buy
a product or service, they often rely on online reviews of other buyers/users (think of
online sales giants like Amazon). Likewise, patients increasingly rely on reviews on so-
cial media, blogs, and forums to choose a hospital where to be cured. This behavior is
occurring abroad [137, 138] as well as in Italy, as demonstrated by the increasing amount
of reviews in QSalute1, one of the most popular Italian-ranking websites in healthcare.
Hospital companies often ignore these sources of information, not exploiting the po-
tential of such data to understand patients’ experiences and consequently improve their
services. Instead, they usually rely on inefficient and time-consuming structured surveys.
Due to a large amount of data, there is a need for automatic analysis techniques. To
meet this need, we introduced a sentiment analysis system to classify whether a review
has positive or negative sentiment2. We compared a classical NLP pipeline based on a
Support Vector Machine and an end-to-end pipeline based on a BERT model.

While there exist several works on affective computing in several domains for the
Italian language [196, 197, 198], at the time of the study, there were no references
in the literature addressing this particular domain in Italian. Thus, to the best of our
knowledge, ours was the first study of sentiment analysis on Italian reviews in healthcare.
Because of this, the first step was to build a brand-new annotated dataset that we
publicly shared, helping other researchers handling SA in Italian for this specific domain.
Our experiments show the SVM-based system slightly outperforming the BERT-based
one, which, in particular, required the employment of techniques for adjusting the class

1www.qsalute.it
2The work presented in this chapter is an extract of our paper published in Proceedings of 7th Italian

Conference on Computational Linguistics (CLiC-it) [195] entitled A Machine Learning approach for
Sentiment Analysis for Italian Reviews in Healthcare
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distribution of the training set.

5.1. Web scraping
To collect a large annotated dataset, we employed web scraping techniques to collect
data from the aforementioned QSalute website, an Italian portal where users share their
experiences about hospitals, nursing homes, and doctors. Web scraping is a technique
whose validity in collecting big data is widely acknowledged [199, 200], even for health-
care domains such as epidemiology [201]. Such a technique allows researchers to rel-
atively easily collect data spanned across multiple pages/sections of a website, even
overcoming issues of many websites, which do not allow saving on local storage the
data displayed [202, 203]. It can be seen as an integrated, preliminary part of the NLP
pipeline since most NLP approaches exploit numerous amounts of texts. Web scraping
consists of two steps: formatting a request for acquiring resources from a target web-
site/urls, and extracting the desired information from the obtained resources simulating
user navigation through the contents [200].

Among the wide landscape of web scraping tools [203], we employed the Beautiful
Soup [204, 205] Python package. By exploiting its toolkit, we scraped in a programmatic
and pythonic way a relatively high-volume of web pages in a relatively short time. We
made the back-end code publicly available on github3.

5.2. Data analysis
The dataset, collected on May, 26th2020, consists total of 47224 documents (i.e., re-
views). Each document consists of the free text of the review and other metadata such
as document id, disease area to which the document belongs, and title. In addition,
among the provided metadata, there is the average grade, i.e., the mean over the votes
in four categories: Competence, Assistance, Cleaning, and Services.

Here, we assigned documents with an average grade less than or equal to 2 to the
negative class (-1) and greater than or equal to 4 to the positive one (1). We labeled
the remaining documents as neutral (0). The dataset is strongly unbalanced towards
the positive class: 40641 positive, 3898 for the neutral, and 2685 negative reviews.

3www.github.com/lbacco/Italian-Healthcare-Reviews-4-Sentiment-Analysis
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After a manual inspection, the reviews belonging to the neutral class have shown to be
ambiguous borderline cases, which are discernible into either the positive or the negative
class by humans. Thus, we discarded neutral reviews to work with highly polarized data,
thus resulting in a binary sentiment classification task and a total of 43326 reviews.
The following analyses are then referred to this subset: in Table 5.1, we report some
characteristics of the dataset for each site (i.e., the disease area), while the distribution
of tokens over their length is reported in Figure 5.1.

Site Positive / Total Lexicon Overlap(%)
Nervous System 9984 / 10595 34827 69.93

Hearth 5297 / 5491 22677 79.27
Haematology 353 / 377 5336 93.91
Endocrinology 630 / 699 7417 92.40

Endoscopy 1342 / 1484 12046 88.31
Facial 757 / 791 7686 92.13

Genital 2365 / 2552 15605 85.33
Gynaecology 2115 / 2293 14438 90.57

Infections 187 / 220 4001 94.98
Ophthalmology 2167 / 2339 13449 85.43

Oncology 5732 / 6033 25178 79.70
Otorhinology 1156 / 1227 9738 89.91

Skin 763 / 883 8442 90.43
Plastic Surgery 766 / 795 8026 92.04

Pneumology 824 / 982 9454 90.09
Rheumatology 528 / 598 7239 92.14

Senology 3644 / 3783 17497 87.99
Thoracic Surgery 1131 / 1225 10214 90.59
Vascular Surgery 900 / 959 9157 90.05

Table 5.1.: Dataset attributes for each site. The first column reports the names of the
sites (disease areas), and the second one reports the number of positive re-
views with respect to the total number. The third column reports the lexicon
values in terms of the number of unique words, whereas the last one reports
the lexicon overlap (in percentage) of each site to all the others.

5.3. Machine Learning approaches
We developed two systems based on two state-of-the-art classifiers from the state-of-the-
art for sentiment analysis, Support Vector Machine (SVM) and BERT. In this Section,
we present the implemented classifiers.
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Figure 5.1.: Distribution of documents according to their length, in terms of the number
of tokens. The shortest document has only two tokens, while the longest
has 3571 tokens. On average, the reviews are 106.41 tokens long, with a
standard deviation of 102.18 tokens.

5.3.1. SVM-based System (1)

Here, we followed the approach proposed by [206] for the sentiment analysis of English
tweets, which we adapted for Italian reviews in healthcare. More precisely, we imple-
mented a Support Vector Machine (SVM) classifier with a linear kernel, in terms of the
liblinear [207] library rather than the libsvm one, to scale better to large numbers of
samples, as also reported in the documentation4 of the model employed.

Firstly, all documents pass through a pre-processing pipeline, consisting of a sentence
splitter, a tokenizer, and a Part-Of-Speech (POS) tagger (all of these tools have been
previously developed by the ItaliaNLP5 laboratory). Then, documents pass through a
step of feature extraction.

Feature Extraction All features were chosen due to their effectiveness shown in several
tasks for sentiment classification for Italian [208]. We refer to these features under the

4www.scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
5www.italianlp.it
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name of either hand-crafted and embedding features.

Raw and Lexical Text Features

• (Uncased) Word n-grams: presence or absence of contiguous sequences of n
tokens in the document text, with n={1, 2, 3}.

• Lemma n-grams: presence or absence of contiguous sequences of n lemmas
occurring in the document text, with n={1, 2, 3}.

• Character n-grams: presence or absence of contiguous sequences of n characters
occurring in the document text, with n={2, 3, 4, 5}.

• Number of tokens: total number of tokens of the document.

• Number of sentences: total number of sentences of the document.

Morpho-syntactic Features

• Coarse-grained Part-Of-Speech n-grams: presence or absence of contiguous
sequences of n grammatical categories, with n={1, 2, 3}.

• Fine-grained Part-Of-Speech n-grams: presence or absence of contiguous
sequences of n (fine-grained) grammatical categories, with n={1, 2, 3}.

Word Embeddings Combination: this set of features consists of three vectors.
Each vector was calculated by the mean over word embeddings belonging to a specific
fine-grained grammatical category: adjectives (excluding possessive adjectives), nouns
(excluding abbreviations), and verbs (excluding modal and auxiliary verbs). We used
word embeddings of 128 dimensions, extracted from a corpus of more than 46 million
tweets, already used in [209] and available for download at the ItaliaNLP6 website. Fur-
thermore, we added three features to indicate the absence of word embeddings belonging
to such categories, for a total of 387 (128 ∗ 3 + 3) features.

5.3.2. BERT-based System (2)

We implemented a multilingual version of Bidirectional Encoder Representations from
Transformers, better known as BERT, to classify the sentiment of the reviews. BERT
is a pre-trained language model developed in [23] at Google AI Language. Pre-trained

6www.italianlp.it/resources/italian-word-embeddings
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BERT (available at its GitHub page7) may be fine-tuned on a specific NLP task in a
specific domain, such as the sentiment analysis for reviews in the healthcare domain.
Befor that, we tokenized the original text with its tokenizer.

5.4. Experiments
We conducted two types of experiments. In the first one, we wanted to evaluate which of
the systems was the best. For each configuration, we trained and tested the system using
a stratified k-fold cross-validation with k = 5. At each iteration the model was trained
using four of the folds and evaluated with the remaining one. In the second part, we
wanted to evaluate the robustness of the best system in a context out-domain, dividing
the folders by disease sites. In these ways, in both kinds of experiments, we ensured
that no information from the test sets flew through the training sets, thus avoiding any
sort of over estimation of the performance.

5.4.1. System 1

We tested three different configurations of our SVM-based system, depending on the
sets of features used in the experiment: only hand-crafted features (more than 626
thousand features), only embeddings (387), and a combination of both. The features
that have shown to not bring improvements to the performance (numbers of tokens
and sentences), or even to lower it (fg-POS n-grams, Lemmas n-grams with n={2, 3})
during a preliminary experimental phase were excluded from the hand-crafted features
set. Thus, it turns out that such a set is composed only of Uncased Word and cg-POS
n-grams with n={1, 2, 3}, in addition to Lemmas. To reduce the dimensionality of the
set but also to improve the performance of our system, the features pass through a step
of filtering: we assumed each one appearing less than a certain threshold th within the
training set to be not relevant and was, thus, discarded. After searching for the optimal
value during the preliminary experimental phase, we set the threshold equal to 1 (th=1 ),
which means a token is retained whether it appeared more than once in the training set.

7www.github.com/google-research/bert
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5.4.2. System 2

We conducted the experiments with BERT using the same partition into the 5 folds
used during the experiments with the SVM-based classifier. This division allowed us
to compare the results achieved by the two classifiers. The BERT model used in our
experiments is the multilingual cased pre-trained one.

We tested two different approaches. These experiments have followed two pipelines.
In the former, we fine-tuned the model with folds from the original dataset described
in Section 5.2. In the second one, each fold was obtained by oversampling the minority
class (i.e., the negative one) in the original fold. The oversampling was obtained by
multiplying each negative sample in the fold by a factor of 4. It increased the ratio of
negative out of the positive samples from about 1:16 to about 1:4. We conducted other
experiments by further increasing the ratio to about 1:2 without significant improvements
in performance at the expense of computational time for training. For both approaches,
the model was fine-tuned for five epochs on a 12 GB NVIDIA GPU with Cuda 9.0 with
the following hyperparameters:

• maximum sequence length of 128 tokens,

• batch size of 24 samples,

• and a learning rate of 5 ∗ 10−5.

The maximum length and the batch size were tuned with a light preliminary phase.
For the former, in particular, the number of tokens seems reasonable since it is close
to the average length of the documents in the dataset while allowing to retain the vast
majority of documents without truncation (see Figure 5.1).

5.5. Results
Table 5.2 resumes the results of the experiments in stratified 5-fold cross-validation in
terms of the macro average of F1-score. After analyzing these results, we took the best
model for the leave-one-site-out cross-validation experiments to test its reliability in an
out-domain (site) problem. Table 5.3 resumes these results.

First, we can notice that such performances are much higher than the baseline system,
i.e., the performance achieved by a hypothetical model that classifies all the samples as
belonging to the majority class (that is, the positive class). Due to the strike dataset
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F1(1) (%) F1(-1)(%) F1 (%)
SVM

Hand-crafted 98.90 ± 0.07 82.73 ± 1.03 90.81 ± 0.55
aEmbeddings 96.16 ± 0.15 62.37 ± 0.74 79.27 ± 0.44

Both 98.94 ± 0.04 83.47 ± 0.72 91.21 ± 0.48
BERT

w/o oversampling / / /
w/ oversampling 98.60 ± 0.04 77.56 ± 0.81 88.08 ± 0.42

Baseline 96.80 0.00 48.40

Table 5.2.: Results of the experiments in the stratified 5-fold cross-validation. Perfor-
mances are reported in terms of F1-score (%) on each class and the (macro)
average between the two. The best results are shown in bold.

imbalance and the small batch size, training BERT without oversampling the dataset
leads the system to classify all samples as belonging to the majority class, i.e., the
positive class. It leads to often obtaining bad performance, i.e., the baseline performance.
Oversampling the minority class has shown to partially cope with such problems, leading
to an improvement in terms of repeatability and performance.

For what concerns the experiments with the SVM-based system, hand-crafted features
have greater relevance for the task than the embedding features. However, the resulting
best model is the one with both sets of features, outperforming the BERT-based system
best configuration by about three percentage points.

Given the high degree of overlap of the lexicons between domains and a larger training
set, the leave-one-site-out experiments with this model result in very good performance,
showing the system to be reliable in an out-domain (site) context.

In addition to the two main phases of experiments, we further investigated the con-
fidence of the best model developed in making decisions. The motivation behind this
study is that it may have application in real-world cases, where an automated system
is required to filter the documents on which it is highly confident (i.e., above a certain
threshold) and then passes the most complex documents to a human operator. To do
so, we applied the Platt scaling [210] method on top of the trained SVM model. This
step is needed to convert the output of the model from a decision score d ∈ (−∞, +∞),
i.e., the distance of the test sample from the trained boundary, to a probabilistic score
p ∈ [0, 1], representative of the system confidence in making the decision. Figure 5.2
resumes the results of this analysis. As expected, the number of documents on which
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Site F1 (%) F1Baseline (%)
Nervous System 89.91 48.52

Hearth 90.20 49.10
Haematology 91.10 48.36
Endocrinology 87.79 47.40

Endoscopy 94.34 47.49
Facial 88.31 48.90

Genital 92.12 48.10
Gynaecology 93.64 47.98

Infections 91.09 45.95
Ophthalmology 90.74 48.09

Oncology 90.85 48.72
Otorhinology 89.56 48.51

Skin 93.86 46.35
Plastic Surgery 93.63 49.07

Pneumology 92.76 45.63
Rheumatology 90.75 46.90

Senology 91.29 49.06
Thoracic Surgery 92.62 48.01
Vascular Surgery 90.01 48.41

Average 91.24 47.92

Table 5.3.: Results of the experiments in leave-one-site-out cross-validation. The first
column shows the site used for testing, while the next two columns are the
values of performance and baseline in terms of the (macro) average of F1-
score of each test set.

the system makes a decision falls as the confidence threshold required of the system in-
creases. However, this trend does not have such a negative slope and still classifies more
than 91% of the documents with 99% confidence. At the same time, the performance
advantage is clear, leading to an increase of the F1-score on negative samples by more
than ten percentage points.

5.6. Discussion
As a Natural Language Understanding task in healthcare, we tackled the sentiment
analysis of Italian reviews. For the best of our knowledge, we are the first ones facing
SA in healthcare for the Italian, which led us to build the first dataset of this kind.
Despite the striking imbalance of such a dataset, we have obtained very good results,
especially with the SVM-based system, which outperformed the BERT-based one while
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Figure 5.2.: Results in terms of percentage of classified reviews and F1-score over thresh-
old values on the probabilistic score p ∈ [0, 1] returned by the Platt scaling
method applied on top of the SVM-based system. All the results refer to the
k-fold cross-validation (with k = 5) fashion. Note that for threshold = 0.5,
even if the percentage of classified documents is 100%, the value of the macro
average of the F1-score is lower than the one reported in Table 5.2. tI is due
to the inherent inconsistency between the probabilities calculated through
the Platt scaling method p and the decisive score of the SVM model (i.e.,
the distance of the sample from the trained boundary, d ∈ (−∞, +∞)).

maintaining a low computational burden during training. To achieve competitive results
with the BERT-based system, we had to perform oversampling strategies on the train-
ing set, increasing, even more, the computational costs in training. These results show
the difficulties of BERT handling unbalanced datasets and that classical NLP pipelines
are still capable to capture more useful information for certain types of tasks and do-
mains. At the time when the study was conducted, Nozza et al. [211] analyzed the
contribution of language-specific models, showing general improvements over multilin-
gual BERT for a wide variety of NLP tasks. Using specific models for Italian, such
as GilBERTo8, UmBERTo9, and AlBERTo10can contribute increasing the BERT-based
system performance. The latter, in particular, was already used for a sentiment classi-
fication task [212]. It was also employed in a recent work that followed ours (see next
section). Furthermore, even if the sentiment detection may not particularly rely on the

8www.github.com/idb-ita/GilBERTo
9www.github.com/musixmatchresearch/umberto

10www.github.com/marcopoli/AlBERTo-it
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domain lexicon, using domain-adapted models in healthcare could improve the perfor-
mance. However, at the present day, no biomedical or clinical models for the Italian
language have been proposed in the literature.

Anyway, with our work, we developed a system that has resulted reliable enough
to be already employed in real-world practice, especially when taking into account the
confidence of the classification. Future works in this direction may focus on collecting
more documents, especially for the minority, negative class.

5.7. Subsequent Works
The task we presented here was tackled by other subsequent works. Ranaldi et al. [213]
used the dataset we provided, managing it following our indications. They implemented
KERMIT for HealthCare (KERMITHC), based on the KERMIT model [214], the com-
plementing architecture for Transformers that explicitly encodes syntactic interpreta-
tions. Compared to other BERT-based models pre-trained on the Italian language, such
as AlBERTo [212], they demonstrated that encoding the syntactic components usually
leads to better performance. Plus, the KERMIT-viz [215] visualizer helps to interpret
the internal decision-making mechanism. However, their approach still presents macro-
averaged F1-scores far below our SVM-based system. Again, such an issue could be due
to the high imbalance: the authors have not stated to manage by implementing any
resampling strategy.

Furthermore, motivated by the high computational costs of modern neural language
models such as BERT, Martinis et al. [216] recently exploited a subset of our data
to evaluate their rule-based approach VADER-IT, proposing the Italian version of the
lexicon-based algorithm VADER [217]. With their method, they achieved a micro-
averaged F1-score of 81%.
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To communicate information to each other, humans use natural language in speech or
text. However, the information is not only conveyed by means of the content itself, but
also by the linguistic form in which the semantics is carried, such as formal/informal or
speech/writing attributes. Such attributes, also referable as style, are used to highlight
the intent of the writer (e.g., politeness) or reveal their characteristics (e.g., gender). For
example, to be perceived as more professional by our interlocutor, we prefer to exploit a
more formal lexicon than the one we rely on in daily life (i.e., formality). Or, if we are
trying to explain a difficult concept to someone unfamiliar with the subject, we tend to
use a more understandable vocabulary and sentence construction rules (i.e., simplicity).

As a Natural Language Generation task, we faced Text Style Transfer (TST). TST
concerns the rewriting of a source text by preserving its content while changing its style
(target text). Among this panorama, it may help in reducing the so-called curse of
knowledge [140] in the medical domain between physicians (experts) and their patients
(laymen), which is a well-known cognitive problem leading to misunderstandings and,
therefore, potential mistakes in treatments [218, 219]. These issues may affect the care
process in both directions of communication. On one side, patients may find it hard
to understand the messages from their doctors (expert-to-layman), which may lead to
non-adherence to therapies. On the other hand, doctors may struggle to provide accu-
rate diagnoses on the basis of the patients’ jargon (layman-to-expert). Thus, improving
physician-patient communication is vital to enhance the outcomes of the healthcare
process [220]. In particular, in the former case, we can refer to the task of Text Sim-
plification. Furthermore, given the spreading of health-related mobile apps and social
networks, it is not hard to imagine the beneficial effects of implementing systems for
reducing the expertise gap in existing and future applications, overcoming the language
barriers, and allowing access to health resources to the consumers [141].
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Recently, Cao et al. [221] proposed the Expertise Style Transfer (EST) task between
medical experts and laymen. They introduced a large non-parallel set of sentences (to
be used for training models) and a relatively small set of parallel texts annotated by
domain experts (to be used for evaluation purposes). Since non-parallel sets of text
may represent sub-optimal solutions for training some model for the task at hand, we
explored methods to collect parallel sets from a large, non-parallel corpus for training
a generative model. We implemented BART (Bidirectional and Auto-Regressive Trans-
formers [222]) as the generative model, which has already been proven to be suitable for
style transfer tasks [223, 224]. To collect parallel sets from the original EST training set,
we exploited both datasets and models from the literature concerning the (clinical) Se-
mantic Textual Similarity. In particular, we implemented Sentence Transformers [225]
models, bi-encoder Transformers particularly suitable for the task of similarity search
required to collect the parallel datasets. Also, we evaluated both the collected paral-
lel sets and the style transferred texts not only with automatic but also with manual
annotations performed by domain lay and experts, from both content preservation and
degree of style changes points of view. Our main contributions may be listed as follows:

• we proposed a Text Style Transfer system to effectively reduce the expertise gap
in the communication between physicians and patients;

• we analyzed and evaluated several Semantic Textual Similarity methodologies to
automatically collect parallel datasets;

• we analyzed how different qualities (in terms of varying similarity) in the collected
datasets affect the downstream task (Text Style Transfer);

• we conducted an extensive human evaluation phase with expert and lay people,
highlighting issues and characteristics of datasets and models as well as evaluation
metrics involved;

• we collected the experts’ annotations, which may be employed in future works to
deploy or evaluate Semantic Textual Similarity and Text Style Transfer systems
in the medical domain.

In particular, with our approach, we have overtaken the state-of-the-art performance on
the Expertise Style Transfer task on a variegated set of automatic metrics, computed
on both the input (self ) and the target (ref ). However, we also argue that achieving
higher performance in terms of automatic metrics does not necessarily imply better ac-
complishing the task. Our system, anyway, outperformed state-of-the-art models based
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on both human experts’ and laymen’s judgments.

In this chapter, we present our work as follows. First, we report the investigated lit-
erature in the context of TST (the expertise one, in particular) and then the datasets we
exploited for both Semantic Textual Similarity and Expertise Style Transfer. After that,
we describe in detail the methods implemented to tackle the Expertise Style Transfer
task, the strategies for collecting the pseudo-parallel datasets, and the evaluation pro-
tocols we adopted to assess their qualities. Finally, exploiting plots and tables, both
automatic and human results regarding content preservation, style strength, and fluency
of the models’ outputs and/or the collected parallel training sets are discussed.

6.1. Related works
Style Transfer (Neural ST, in particular) is the task of reproducing some input content
in a different style. Researchers investigated it for several media, from images and
videos [226, 227, 228, 229] to music [230, 231]. Some of the developed systems have
already seen their application in industrial solutions1. Text Style Transfer (TST) shares
the same principle as the other media: rewriting some textual input with a different
attribute while minimizing the information loss. Researchers have investigated TST for
various attributes such as formality [232, 223], politeness [233, 234], and sentiment [235].
Past works in TST have focused on these attributes as the related resources are easier
to obtain. The sentiment Style Transfer, commonly known as polarity swap, has been
questioned as a TST task [224] as it does not preserve the original meaning of the source
text, i.e., a positive sentence is changed to negative and vice-versa. However, in order to
get a more comprehensive overview of TST tasks, we refer the reader to recent reviews
[236, 237].

Existing TST approaches can be grouped into three main categories, i.e., disentan-
glement, manipulation, and translation:

• Disentanglement methods attempt to learn separate representations for content
and style [235, 238, 239], so that one can be manipulated without affecting the
other. However, the success of disentanglement is difficult to assess, and some
studies have shown that the latent representations may not actually be disentan-
gled, being possible to recover information of style from the other [240, 241].

1https://prisma-ai.com/; https://www.pikazoapp.com/; https://deepart.io/; https://
groove2groove.telecom-paris.fr/

52

https://prisma-ai.com/
https://www.pikazoapp.com/
https://deepart.io/
https://groove2groove.telecom-paris.fr/
https://groove2groove.telecom-paris.fr/


6. Reducing the Expertise Gap for Patients

• Manipulation methods work by identifying specific words in the text that con-
tribute to its style, such as professional language or clinical abbreviations (e.g.,
qd), and replacing them with synonyms or explanations (e.g., once per day) that
are more appropriate for lay people [242, 243]. In the biomedical and clinical do-
main [244, 245], these methods often use Consumer Health Vocabularies [141, 246,
247, CHVs]. Weng et al. [245], in particular, used CHVs as a preliminary step to
align embedding spaces and then used a translation-based technique to generate
simplified sentences.

• Translation methods often use unsupervised training to learn style-specific transla-
tions [241] with back-translation or cycle reconstruction strategies. Back-translation
[248] involves translating the source text to another language and back again.
Pabrhumoye et al. [249] proposed it on the basis of the evidence shown by Rabi-
novich et al. [250] to reduce the style properties of the source text. Such strategy
has already shown its efficiency [224] Cycle reconstruction, instead, involves train-
ing a model to reconstruct the source text from the transferred output [251, 252].
Parallel corpora can also be used for supervised training, but they can be expensive
and time-consuming to collect.

For the Expertise Style Transfer task at hand, Cao et al. [221] evaluated models be-
longing to the three macro-categories of TST discussed earlier (see also Sec. 8.3 for an
overview), while our approach falls into the latter category. In particular, we exploited
the collection of pseudo-parallel corpora, built on the basis of a definition of similarity cri-
terion between sentences, which has shown advantages over unsupervised training [253],
while being cost-effective if compared with the collection of human-annotated corpora.

In one related work, Luo et al. [254] collected gold corpora from MIMIC-III database
[255], which was a time-intensive process requiring a certain degree of expertise. To
overcome this issue, like us, Xu et al. [256] collected a large, pseudo-parallel corpus
from the MSD training set. While sharing the same intent to collect pseudo-parallel
corpora, there are some crucial differences. They used a language- and topic-agnostic
LASER [257] framework to extract the embeddings and collected the largest number of
training pairs above a fixed threshold on their similarity criterion. Our approach differs
in the use of general and domain-specific monolingual Transformer-based models and in
the investigation of the impact of different threshold ranges on the final TST system.

Disposing of parallel corpora can be an effective solution for these issues [253]. When
such data is not available, the automatic collection of pseudo-parallel data has proven
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to be effective, including in neural machine translation tasks [258, 259]. Style transfer,
similarly to machine translation, is a rewriting task and shares similar modeling ap-
proaches. While machine translation deals with cross-language content, style transfer is
typically within the same language. In some cases, it is approached from a multilingual
perspective [260].

However, the collection of high-quality parallel datasets is a challenging task, espe-
cially in a specialized domain like healthcare, where human efforts and costs are signif-
icant. To address this issue, van den Bercken et al. [261] proposed using the BLEU
score [262] to automatically collect a parallel dataset for a medical simplification task by
utilizing texts from Wikipedia and Simple Wikipedia. However, this approach was found
to be unsuitable for our use case due to the presence of many texts in both the expert
and lay training corpora, and the significant differences between the expert and lay test
samples. Another common technique for collecting parallel datasets is to train a classi-
fier that can distinguish sentence pairs from two different corpora [263, 264]. However,
using a classifier for large corpora is often infeasible, especially when using Transformer
architectures. Our approach addresses these limitations by employing bi-encoders. To
the best of our knowledge, the use of bi-encoders in style transfer tasks, particularly in
the technical domain of medicine, has not been explored previously.

Furthermore, Xu et al. [256] focused mainly on human evaluation and compared
their outputs only with inputs using (self-)BLEU, ignoring reference sentences in their
analysis (ref-BLEU). The interpretation of high self-BLEU scores is not trivial: a score
close to 100% between input and output only means that the model has learned to
reproduce the input without making any changes to the style. Moreover, it has been
established that surface-based metrics like BLEU are not ideal for TST tasks, as they
exhibit low correlation with human judgments [265, 266]. For these reasons, we evaluated
our outputs and those of the models presented by [221] using several other metrics,
referred to both input and target sentences. Computing these metrics for the gold
source and target texts allowed us to highlight the degree of content changes in the test
set, as suggested in previous works [221, 267, 268], and confirmed through our human
evaluations. This issue may stem from the loss of contextual information when working
at a sentence level. As a result, a few studies have taken a paragraph-level approach to
the medical-style transfer task from the perspective of Plain Language Summarization
(PLS [269, 270]), also in languages other than English [271].

Our study makes a unique and significant contribution to the field of Text Style Trans-
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fer by presenting an extensive examination of the collection of parallel data and offering
unique insights specific to its application. Furthermore, our human expert evaluations
set our work apart from previous studies, providing a valuable and rare perspective
on the performance and quality of our system. Despite building upon previous works,
our approach offers a fresh and innovative perspective on the task of Text Style Trans-
fer. The combination of automated and human evaluations, coupled with the in-depth
analysis of parallel data collection, makes our study a valuable addition to the current
state-of-the-art.

6.2. Datasets
In this work, we exploited and combined three datasets for the similarity and the style
transfer tasks.

ClinicalSTS2019 (CSTS) Wang et al. [272] collected a total of 2054 pairs annotated
by two clinical experts for the track on Clinical Semantic Textual Similarity in the
n2c2/OHNLP challenge of 2019. The training set, in particular, is an extension of the
dataset presented in the previous year’s challenge [273]. For the annotation phase, the
authors asked the experts to independently annotate each pair, on the basis of their
semantic equivalence, on a scale from 0 to 5, where 0 indicates a completely dissimilar
sentence (i.e., no overlap in their meanings) and 5 indicates a perfect semantic match. We
refer the reader to Table 6.3 and to [274] for more in-depth analysis and data examples.

Medical Question Pairs (MQP) McCreery et al. [275] collected a dataset of 1524
of random COVID-19 related questions2. For each question, a doctor provided one
positive and one negative example. For the former, doctors have rewritten the original
question by restructuring it as much as possible while maintaining the content. In the
latter one, doctors have rewritten the original question in a manner that the answer
of that question would be resulted being wrong/irrelevant while maintaining the same
structure and keywords. In this way, positive question pairs can look very different,
whereas negative question pairs can conversely look very similar at the surface. Each
pair is then labeled as either similar or dissimilar (1 or 0).

2https://huggingface.co/datasets/medical_questions_pairs
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MSD Cao et al. [221] collected data from human-written medical references from the
Merck Manuals (also known as the MSD Manuals) website3, one of most world-widely
trusted reference in health. They collected more than 245k non-parallel sentences in
expert and layman styles (∼130k and ∼115k sentences, respectively). Also, they hired
three doctors who annotated a total of 675 pairs of parallel texts. This additional set
may be too small to train a system but can be used to evaluate the generative models.
Furthermore, the authors provided a list of related concepts and terms related to each
sample, obtained with the QuickUMLS [276] tool to link medical entities in the text to
the Unified Medical Language System (UMLS) concepts [277].

We performed an empirical analysis of the parallel set provided as the test set. Among
all the pairs, we found various samples sharing some problematic patterns that can com-
promise the evaluation of the models. Some pairs report the same text for both styles, a
poor fluency for one or both texts, or information not mentioned in the counterpart text
(and thus unlikely to be reproduced in the transfer task). Also, we encountered different
gold target references for the analogous (or even the same) source texts. Furthermore,
sometimes domain knowledge seems to be essential for the model to perform well, e.g.,
in the case of acronyms. Even if this case cannot be marked as an "erroneous" sample, it
can help understand the difficulties of the task. Another serious problem is the presence
of different meanings in the two texts of the test pair. Table 6.1 reports an overview
of some examples. These problematic patterns can compromise the evaluation of the
models, and a more thorough evaluation is needed to better understand the difficulties
of the medical style transfer task.

Regarding the training dataset, we discovered that there were overlapping texts in
both styles, particularly in instances of fixed word patterns. We regarded these instances
as irrelevant and filtered them out by removing sentences that were short (less than
10 tokens) or displayed specific patterns using simple regular expressions. This pre-
processing stage reduced the number of samples to approximately 110k for the expert
style and 97k for the layman style.

6.3. Text Style Transfer System
From a mathematical standpoint, the aim of a TST system is to model the probability
p(y|x) where x(c, a) is the source sentence and y(c, b) is the target sentence, with the

3https://www.msdmanuals.com/
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Expert Layman
(i) The change in LDL levels may partly explain

why atherosclerosis and thus coronary artery
disease become more common among women
after menopause. [...]

The change in LDL levels may partly explain
why atherosclerosis and thus coronary artery
disease become more common among women
after menopause. [...]

(ii) Treatment of underlying disorder Treatment of cause
(iii) The most common causative organisms of oc-

cult bacteremia are Streptococcus pneumo-
niae and Haemophilus influenzae. [...]

Children under 3 years old who develop
a fever (particularly if their tempera-
ture is 102.2°F [39°C] or higher) some-
times have bacteria in their bloodstream
(bacteremia). [...]

Clinical evaluation Physical examination
(iv) Clinical evaluation A doctor’s evaluation

Clinical evaluation. A doctor’s examination.
(v) IV fluids. Fluids given by vein
(vi) [...] It occurs predominantly in men

practicing receptive anal intercourse and can
occur in women who participate in anal sex.

It occurs mainly in women. Anal sex
with an infected partner may result in gon-
orrhea of the rectum.

Table 6.1.: The analysis of the MSD test dataset has revealed some problematic pairs.
Most of them belong to one of the following patterns: (i) duplicate texts
for both styles, (ii) poor fluency, (iii) missing information, (iv) different gold
target references for the same source text, (v) acronyms, and (vi) different
meanings between source and target texts. The truncated texts are indicated
with "[...]" to accommodate them in the table.

same content c but different attributes (styles) a and b. If the system can also model the
reverse direction p(x|y), it is referred to as bidirectional [236]. If the transformation is
from a more complex source text to a simpler one, such as from expert to layman style,
it is also referred to as Text Simplification.

For our system, we exploited the collected pseudo-parallel training sets (Sec. 6.3.1) to
fine-tune a Bidirectional and Auto-Regressive Transformers (BART) model [222]. BART
is a denoising autoencoder for pre-training sequence-to-sequence model. Given a source
sentence x = {x1, · · · , xn} and a target sentence y = {y1, · · · , ym}, its loss function is
the cross-entropy between the decoder’s output and the target sentence:

L(ϕ) = −Σilog(p(yi|y1:i−1,x; ϕ)) (6.1)

The entire system pipeline is depicted in Figure 6.1 and consists of four steps.

i) Initializing the Sentence Transformers with the pre-trained BERT -based models’
weights.

ii) Fine-tuning the Sentence Transformers with the datasets described in Sec. 6.2.
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iii) Using the bi-encoders to perform a similarity search on the expert and layman
corpora from the MSD training data.

iv) Fine-tuning the BART model for the Text Style Transfer task using pseudo-parallel
data collected by setting a similarity threshold.

The resulting model can then be used during inference to simplify medical texts for a
lay audience.

Figure 6.1.: Our approach consists of the following pipeline: (i) retrieving pre-trained
Transformers as a bi-encoder and (ii) fine-tuning them with Semantic Tex-
tual Similarity datasets or MSD training set; then, (iii) using the fine-tuned
bi-encoder to perform a similarity search on the expert and layman corpora
derived from the MSD training set. By setting a similarity threshold to
collect pseudo-parallel data, (iv) fine-tuning the style transfer model using
the collected pseudo-parallel data. In the end, the fine-tuned model is used
during inference time to simplify medical texts from physicians to patients.
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6.3.1. Pseudo-parallel Data Collection

To implement our supervised approach, we first tackled the preliminary task of collect-
ing pseudo-parallel data from the two large, expert and lay corpora, to be used for the
training process of the model. To collect these parallel training sets, we implemented the
Sentence-Transformers [225] architecture. Such architecture is a bi-encoder, a siamese
network in which one Transformer encoder gets trained to produce semantically mean-
ingful embeddings. It means that the outputs of semantically similar sentences are closer
to each other in the vector space for some distance definition than dissimilar ones.

Besides being known to achieve suboptimal performance compared with a cross-
encoder architecture (i.e., the classical Transformer-encoder network), using a bi-encoder
is advantageous for large-scale semantic search, as the case in hand. It reduces the com-
putational complexity of retrieving representations for each paired combination in the
dataset to the task of obtaining one embedding for each sentence and computing some
similarity metric between paired embeddings combination. Implementing this kind of
technique allowed us to conduct a similarity search through FAISS [278], based on the
cosine similarity between paired embeddings, to retrieve with a GPU-optimized strategy
the nearest layman neighbor of each expert sample.

Pre-Trained Models We evaluated several Transformers encoders to collect the sen-
tence embeddings of the training dataset. Since we were interested in analyzing the
behaviors of a domain-specific encoder with respect to a general-topic one, we chose
chose BERT [23] and (Bio-)ClinicalBert [58]. We considered these two models because
they share the same architecture, thus excluding influences derived from different archi-
tectures. The latter was initialized starting from the former and then pre-trained on large
medical and clinical domain data. As expected, it led to better similarity performance
(Table 6.2). Thus, we retrieved this model to conduct our training strategies.

In a preliminary phase, we evaluated the all-mpnet-base-v2 4 model, which is the best
model reported in Sentence Transformers specifically trained for producing semantically
significant sentence embeddings5. It performed better than both models before training
in terms of the performance on the CSTS test set (see paragraph "STS Evaluation").
However, after training, it was outperformed by the (Bio-)ClinicalBert and thus dis-
carded for further analyses.

4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
5https://www.sbert.net/docs/pretrained_models.html
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Training Strategies We implemented the Multiple Negatives Ranking (MNR) loss [279]
as the loss for the contrastive (representation) learning [280]. It pushes the model to
create closer representations in the vector space for similar sentences and more distant
for dissimilar ones, based on some distance/similarity metric. At each step, the training
process aims to minimize the following equation:

LMNR = − 1
K

K∑
i=1

[s(xi, yi) − log
K∑

j=1
es(xi,yj)] (6.2)

in which (xi, yi) indicates any i-th anchor-positive (premise and hypothesis) pair and (xi,
yj) indicates any anchor-negative pair in the batch of size K; s(., .), instead, indicates
the score based on the defined metric (cosine similarity in our case).

We trained our models on MQP and CSTS training datasets, in some cases exploit-
ing only the positive pairs during the training process. For the latter, we considered
positive the pairs with a semantic equivalence score greater or equal to 4. For the model
trained on the MSD training dataset, not disposing of any content equivalence labels,
we exploited the strategy proposed in [281] for the unsupervised SimCSE (Similarity
Contrastive Sentence Embedding) framework. We used the Transformer encoder with
anchor-positive pairs consisting of the same input sentence. Due to the randomness of
the dropout [282, 283] masks in the encoder’s layers, the model generates two different
(noisy) representations of the same sentence, and the model learns to generate closer
embeddings from the noisy representations while distancing anchor-negatives pairs in
the batch.

STS Evaluation To be consistent with past literature, we evaluated the models using
two common metrics for semantic textual similarity, Pearson and Spearman correlations
between the similarity scores x = {x1, . . . , xn} produced by the sentence embeddings
and the CSTS official test set labels y = {y1, . . . , yn}. Equation 6.3 reports the formulas
of these metrics,

pearson =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

; spearman = 1 − 6 ∑
d2

i

n(n2 − 1) (6.3)

where x and y indicate the mean of vectors x and y, respectively, n is the number of
elements, and di the pairwise distance of the ranks of the i-th elements (xi and yi).
In particular, we defined the score xi between two sentences ai and bi as the cosine
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similarity of their embeddings, as reported in Equation 6.4.

cos(ai, bi) = ai · bi
||ai|| · ||bi||

(6.4)

In addition, we also assessed the models’ performance by calculating the average cosine
similarity between expert-layman pairs (ai and bi) in the MSD test set as

similarity = 1
N

N∑
i

cos(ai, bi) (6.5)

where N is the number of pairs. Table 6.2 reports the results of these evaluations.
As previously mentioned, (Bio-)ClinicalBert outperformed the other pre-trained model,
Bert (cb and bert in the table), for all the metrics. This was expected since the former
passed through a pre-training (domain adaptation) phase in the biomedical and clinical
domains. The cb_mqp_csts1 model achieved the highest correlation scores. It is
a (Bio-)ClinicalBert we first fine-tuned on the MQP dataset and then on the positive
samples of the CSTS dataset. Interestingly, the second fine-tuning step only slightly
improved the performance (see cb_mqp). Apart from the pre-trained models, for what
concerns the evaluation on the MSD test set, the model fine-tuned only on the CSTS
positive samples (cb_csts1) achieved the highest averaged cosine similarity. The model
fine-tuned using only the MSD data, instead, performed poorly on the averaged cosine
similarity. Such a result may indicate that the training strategy employed for this model
was not suitable for the test set at hand, which presents a high degree of aggressiveness
in the changes between source and related target texts.

Datasets Creation As the last step, we collected the pseudo-parallel datasets. We con-
ducted the next analyses with a selected set of the implemented models. Based on their
performances, we retrieved the pairs collected using cb_mqp_csts1 and cb_csts1
models. To analyze the impact of the fine-tuning strategies, as well as the pre-training
domain adaptation step, we included the cb_msd, cb and bert models, too. Further-
more, we also computed the similarity search between the lay corpus and a "corrected"
expert one, for which we switched expert terms with their lay-related terms. To do so,
following a similar approach of Xu et al. [256], we first collect all the Concept Unique
Identifier (CUI) codes in the MSD training set, as well as the number of occurrences
of the terms appearing in the texts for each style. Then, we switched each expert term
with the most represented one in the lay texts that share the same CUI(s). From now
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Id Model Training set Pearson (%) Spearman (%) Similarity (%)
bert Bert-base-uncased / 21.64 25.03 87.70
cb Bio-ClinicalBert / 30.07 31.84 93.99
cb_mqp1 Bio-ClinicalBert mqp(pos) 68.26 71.29 69.72
cb_mqp Bio-ClinicalBert mqp 80.27 77.41 67.12
cb_csts1 Bio-ClinicalBert csts(pos) 43.91 47.44 79.28
cb_csts Bio-ClinicalBert csts 61.61 56.08 66.33
cb_mqp_csts1 cb_mqp csts(pos) 81.12 78.29 69.93
cb_mqp_csts cb_mqp csts 66.51 62.33 65.17
cb_msd Bio-ClinicalBert msd 53.22 53.67 47.93

Table 6.2.: Semantic Textual Similarity model performance. Each model identified by
the first column got fine-tuned starting from a pre-trained model on a specific
training set: mqp (medical question pairs), csts (clinicalSTS2019), and msd,
where (pos) indicates that only the positive pairs were included in the training
process. The first two rows report basic pre-trained models without a fur-
ther training phase. We evaluated the performance in terms of Pearson and
Spearman correlation coefficients computed on the clinicalSTS2019 dataset
and on the average cosine similarity computed on the parallel samples of the
msd test set.

on in the paper, we refer to this dataset as cb_msd_swap.

To analyze the impact collected training sets may have on the final task at different
similarity thresholds, we retrieved several datasets at different threshold ranges based
on the quantiles they separate in the entire training set. We thus selected the following
ranges between the following quantiles: {99%, 95%, 90%, 85%, 80%, 75%, 70%, 50%}.
To minimize the impact of the training set size, we used the same number of samples
for each interval (with the exception of the ones above 99% and between 99% and 95%,
which contained a smaller number of samples). We then evaluated the overlap between
the datasets collected by the several models by averaging their overlap at each quantile.
As shown in Figure 6.2, datasets were more or less dissimilar, on average. The pre-
trained models are more similar to each other than to the fine-tuned ones. Also, the two
datasets collected with the cb_msd model look mostly overlap.

6.4. Automatic and Human Evaluation
We evaluated the collected training sets and the outputs of the style transfer systems
through both automatic metrics and manual annotation. Each metric refers to one
of the text’s aspects, i.e., the style strength (degree of style transfer) of the target
text, the content preservation between source and target texts, and the fluency of the

62



6. Reducing the Expertise Gap for Patients

Figure 6.2.: Average overlaps between collected datasets.

generated text. In particular, we compared our results with some baseline models, i.e.,
an unsupervised BART model (having the same architecture as in our system) and all
the models provided by [221], which include two text simplification models and three
style transfer models. We fine-tuned the unsupervised BART model without parallel
data by employing an iterative back-translation approach [284]. Two models for the
two transfer directions get trained (almost) simultaneously. Specifically, each model
generates synthetic parallel data for the other. In this way, the models get trained in a
pseudo-supervised fashion, each in one direction.

The baselines provided by Cao et al. [221] include:

• OpenNMT+PT [243], an OpenNMT-based [285] supervised model that replaces
complex words with their simple synonym based on a phrase table;

• UNTS [286], an unsupervised neural model consisting of a shared encoder and
a pair of attentional decoders; it is trained with discrimination-based losses and
denoising;

• ControlledGen [238], a neural generative model combining variational auto-encoders
and style attribute discriminators for the effective imposition of semantic struc-
tures;
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• DeleteAndRetrieve [242], an editing-based method that first deletes style-related
words, then retrieves new phrases associated with the target attribute and uses a
neural model to combine them as the final output;

• StyleTransformer [251], a Transformer-based model that uses cycle reconstruction
to learn content and style representation without parallel data.

6.4.1. Automatic Evaluation

Following previous works [287, 288, 223, 224], we used the following strategies. To
assess the content aspect, we computed BLEU [262] and BERTScore [289] between
the generated sentence and the human source and reference. BLEU counts the n-gram
matches in the candidate text with the reference one, this can be roughly formulated as

BLEU-n =
∑

C∈{Candidates}
∑

n-gram∈C Countmatch(n-gram)∑
C∈{Candidates}

∑
n-gram∈C Count(n-gram) (6.6)

where C represents the candidate text and match means that a n-gram appears in
both the candidate and either the source (self-BLEU ) or the reference (ref-BLEU ).
In particular, we used the overall BLEU by averaging the scores obtained with n =
{1, 2, 3, 4}. BERTScore uses greedy matching to maximize the matching similarity score
for each token in the candidate sentence with each token in either the source (self-
BERTScore) or the reference (ref-BERTScore), and combines recall (R) and precision
(P ) to compute an F1 measure. This can be formulated as

R = 1
|x|

∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j , P = 1

|x̂|
∑

x̂j∈x̂

max
xi∈x

x⊤
i x̂j , F1 = 2 R · P

R + P
(6.7)

where x̂ and x represent the candidate and reference, respectively. We also included
two learnable metrics, BLEURT [290] and COMET [291], as they have shown promising
correlation results with human judgments in the evaluation of machine translation, as
well as style transfer tasks as formality [266].

For what concerns the evaluation of the style of texts, we used a TextCNN-based [292]
classifier (trained on the entire training set) to evaluate the target style accuracy of the
transferred texts.

Regarding the fluency, we assessed the perplexity in an analogous way as in [221],
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computing a (pseudo-)perplexity with a masked language model. As in [293], for each
text W i, for each of its tokens wt, we first computed the conditional log probability
PMLM(wt|W i

\t) obtained by the model giving in input the sentence W i
\t, that is the same

as W i but with the t-th token masked. Then, we computed the pseudo-likelihood PLLi

of each text by summing the contribution for each token. Finally, we added the scores
of all the corpus S of sentences together, normalized the result with respect to the total
number of tokens N in the corpus, and exponentiated the result to obtain a measure of
pseudo-perplexity pPPL. The process is summed up in the following equation:

pPPL(S) = exp(− 1
N

|S|∑
i=1

PLL(W i)) =

= exp(− 1
N

|S|∑
i=1

|W i|∑
t=1

logPmlm(wi
t|W i

\t))

To compute such scores, we used (Bio-)ClinicalBert as well as its versions fine-tuned
on the training sets for lay or expert styles. To balance the data sizes and remove any
influence given by the different corpus dimensions, we reduced the number of experts’
texts during fine-tuning.

6.4.2. Human Evaluation

The human evaluation was conducted with two different protocols to capture both the
lay people and professional physician’s perspective, thus we elaborated two different
protocols. The lay people were asked to judge only the style perception of the samples,
while the physicians were asked to judge both the style and the content preservation.
For the evaluation of the pseudo-parallel datasets collected with the Semantic Textual
Similarity models, only the evaluation by the physicians was conducted. The goal was to
ensure that the content preservation was evaluated by experts in the field, as lay people
without the right field expertise were deemed unreliable in assessing it.

Due to the high cost of hiring professional healthcare personnel, we carried out the
annotations in only one direction, from expert to layman. The reason for this choice
is that text simplification tasks have been more widely studied in the past and are
considered more important for real-world applications. Due to cost constraints, we
selected only one of our TST models for evaluation. We made this decision based on
the results of our automatic evaluation (Section 6.5.1). We examined the results of the
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pseudo-parallel datasets collected with respect to similarity quantiles and focused on
models trained on datasets collected at the 85% quantile. This was because the parallel
sets at the 85% quantile score were closer to the results obtained on the gold test set
and the TST models trained on them generally showed good balance between content
preservation and style evaluation. Among all the TST models trained on the pseudo-
parallel sets (Sec. 6.3.1), we chose the one trained on the cb_mqp_csts1 (at 85%
quantile) set because achieving higher content preservation scores on average. We also
manually inspected its outputs and the ones of the model trained on cb_msd_swap
(at 85% quantile), which was close in terms of performance. We noted that the former
tends in some cases (especially when the input sentence is relatively short) to generate
explanations of medical terms. This behavior was shown by the other model, too, but
with less frequency and accuracy (refer to Sec. 6.5.4 for some examples). To what
concerns perplexity metrics instead, the trends were not clearly separable, thus they did
not influence the final decision.

To compare our system with state-of-the-art models, we chose the Style Trans-
former as a competitor. This choice has a dual justification. Among the models pre-
viously proposed in the literature to tackle the Expertise Style Transfer, it showed a
more stable behavior in terms of the content preservation/style strength trade-off, as
also highlighted in [221]. Also, its architecture and training strategy are similar to our
unsupervised model. It allowed us to show the improvement of our methodology against
unsupervised ones.

We decided not to pick our unsupervised model into account for the human evaluation
because of its (too) high content preservation scores with respect to the source, which
indicates its outputs are created by mostly repeating the inputs. Furthermore, we added
the gold lay references in the comparative analysis to assess the distance and goodness
of the two models with respect to the gold references. The annotators were not aware
of which text was written by which system.

From the evaluation process, we excluded samples with source texts of less than 5
and more than 32 tokens and samples for which at least one of the models presented an
output that was the same as the source text. It allowed us to perform a fair comparison
between models regardless of their hyperparameters (e.g., maximum input sequence
length), as well as reducing the annotators’ efforts while removing trivial examples.

Besides giving different annotation protocols to lay people and experts, we asked
them to judge the same texts.
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Annotation protocol for layman We hired ten lay people proficient in English without
a background in medicine and annexed fields. We asked them to choose between two
texts the easier to understand. Each pair included the source text and one of the
systems-related output (or the reference text). Before being presented to the annotators,
we shuffled the pairs to minimize the bias. Also, each subject annotated 30 samples
(consisting of 3 pairs, one for each system). An overlap of 10 samples with another
subject was present to assess the agreement between couples of annotators, resulting in
250 annotations. We assessed the agreement between the annotators with the Cohen’s
Kappa (K lay) [294] and evaluated the style transfer as the ratio between the number of
texts judged easier to understand than the related source text (Stylay).

Annotation protocol for expert We hired four physicians proficient in English from
the Department of Orthopaedic Surgery of University Campus Bio-Medico of Rome,
Italy. We divided them into two groups, one for judging the collected pseudo-parallel
data and one for judging the output of style transfer systems. For both settings, we asked
them to assess the content preservation. For the outputs, we also asked to evaluate
the degree of style transfer, in terms of the quality of the changes made. Regarding
content preservation, to be consistent with the past literature [274], we followed the
same guidelines to assess the content preservation. In particular, we asked them to
assess the style question without influence by the content, even if medically inaccurate,
evaluated with the other question. We asked them not to take into account fluency issues
as well. To assess the style strength, specifically, we asked them to take into particular
account terminology and empirical evidence knowledge gaps, as also highlighted in [221].
Table 6.3 reports the questions and the answers included in the expert protocols, as well
as the scores associated with each answer.

For what concerns the evaluation of the pseudo-parallel data, we presented to the an-
notators a total of 350 samples consisting of one expert sentence and its lay counterpart.
Each sample was randomly extracted from one of the quantile-dependent sets collected
with cb_mqp_csts1. We excluded the samples for the 99% quantile presenting pairs
of the same texts. This protocol allowed us to analyze how the quality perceived by the
physicians changes across the quantile ranges.

To evaluate the three systems’ outputs, we presented to the annotators a total of
250 samples, consisting of one source text and three rephrased texts. For each sample,
together with the source text, we presented all the outputs on the same annotation page.
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Content preservation
Q: To what extent is the rewritten text still conveying the same content as the source text?
0: The two texts are completely dissimilar.
1: The two texts are not equivalent, but are on the same topic.
2: The two texts are not equivalent, but share some details.
3: The two texts are roughly equivalent, but some important information differs/missing.
4: The two texts are mostly equivalent, but some unimportant details differ.
5: The two texts are completely equivalent, as they mean the same thing.

Style strength
Q: To what extent the process of rewriting for a lay audience can be considered a good attempt?
0: The rewriting process is not a good attempt, performing no changes from the source text.
1: The rewriting process is not a good attempt, performing some changes that are not good for the scope.
2: The rewriting process made some minimal good changes but the rewritten text still mostly targets an expert audience.
3: The rewriting process made quite substantial changes, although there are some elements for an expert audience.
4: The rewritten text really targets a lay audience.

Table 6.3.: Questions and answers, included in the expert protocols, for the evaluations
of content preservation and style strength. On the left of each answer, the
associated score is reported.

While not being a relative rating protocol [295] since we did not ask the annotators to
perform a ranking between systems, it is not a pure direct rating approach either because
of the possible influences of the other systems’ outputs. While this choice could have
led to this kind of bias, it was justified to decrease the cognitive effort of the annotators.
Thus, we evaluated the content preservation (Cnt) and the style strength (Sty) by
looking at their averaged scores and their ranking comparisons.

To assess the agreement between annotators, we presented a subset of 100 training
samples and 50 outputs samples to both the physicians involved in the annotation phase.
We exploited the quadratic weighted version of the Cohen’s Kappa (Kw) [296]. The
advantage of using it is to require just the distribution of the distance between two
annotations to be ordinal [297]. Considering yi and yj as the annotation performed
by the i-th annotator and the j-th one, respectively, computing the weights as in the
following equation

wi,j = (yi − yj)2

(N − 1)2 (6.8)

where N is the number of choices, allowed us to measure the agreement while taking
into account the seriousness of the disagreement between annotators. Trivially, the
disagreement between two annotators evaluating a pair of texts as completely equivalent
and unimportant details differ, respectively, is weighted less than a disagreement between
completely equivalent and completely dissimilar (refer to Table 6.3).
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Figure 6.3.: Automatic content preservation metrics (in terms of %) for the collected
parallel sets, indicated with the // symbol over the quantile ranges. The
most relevant models are reported. The blue solid horizontal line indicates
the score computed between the source and the gold reference.

6.5. Results and Discussion
In this section, we reported and discussed all the results, including automatic and human
evaluations. The annotations allowed us to study the correlation between automatic
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Figure 6.4.: Automatic content preservation metrics (in terms of %) over the quantile
ranges for the most relevant models, computed with respect to the source
(self-). The blue solid horizontal line indicates the score computed between
the source and the gold reference, while the other horizontal lines refer to
the competitors.

scores and human judgments, and their feedback helped us to perform a qualitative
analysis. We pointed out the critical aspects of the expertise style transfer task and the
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Figure 6.5.: Automatic content preservation metrics (in terms of %) over the quantile
ranges for the most relevant models, computed with respect to the gold
reference (ref-). The blue solid horizontal line indicates the score computed
between the source and the gold reference, while the other horizontal lines
refer to the system competitors.

models’ results.
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Figure 6.6.: Automatic style strength metric (in terms of accuracy percentage) and
(pseudo)perplexity metrics. The latter were computed using a (Bio-
)ClinicalBert masked language model (pPPL) and its fine-tuned versions
on expert and lay corpora (pPPLexp and pPPLlay, respectively).

6.5.1. Automatic evaluation

For what concerns the automatic evaluation, to help in understanding the impact of the
different training sets on the TST performances, we report plots showing the metrics
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scores over the quantile value used for collecting the parallel training set. Figure 6.3
reports the content preservation metrics assessed for the collected parallel training sets,
indicated with the symbol //. The same metrics were assessed for the TST system out-
puts in relation to both the source and the target, denoted with the self- and ref- prefixes,
respectively. We reported them in Figure 6.4 and Figure 6.5. Figure 6.6, instead, reports
the automatic metrics assessing the style strength of the outputs and their perplexity.
We reported the (pseudo-)perplexities using either the original (Bio-)ClinicalBert and
its fine-tuned versions on the lay or expert corpora. For ease of visualization, we reported
only the models that are most relevant to discuss the results. Each subfigure presents as
the baseline(s) the scores assumed by the MSD test set, and as competitors the state-
of-the-art model achieving the best content preservation performance (ControlledGen),
the state-of-the-art model showing to be more stable across content preservation and
style strength performance (StyleTransformer), and our unsupervised BART model.
We report the results comprehensive of all systems in Table 6.4 and Table 6.5.

Figure 6.3 shows that the different automatic metrics share analogous trends, even if
values may differ. // BERTscore in particular shows a range way limited in comparison
with the others, while, given its definition, // BLEU does not show negative values as
// BLEURT and // COMET. Pseudo-parallel datasets collected with different models
share similar trends across the several metrics. In the beginning, they share similar
values, which confirm that, at high quantiles, the sets overlapped more regardless of the
model used for the collection. Then, after the 90% quantile, apart from // BLEU, the
metric starts to capture the differences in the collected datasets. As already discussed
in Sec. 6.4.2, in general, for the 85% quantile, the sets are closer to the test set, more or
less without regard for the metric in the exam.

The characteristics of the parallel training sets influence the style transfer systems
outputs. The same metrics computed to assess the content preservation in the outputs
(Figure 6.4 and Figure 6.5) share a similar trend. It is more evident for the self-metrics,
for which the values ranges are close, too. In particular, self- and ref-metrics show large
differences in values, with a largely lower starting value and a gentler slope. Showing
an increase at first, ref-BERTscore represents an exception to the trend. Although,
its variations are nonetheless extremely modest. At lower quantiles, different metrics
report different models’ rankings. However, the model trained on the sets collected with
the cb_mqp_csts1 model is more prone to achieve higher ranking positions for both
self- and ref-metrics. Anyway, the low content scores obtained by the gold references
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highlight the inherent difficulty of the task. In general, our models obtained far larger
self-scores, which may either suggest that they are better than the human references or
that the (self-)metrics are flawed for the task at hand.
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6. Reducing the Expertise Gap for Patients

As can be easily noted in the first plot of Figure 6.6, the trend is reversed for the style
strength accuracy metric, computed with the TextCNN style classifier. The differences
in this behavior are due to the dataset used to train the models. For the top quantiles,
the parallel texts may be considered very similar, or even equal at the extreme case at the
99% quantile, as demonstrated by the close to 100% // BLEU scores. On the contrary,
the lowest quantiles contained pairs of (too) dissimilar sentences. In one extreme case,
the model got trained to mostly reproduce the input, while, on the other extreme, the
model got trained to generate outputs too dissimilar from the source but more towards
the lay style.

Note that, only in the first quantiles, we outperformed the content preservation state-
of-the-art performances. In the subsequent quantiles, instead, we have overcome the style
strength of state-of-the-art systems (if we exclude the score achieved by the DeleteAn-
dRetrieve system, which is the worst one in preserving the content, as can be seen in
Table 6.4 and Table 6.5).

Interestingly, the models trained on non-fine-tuned models (cb and bert) achieved
higher style strength, in general, than our other models. Conversely, they performed
worse on the content preservation metrics (the self- ones, in particular). It suggests
that non-specialized Semantic Textual Similarity models tended to retrieve pairs of less
related texts (at lower quantiles), which led to an increase in variability in the collected
pseudo-parallel datasets, resulting in higher style results on the TST task.

About the other models’ baselines, both ControlledGen and the unsupervised BART
show great content performances but the worst style strengths, suggesting that those
models mostly reproduced the input without significant changes. It justified choosing the
trade-off of the StyleTransformer as the competitor in the human evaluations. Anyway,
the test set style strength score was definitely unachievable for all the models. At the
same time, the high test accuracy confirms the ability of the style classifier model to
distinguish between expert and lay styles.

Figure 6.6 also reports the (pseudo-)perplexities computed with (Bio-)ClinicalBert
(pPPL) and its fine-tuned versions on the lay or expert corpora (pPPLlay and pPPLexp,
respectively). For all three metrics, the models show a trend similar to the one seen
with the content preservation metrics. The decrease in perplexity with the quantile
ranges reflects the variability increase of the related training set. Such behavior is more
pronounced with the perplexity model fine-tuned on the lay corpus.
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6. Reducing the Expertise Gap for Patients

Curiously, each model achieved greater pPPLlay scores in comparison with the pPPLexp

ones. It seems to suggest that the lay outputs generated by the models present more
similarities with the expert training corpus than with the lay one. The lay test corpus is
the exception for it (while the expert test corpus shares this behavior as was expected),
reflecting that the test set was extracted from the same corpus from which the training
dataset was collected. Interestingly, at lower quantiles, the perplexity metrics between
models trained on sets collected with fine-tuned models are closer to the ones trained on
sets collected with non-fine-tuned models and vice-versa (even if such differences in the
perplexity are modest). The reason for this behavior has to be searched in the variability
of the training sets, again: using non-fine-tuned models to collect the parallel sets leads
to obtaining more dissimilar sentences in the pairs, thus increasing the variability of
what the model has seen during training.

Our models have shown, in general, lower perplexities than the state-of-the-art ones
and our unsupervised BART baseline, regardless of the quantile range, showing the
goodness of our models.

6.5.2. Human evaluation

Table 6.6 reports the results of the analysis of our model (based on the training set
collected with cb_mqp_csts1 at the 85% quantile), compared with the state-of-the-art
model (StyleTransformer), and the gold references. Before analyzing the results, we first
assessed the agreement between annotators to establish the quality of the annotations
processes. In the lay case, pairs of annotators evaluated the style as a binary task by
choosing the easier-to-understand text between the source and one system output. They
achieved an averaged Cohen’s Kappa (K lay) of .32 (± .15), which may be considered a
fair agreement as suggested by previous literature [298]. However, the large standard
deviations suggest that some pairs may be easier to annotate (low disagreement degree)
while others are harder (high disagreement degree). We also evaluated the agreement
on the single systems. It is worth noting that the StyleTransformer (ST ), for which the
annotators agreed most on average, is also the system that achieved the lowest style-
related score for lay people. It means that their concordance reflects in low performance
(the annotators mostly agree in saying that its output is not easier to understand for
them compared with the source). We discussed this aspect in the section dedicated
to qualitative analysis. Our model achieved higher results, comparable with the gold
reference, showing that it was actually able to perform some changes in the simplification
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6. Reducing the Expertise Gap for Patients

direction.

Unlike lay annotators, we asked the experts to judge by following a measuring scale.
Thus, the original Cohen’s Kappa was not suitable to assess their agreement. We, there-
fore, applied its quadratic weighted version (as described in Sec. 6.4.2). Plus, we asked
the physicians to judge not only the style but the content preservation too. Thus, we as-
sessed the agreement score for both content (Kcnt

w ) and style (Ksty
w ), separately. However,

since the weighted Cohen’s Kappa interpretation is debated, with its results influenced
by the weight scale [297], we also assessed the Spearman correlation indices (ρcnt and
ρsty). The annotators achieved a Kappa agreement of .42 for content preservation on the
outputs and .50 on the style strength, which can be considered moderate agreements.
The Spearman score confirmed the fairness of those agreements [299]. We evaluated the
agreements on the single systems for this setup, too. It is noticeable that the annotators
shared more agreement on the content preservation of the system results while agreeing
only slightly on the gold reference (Ref). It suggests a higher aggressiveness in changes
for the reference with respect to the source text, which leaves room for more interpre-
tation for the annotators. Regarding the style analysis, the expert annotators showed
outcomes analogous to the ones obtained with lay people.

Moving to the proper evaluation analysis, our model (Ours) obtained larger scores
on average with respect to the state-of-the-art model, highlighting once again the im-
provements brought by our approach. However, while its content preservation scores
are even greater than the reference, its style scores are still worse. It indicates that our
model prefers to change less instead of messing with the meaning of the input. Even
if not optimal, avoid to lose information is preferable, even at the cost of not changing
or changing just minor things to the layman’s direction. In this sense, it can hardly
compete with the abstraction level of the gold references. Anyway, we compared the
three systems in relation to the others, measuring the number of times that a system
outperformed another on the same sample. The heatmaps in Figure 6.7 confirm that
our model outperforms the reference in content preservation, while it was not considered
as good as the reference in changing the style. However, both of them largely outper-
formed the StyleTransformer for both content and style, and a combination of the two
(overall). In particular, besides often performing only minimal changes, the outputs of
our model were still perceived as easier than the source texts by lay people, which is
a great advancement of the state-of-the-art. Indeed, in the lay evaluation, our model
outputs resulted extremely close to the gold references.
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6. Reducing the Expertise Gap for Patients

Agreement Human Evaluation Automatic Evaluation
System # K lay Kcnt

w Ksty
w ρcnt ρsty Stylay Cnt Sty BLEU BERT BLEURT COMET SS

Ref 50 .26 ± .36 .24 .21 .41 .31 69.00 65.12 ± 29.23 71.60 ± 27.59 14.01 89.74 4.77 -4.62 94.67
ST 50 .31 ± .45 .63 .34 .62 .31 28.50 62.00 ± 25.35 31.35 ± 17.15 53.66 94.98 7.38 19.02 53.93

Ours 50 .16 ± .27 .57 .20 .66 .19 66.50 79.48 ± 20.42 48.80 ± 27.95 41.40 95.36 43.99 44.56 54.22
All 150 .32 ± .15 .42 .50 .50 .52 - - - - - - - -

Table 6.6.: Evaluation results for the gold reference (Ref), the StyleTransformer (ST ),
and our model (Ours), as well as the three systems together (All). The
first block regards the agreement between annotators assessed with a given
number of samples (#). For lay annotators, the agreement is assessed with
Cohen’s Kappa (K lay), while for the experts it is measured with the quadratic
weighted version (Kw) and the Spearman correlation index (ρ), for both con-
tent preservation (cnt) and style strength (sty). The second block reports the
human evaluation results (in terms of percentages) of the different systems
for lay and expert annotations. For the former case, the style is evaluated as
the ratio between the number of texts judged easier to understand than the
related source text (Stylay). For the latter, both content and style scores are
normalized with the range of the related scale. The third block is dedicated
to the automatic (self-)metrics computed with respect to the source text and
the style strength. The best results for each metric are shown in bold.

Figure 6.7.: Ranking comparison regarding human evaluations for content preservation,
style strength, and a combination of the two (overall). The darker the color
of the cell (i, j), the more times the i-th system (on the y-axis) was ranked
better than the j-th model (on the x-axis) on the same sample. Note that
the sum between the cell (i, j) and the cell (j, i) is lower than 1 because of
cases of draws. For the same reason, the diagonal is represented by all zeros.

Furthermore, we conducted an expert evaluation to retrieve insights on the content
preservation quality of the collected parallel sets at different quantiles. First, we calcu-
lated the agreement between annotators (using 100 samples) with the quadratic weighted
version of the Cohen’s Kappa and the Spearman correlation. The annotators shared an
agreement between moderate and substantial (Kcnt

w = .60, ρcnt = .64). Figure 6.8 re-
ports the results of the evaluation in terms of the normalized average and standard
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Figure 6.8.: Human evaluation results in content preservation for the collected pseudo-
parallel datasets over the quantile thresholds. The results are reported in
terms of the normalized average and standard deviation scores.

deviation of the scores. As expected, as for the automatic metrics, the averaged content
preservation score generally decreases as the quantile threshold decreases. However, at
the lower quantiles, the trend becomes more ambiguous, especially between 70% and
50%. It may be due to similar content preservation performance for lower quantiles, re-
flected by the automatic metrics (Figure 6.3), too, showing similar values between lower
quantiles-related parallel sets. The same behavior is shown by the self- and ref-metrics
on the style transfer task (Figures 6.4 and 6.5). These results suggest that decreasing
the threshold below some value led to obtaining datasets of similar (low) qualities.

Even if not directly comparable with the same task on the outputs since different
setups are involved (and different pairs of annotators took part at the two different
setups), the obtained results point out interesting things. The larger agreements sug-
gest that annotators may agree more on the content preservation quality of parallel sets
automatically collected than the ones created with a generation model or even the refer-
ences annotated by humans (gold). These results suggest that the implemented pipeline
may be successfully applied, with respect to the similarity threshold, to retrieve parallel
corpora for the style transfer task in the medical domain. Eventually, such a collection
phase may be employed as a preliminary step to a human annotation phase. It may help
for reducing the annotators’ efforts while minimizing the aggressiveness of the changes
between source and target texts.
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6.5.3. Comparing automatic and human evaluations

The comparison of the automatic evaluation scores with the human evaluation scores in
Table 6.6 reveals some interesting findings. Although the comparison of BLEU scores
between the StyleTransformer and our model are not directly comparable, the auto-
matic self-metrics for content preservation tend to have a similar behavior as the human
evaluation scores. To further explore the agreement between the automatic and hu-
man evaluation metrics, we analyzed the correlation between them for both content
preservation and style strength. Table 6.7 shows the Spearman correlations for self-
and ref-content metrics (ρself and ρref , respectively), as well as for style (ρss). The re-
sults show that the correlation between the self-metrics and human judgments is higher
compared to the correlation between the ref-metrics and human judgments. This is con-
sistent with past literature [266]. Overall, BLEURT and COMET are the metrics that
show the highest correlation with human judgments, both in the self- and ref-setting.
It is also worth noting that the reference texts (Ref) have a lower correlation with self-
metrics compared to the two models, which highlights the aggressive differences between
the reference texts and the associated source texts. Furthermore, the StyleTransformer
model (ST ) shows higher correlation scores, suggesting that there is a stronger correla-
tion between automatic metrics and human evaluations when judging a less-performing
system.

When examining the results for the style aspect, a noticeable feature is the low
correlation score for the StyleTransformer. This is likely due to the model’s strategy of
replacing complex terms with simpler but often unrelated words, which are evaluated
as simplifications by the classifier that is less influenced by the outputs’ meaning and
fluency than humans. Additionally, the correlation score for reference texts, which the
style classifier was able to identify well, is notably low. This highlights the difficulty for
humans in assessing the style strength, separating it from the structure and semantics.
These findings are in line with recent studies in the field [300].

6.5.4. Qualitative analysis

Our manual inspection was conducted on a significant number of examples and incorpo-
rated the feedback from the expert annotators. The three models we focused on were:
our cb_mqp_csts1 model at 85% quantile, the StyleTransformer system, and a model
based on the cb_msd_swap dataset (at 85% quantile) which had similar performance to
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Humans-BLEU Humans-BERT Humans-BLEURT Humans-COMET Humans-SS
System # ρself ρref ρself ρref ρself ρref ρself ρref ρss

Ref 250 .45 - .42 - .41 - .43 - .10
ST 250 .59 .21 .68 .22 .67 .43 .67 .42 - .03

Ours 250 .64 .34 .60 .21 .62 .30 .65 .30 .20
All 750 .39 .26 .45 .27 .60 .46 .58 .44 .34

Table 6.7.: Spearman correlation scores between expert human judgments and auto-
matic metrics for the gold reference (Ref), the StyleTransformer (ST ), and
our model (Ours), as well as the three systems together (All). The # column
reports the number of samples used to assess the correlation scores. For con-
tent preservation scores, we reported correlation involving both self- (ρself )
and ref- (ρref ) metrics. The last column instead assesses the correlation (ρss)
between the style annotations and the outputs of our trained style classifier.
The best content-related correlations for each system are shown in bold.

our model. We did not take into consideration the models’ outputs that were not mere
repetitions of the input. The results of our analysis allowed us to draw some qualitative
conclusions. Firstly, we observed that each model employed different strategies to sim-
plify the text. In instances where our models couldn’t substitute a complex term, they
attempted to provide an explanation:

Source: Pulmonary arteries are affected, sometimes causing pulmonary hypertension.

StyleTransformer: Pulmonary arteries are affected, sometimes causing intravenously
recurring.

cb_mqp_csts1 (85%): Pulmonary hypertension is a condition in which blood pressure
in the lungs is too high.

This behavior is particularly highlighted for short and/or incomplete sentences:

Source: IV fluids.

StyleTransformer: common fluids.

cb_mqp_csts1 (85%): IV fluids are given intravenously.

cb_msd_swap (85%): Blood and urine are given intravenously.

Of course, not all of the found examples are good attempts

Source: Biopsy.

cb_mqp_csts1 (85%): Biopsy is the most common type of bleeding disorder.

cb_msd_swap (85%): Biopsy is given intravenously.

Despite that, these examples indicate that our models tend to provide explanations when
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unable to substitute significant terms, and at times, exhibit good domain knowledge.
Additionally, we discovered some domain knowledge related to gender in our models,
which was interesting.

Source: Most patients have pelvic pain (which is sometimes crampy), vaginal bleeding,
or both.

StyleTransformer: Most people have pelvic pain (which is sometimes crampy), vaginal
bleeding, or both.

cb_mqp_csts1 (85%): Most women have pelvic pain (which is sometimes crampy),
vaginal bleeding, or both.

The above example helps in pointing out also another common tract: all the models
tend to not reproduce the word patient, substituting it with a less domain-specific term
such as people (or woman under the above particular conditions). It suggests that in
the lay corpus people are not referred to as patients as in the expert corpus. However,
being a common word, such a change was mostly not considered by the annotators as a
valid simplification. We also found that our models were mostly able to deal with some
abbreviations, like hr and yr, while the StyleTransformer model was not:

Source: Jaundice usually peaks within 1 to 2 wk. Recovery phase: During this 2- to 4-wk
period, jaundice fades.

StyleTransformer: Jaundice usually peaks within 1 to 2 relieving.

cb_mqp_csts1 (85%): Jaundice usually peaks within 1 to 2 weeks.

cb_msd_swap (85%): Jaundice usually disappears within 1 to 2 weeks.

The example above allows us to point out another behavior that we found in common
among the models. When the source text presents a complex structure, the models
tend to remove part of the whole text to simplify its structure. In particular, when the
source text consists of more than one sentence, the models prefer to truncate the output,
removing either the left or the right context. We believe that this behavior is due to
the nature of the training corpus, which mostly consists of one-sentence texts (and the
limited token lengths accepted in input by the models, in some cases). As in the example
above, when the StyleTransformer cannot cope with a stylistic change, its output looks
messy. It is also partly demonstrated by larger (pseudo-)perplexities as well as by the
annotators’ results and feedback. The lay annotators always pointed out the presence
of ill-structured sentences. While the model attempted to simplify the inputs, it often
made them incomprehensible, causing the annotators to prefer the source (expert) texts.
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This, however, put the annotators on the spot in cases where the source was actually
hard to understand and/or the meaning of the output was easy to understand even
if presenting messy terms. Furthermore, to some annotators, shorter sentences mostly
felt easier to understand, while others felt that longer texts gave them more contextual
information and reputed them more understandable. Often, the choice was complicated
by differences in the meaning caused by additional information in one of the texts in a
pair. Another issue highlighted by lay annotators is the presence of minimal changes
(e.g., changing the capital letter of a common term in the middle of the sentence to
its corresponding lower one), often judged randomly (which also led to an increase in
the disagreement). Another common minimal change pointed out by both laymen and
experts is the change of common words (such as patients) with other common ones (like
people). In most of these cases, lay annotators declared to have often made their choices
randomly, while expert ones usually annotated them as no good changes or even no
changes where they were the only alterations made.

85



Part III.

Explaining Transformers

86
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Rescue: Extractive Summaries as
Explanation

Performing document classification of free text has already been shown its importance
in literature, even in the healthcare domain. One example of document classification is
sentiment analysis, which has shown benefits also in multimodal settings, where adding
features extracted from free text is essential for good performance in sentiment classifi-
cation of audio and videos [301]. However, today’s systems often lack transparency, as
they cannot provide an interpretation of their reasoning. In recent years, this has been a
well-known problem in the scientific community. In fact, the contribution that artificial
intelligence algorithms are making in shaping tomorrow’s society is constantly growing.
Given the high performance that today’s models can achieve, their application is span-
ning an increasingly large landscape of fields. This is motivating a rapid paradigm shift
in the use of these technologies. We are moving from a paradigm in which AI models are
required to deliver the highest possible performance, to one in which such systems are
required to provide information about taken decisions that is interpretable by humans.

We are referring to the explainable artificial intelligence (XAI) paradigm. As stated
by the DARPA’s XAI program launched in 2017, the main goal of XAI is to create a
suite of models that provide an explanation without affecting performance [73, 74, 75].
That is, to pass from the concept of black-box models, in which it is hard (or even
impossible) to get any sort of explanation from them, to white-box ones, in which the
model also provides results that are understandable by the final users, or at least by
the experts in the application domain [72]. This may lead systems of the near future
to address the needs of government organizations and the users who use them, such as
the right to explanation, which can raise the reliability of users in the system, and the
right to decision rejection, especially in applications where a human-the-loop approach
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is expected (Articles 13–15, 22 of the EU GDPR).

Since the Transformer architecture was introduced by Vaswani et al. [47], the NLP
research has made great strides. Additionally, its community is beginning to approach
to this new paradigm [76]. However, the task of explaining NLP systems is certainly not
an easy one, in a context where models based on deep neural networks, usually referred
to as the least explicable models of machine learning, take the lead.

In an effort to investigate the behavior of these models and provide some sort of
human-understandable interpretation, the weights of the attention mechanism inherent
in these structures have often been taken into account (Section 7.1.4). In this work,
we propose and compare two transformer-based models to perform tasks of sentiment
analysis, while retrieving an explanation of the models’ decisions through a summary
built by extracting the sentences of the document that are the most informative for the
task in hand1. That is, we exploited the extractive (single document) summarization
paradigm (Section 7.1.2). In particular, for one of the two models, we made use of the
attention weights of the transformer model to get insights on the most relevant sentences.
To do so, we exploited hierarchical configurations (Section 7.1.3). We evaluated our
models on a binary sentiment classification task. However, the underlying structures
may be easily adapted for any document classification task.

In particular, to evaluate the classification performance, we shifted the focus from
patients-related opinion to a benchmark extensively used in past literature, the IMDB
movie reviews dataset [304]. Such a choice is justified by our intent to analyze our
methodology regardless of the domain of application, gathering indications on the per-
formance of our methods in comparison with past works.

To assess the explainability performance, we annotated some samples of the dataset to
retrieve human extractive summaries from the training and test sets, and then assessed
the overlap between these and the models’ ones. The annotation phase was necessary
since, to the best of our knowledge, this is the first kind of work trying to exploit model
architectures to retrieve an extractive summary of a document while performing its
sentiment classification (Section 7.1.1), even for a benchmark of the chosen dataset.

The main contributions of our work may be resumed as:

1The work presented in this chapter is an extract of our paper published in Electronics [302] entitled
Explainable Sentiment Analysis: A Hierarchical Transformer-Based Extractive Summarization Ap-
proach, and our paper published in Proceedings of European Semantic Web Conference (ESWC) [303]
entitled Extractive Summarization for Explainable Sentiment Analysis using Transformers
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• A new approach to explain document classification tasks as sentiment analysis,
by providing extractive summaries as the explanation of the model decision;

• Exploring use of attention weights of a hierarchical transformer architecture
as a base to achieve extractive summaries as an explanation of the document
classification task;

• A new annotated dataset for the evaluation of extractive summaries as an
explanation of a sentiment analysis task. We shared the annotated dataset together
with the algorithm code on our Github page2;

• Two different proposed models, both based on transformer architectures, ana-
lyzed in terms of the performance in both the classification and explanation tasks.

Furthermore, we proposed an ablation study for the hierarchical model, to evaluate
the impact of (sentence) masking and positional embedding, and the role of the first
transformer when it is frozen during the training phase. Additionally, we implemented
a new a posteriori metric to evaluate the models’ summaries with no regard to prior
annotations.

7.1. Related Works

7.1.1. Explainability in Sentiment Analysis

Sentiment analysis, also called opinion mining [305], consists of the classification task
of the polarity of some text. In recent years, it has gained interest not only in research
but also in industry. It is particularly true due to the advent of blogs and social media,
and, thus, the impressive growth that shared content has shown. Organizations are
currently using these kind of data for their decision making processes instead of conduct
surveys, for example, to rank products or services from the users’ reviews [306] and
provide recommendations to the users [307], to predict changes in the stock prices [308],
or, to give an example closer to the domain of our work, to predict incomes from movies
at the box-office basing the prediction on the online movies’ reviews [309].

In particular, sentiment analysis tasks may be performed at the word, sentence, and
document levels. The latter is, of course, the more difficult one to perform because of
the greater length of the text, which also may lead to the presence of noisy words or

2www.github.com/lbacco/ExS4ExSA
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sentences. Longer documents more easily show words and sentences with a polarity that
can be neutral or even opposite in respect to the overall polarity of the entire document.
This kind of task presents limitations on the interpretability of the decision made by
the models. However, in literature, there are not so many works dealing with this side
of sentiment analysis models. One way the past literature dealt with the explainable
sentiment analysis field was by exploiting a fourth degree of the task, the so-called
entity/aspect-based level.

Originally called feature-based level [310], it consists of performing a finer-grained
analysis by directly looking at the opinions themselves reported in the document. This
concept is based on the assumption that each opinion may be seen as the combination
of sentiment and its target (the entities and their attributes, the aspects). For example,
for the sentence

The photography is nice, but the movie is way too slow

we could say it is a negative comment, but not in its entirety. In fact, we can indi-
viduate two entities or aspects (aspect extraction), the photography and the movie, and
we can also determine their sentiment (aspect sentiment classification), respectively, as
positive and negative. The emphasis on the latter may indicate that the overall score
of the sentence is more negative than positive. Thus, combining the aspects’ polarity
score, with this approach it is also possible to retrieve an overall polarity score [311],
and consequently the document sentiment. This is done while also giving finer-grained
insights, for example turning the free text into a structured list of entities and aspects
and their associated sentiments. The main disadvantage of this approach is the effort
to extract and annotate entities, attributes, and sentiment words or phrases, while also
dealing with the presence of implicit aspects.

Another way to explore the explainability in sentiment analysis exploited by the past
literature is to use the so-called sentiment lexicons. Such items are de facto dictionaries
in which words (but also phrases) are associated with some polarity score. The main
advantage of this kind of approach is the possibility to exploit already existing acces-
sible resources, such as SentiWordNet [312] or SenticNet [313] and its newer versions.
However, it is not rare that some words assume different connotations depending on the
domain. Thus, in some cases is useful to build some custom lexicon by extracting as-
pects and opinions [314] and, eventually, to combine it with the other external resources.
Aside from this, another advantage of this approach is being completely unsupervised,
not requiring an annotated corpus for training: for each document, the polarity scores
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are merely combined (e.g., by average) to provide its overall sentiment. In other cases,
the external knowledge may directly inject domain information into the input text, for
example, by leveraging a sentiment knowledge graph (SKG) to enable a BERT model
to incorporate the external knowledge [315].

However, our approach does not make use of any external resources aside from the
training dataset, and does not work at the aspect level but at the document level to
extract the overall sentiment while extracting a summary from the original text as an
interpretation of the models’ decision. To the best of our knowledge, no previous works
have proposed something close to our approach.

7.1.2. Automatic Text Summarization

The automatic text summarization (ATS) topic is gaining more and more interest in
research, not only in the academic but also in the industrial field. This is due to the
increasingly large amount of textual data on the various archives of the Internet. It
is not difficult to imagine the value it may have to automatically summarize scientific
papers, to give an example close to our world. Additionally, such an approach could
be beneficial to analyze clinical documents (usually, kinds of documents that are very
long), social media opinions, product reviews, etc. From these points of view, it becomes
even more obvious how it would be worthy to automatize a summarization process if
you think about how much a manual text summarization (MTS) may cost, in terms of
both time and human efforts.

Not least, the ATS may be used as an explanation of a model decision, as in this work.
However, ATS is not a monolithic topic of research, but it may be seen as spread in many
sub-fields where researchers are putting their efforts in. Following the nomenclature
in [316], we may distinguish the first and most important differences between ATS
techniques presented in the literature.

First of all, ATS systems may be classified by the size of their input. We may have
a system which target is to shorten a single document given in input (single document
summarization, SDS) or to compress the important pieces of information from a set
of multiple documents (multi-document summarization, MDS). Obviously, the MDS
paradigm is not suitable for the case at hand, where we were interested in achieving an
interpretation (the summary) on the classification of a single document.

Systems may also be divided by the nature of the summary. Some methods are
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defined as extractive because they build summaries by extracting the most important
sentences from the document. Others are called abstractive because they aim to generate
a summary made by new (generated) sentences. Even if the abstractive paradigm can
theoretically solve issues such as redundancy and information lost, because of the task
complexity the research efforts focused more on the extractive kind. A third way is the
hybrid one, which may be seen as a trade-off between the two paradigms. This kind of
approach, as it can be guessed, combines the extraction of the most important sentences,
on which the system will rely to generate the final summary. Since the abstractive phase
relies only on those sentences, the quality of the summary may be of less quality than a
pure abstractive summary, although it could be a good compromise.

Since our models focus on extracting sentences from the original document, it falls
within the extractive paradigm. We could also define our models as deep learning-based
(because, of course, transformers are deep neural networks models) and informative (be-
cause the extracted summaries contain important information of the original document).
For an in-depth analysis of the nomenclature of the summarization systems, we suggest
the reader to refer to [316].

7.1.3. Hierarchy in Transformer Models

One of the greatest limitations of the transformer-based models is to be limited to input
of a fixed length of text, usually less than a few hundred tokens, even if they have the
potential to learn longer-range context dependencies. This is due to the computational
and memory requirements of the self-attention mechanism, which quadratically grows
with the number of tokens in the sequence. The simplest approach to use for long docu-
ment classification tasks with transformers is, therefore, the truncation of the document.
This obviously may lead to a significant loss of information.

Trying to overcome this issue, some groups of researchers developed an extension of
models like BERT. Such extensions usually exploit a hierarchical architecture, in which
a classifier is built on the representations of some chunks of text obtained from a first
transformer model. For example, in [317] two kinds of architecture were investigated:
RoBERT and ToBERT. They build each model upon stacked representations retrieved in
output from a first BERT layer. In RoBERT, a recurrency over BERT was implemented
using an LSTM layer and two fully-connected layers. In ToBERT, another transformer
was used over BERT, substituting the LSTM layer with a 2-layers transformer. At
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a cost of a greater computational cost, ToBERT showed better performance on some
evaluated tasks, especially on the one dataset consisting of longer documents. For both
models, each document was divided into chunks counting 200 tokens, with an overlap of
50 tokens for consecutive chunks.

Inspired by this work, in [318] documents were divided into chunks of 512 tokens
(with 50 overlapping tokens within consecutive segments), and an investigation on the
merge method was conducted. In particular, the classification was based on the most
representative vector (the one with the highest norm), on the average of all the vectors,
and a representation built through a 1D convolutional layer.

Closer to our task, there is the work in [319], where HIBERT, a hierarchical trans-
former (again, based on BERT) was first pre-trained in an unsupervised fashion and
then fine-tuned on a supervised extractive summarization task, where all the sentences
of each document are labeled as belonging or not to the summary of that document.

Following this work, in [320] proposed to pre-train a hierarchical transformer model
with a masked sentence prediction (in which the model is required to predict a masked
sentence) and a sentence shuffling tasks (in which the model is required to predict the
original order of the shuffled sentences). Then, also using the self-attention weights
matrix (obtained by averaging over the heads for each layer and then averaging over
the layers), the hierarchical pre-trained encoder is used to compute a ranking score
for the sentences. The top-3 sentences are then used to constitute the summary. To
the best of our knowledge, this last work is the closest to our, exploiting the attention
weights of a hierarchical transformer model to generate a ranking useful to the extractive
summarization. However, this last model was used with the aim to generate summaries
in an unsupervised manner, while we aimed to collaterally generate summaries that
explain the decision of a hierarchical model in a task of document classification.

7.1.4. Attention as Explanation

In the recent literature, various works proposed to analyze the attention patterns of the
transformer architecture to have an insight on how such a model works. In [82], the
author proposed a useful visualization tool, named BertV iz. This tool provides an in-
teractive interface to visualize attention weights between tokens for every attention head
in every layer. Through this tool the author was able to find that some particular heads
(in some particular layer) may capture lexical features, such as verbs and acronyms, or
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may relate to the co-reference resolution, also showing the eventuality for such heads
to encode gender bias. Another kind of visualization tool for the attention weights is
the attention (heat-)map. Using these maps, the authors in [321] found patterns that
are consistent with the previous ones. In detail, they divided the patterns into five
categories: vertical (which mainly corresponds to attention to the delimiter tokens), di-
agonal (attention to previous or next word), a mix of these two, block (intra-sentence
attention), and heterogeneous (said, no distinct structure). In this work, a heads and
layers disabling study was also conducted, showing that in some cases a pruning strategy
does not lead to a drop in performance (sometimes it even leads to an increase).

In addition to these two, other studies have been conducted showing that the self-
attention heads allow BERT, as other transformer models, to capture linguistic features,
such as anaphora [322], subject-verb pairings [323] (then extended by [324]), dependency
parse trees in encoder-decoder machine translation models [325, 326], part-of-speech
tags [327], and dependency relations and rare words [328].

However, in our study, we did not aim to reach an explanation of how the Trans-
former model deals with such features but to reach an interpretation of the document
classification given by the model. Talking about this paradigm, various works focus on
the weights of the attention layer in Transformers [329] or other kinds of networks, such
as the recurrent or the convolutional ones, to highlight the words or n-grams in the text
that are the most relevant for the decision.

Regarding the sentiment analysis task, authors in [330] observed a strong interac-
tion between neighboring words visualizing the attention matrix of a Transformer-like
network. Furthermore, in [331], the authors of the work discussed the use of attention
scores from an attention layer as a good and less computationally burdensome alternative
to external explainer models like LIME [77, 78] and integrated gradients [79] methods.
However, the result of such a method is, again, to just highlight parts of the discourse for
which the model seems to focus more. This kind of approach does not lead to an actual
interpretative summary that may be more easily readable and, therefore, interpretable.
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7.2. Materials and Methods

7.2.1. Data

To benchmark our models, we used the IMDB Large Movie Review Dataset. Such a
dataset consists of 50K movie reviews written in English and collected by [304]. Those
reviews (no more than 30 reviews per movie) were highly polarized, as a negative review
corresponds to a score ≤ 4 (out of 10), and a positive one has a score ≥ 7. We
downloaded the data through the Tensorflow3 API. The data are already divided into
two equivalent sets, one for training and one for testing (plus 50K unlabeled reviews
that might be used for unsupervised learning, not used in this work). Each of the subsets
presents a 50:50 proportion between negative and positive examples.

To assess the explainability of our methods we randomly extracted a total of 150
reviews, divided into two subsets, 50 from the training set and 100 from the test set.
Documents were chosen by maintaining the proportion between the two classes, ensuring
that both the models can correctly classify them. Four annotators were instructed to
select the three most important (out of N = 15) sentences in each document. To make
such a choice, the annotator is allowed to look at the sentiment of the document. To
evaluate the agreement between the annotators, we calculated the so-called Krippen-
dorff’s alpha. First proposed by Klaus Krippendorff [332], to which it owes its name,
it is a statistic measure of the inter-annotator agreement or reliability. The strength of
this index is to apply to any number of annotators, no matter the missing data, and
it can be used on various levels of measurement, such as binary, nominal, and ordinal.
This measure may be calculated as in Equation (7.1)4.

α = 1 − Do

De

∈ [0, 1] (7.1)

where Do is the disagreement observed, and De is the disagreement expected by chance.

Since Krippendorff’s alpha is calculated by comparing the pairs within each unit,
those samples presenting at most one annotation are eliminated. However, in this case,
each sample (sentence) is automatically annotated as within the three most important
sentences or not. Hence, such an elimination phase was not required. Values of α less
then 0.667 are often discarded, while values above 0.8 are often considered as ideal [333,

3www.tensorflow.org/datasets/catalog/imdb_reviews
4https://github.com/foolswood/krippendorffs_alpha
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334]. Anyway, except for α = 1, we could say that there is no such thing as a magical
number as a threshold for this kind of analysis, especially for tasks as much subjective
as this one. In our case, αtraining = 0.47 and αtest = 0.61.

7.2.2. Models

Here, we illustrate the two proposed architectures. To provide a visual explanation of
them, we report the simplified schemes in Figures 7.1 and 7.2.

Figure 7.1.: Hierarchical transformers model

Explainable Hierarchical Transformer (ExHiT) The first model exploits a hierarchical
architecture, consisting of two transformers (T1 and T2) in cascade (Figure 7.1). Be-
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Figure 7.2.: Sentence classification combiner model

cause of its nature, we like to refer at this as the Explainable Hierarchical Transformer
(ExHiT ). The input of the first transformer is a sequence of t tokens, while the output
is an embedding representation of that sequence. Each sequence represents one of the N

sentences {s1, · · · , sN} in which the document is divided. If a document can be divided
into just m ≤ N sentences, then N − m empty sentences (just the special tokens) are
added to the document. After T1 has elaborated the N sequences, the new generated
representations {r1, · · · , rN} are stacked together to become the input of T2. T2 then
outputs a contextual representation ci for the i-th sentence that depends on the other
sentences (ci = f(r1, · · · , rN)). By merging these contextual representations we obtain
an unique document representation d = U(c1, · · · , cN). In this work, we investigated the
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following merging strategies:

• By concatenation: U(.) = Concat(.);

• By averaging: U(.) = Avg(.);

• By masked averaging: U(c1, · · · , cN) = Avg(c1, · · · , cm) with m ≤ N , for which
{sm+1, · · · , sN} is the set of the added empty sentences;

• By the application of a Bidirectional LSTM: U(.) = BiLSTM(.).

Then, vector d is given as input to a classification layer. In this work, such a layer
consists of a two-units fully-connected dense layer with the softmax activation for the
binary classification task. Other than the contextual representations, we were able
to retrieve from T2 also the self-attention weights for each head of each layer inside
the transformer itself. To give more importance to the interpretability of the model
instead of the performance, T2 consists only of two layers and just one head per layer.
In this way, it is easier to extract valuable information. By averaging the attention
weights associated with a specific sentence, we extracted the score of that sentence. The
sentences are ranked through such a score, and the most important ones are then selected
to provide an extractive summary of the document. Such a summary serves then as the
explanation of the model decision.

Sentence Classification Combiner Model (SCC) This second model has a simpler
architecture (Figure 7.2), requiring just one transformer model in its pipeline. The input
of this transformer is again a sequence of t tokens, i.e., the single sentence si. Again, its
output is a new representation ri of that sentence. Such representation is given in input
to a dense layer to classify the sentiment of the sentence, outputting two probability
scores, one for each class. Then, the negative scores are averaged together, and the same
for the positive ones, to get a final rating for each class. The prediction of the overall
document sentiment will be given by whoever has the greatest final score. Knowing the
decision of the model, the sentences are ranked by the inherent probability score. Then,
the most relevant ones are extracted to build the summary of the document, serving as
an explanation of the model decision.

Parameters In the following, we listed the main features of the two models used in the
experiment’s session:
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• T1: For a fair comparison, the first transformer model was the same for both the
architectures; we opted to use the pre-trained version of RoBERTa [50];

• T2: We used a transformer with two layers, one head per layer; this choice was
motivated to facilitate the explainability phase;

• N: The maximum number of sentences per document was set to 15; by this way, we
ensured that the 75% of the training documents were elaborated in their entirety;

• t: The maximum number of tokens per sentence was set to 32, comprehensive
of the two special delimiter tokens; by this way, we ensured that the 75% of the
training sentences were elaborated without being truncated.

In addition to the two models, we implemented a pre-processing phase consisting
of the replacement of the tokens ’<\br><\br>’ with the newline character, and, ob-
viously, a sentence splitting step. We used the sentence tokenizer provided by NLTK.
Furthermore, for documents that do not reach N number of sentences, empty sentences
(consisting of just the special tokens) were added up to N . Similar reasoning was applied
to sentences that do not reach the t number of tokens: in these cases, the sequences were
zero-padded on the right, and an attention mask was applied.

7.3. Experiments
The SCC model was trained on the single sentence classification task, with a batch size
of 240 sequences. Thus, the transformer together with the dense layer has been trained
to classify the sentiment of every single sentence. After that, the average layer has
been added on top of the trained model to perform the document classification (and its
explanation) in the test phase. For what concerns the ExHiT model, the experiments
followed two different fashions, always maintaining a batch size of 8 documents.

7.3.1. Joint Training

In this kind of experiment, the entire model was jointly trained on the document clas-
sification task. In this conceptualization, the weights of both the two transformers, the
dense layer and, eventually, the merging layer (BiLSTM ) were allowed to be updated
during the training phase.
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7.3.2. Ablation Study

In this kind of study, a model is modified by adding or removing some features from its
architecture. In a first experiment, we added to the model the following features:

• (Sinusoidal) Sentence Positional Embedding (SPE) for T2: following the original
works on the transformers architectures, we added the positional embedding to
the sentence embedding in input to the second transformer;

• Sentence Masking (SM) for T2: following the principle of the attention mask for
the padded token of the sequences in input to the first transformer, we applied an
attention mask on the empty sentences added at the bottom of the document.

These two items were added under the hypothesis that encoding the relative posi-
tion between the sentences and masking the empty sentences may improve the model
performance. In a second experiment, we froze the weights from the first transformer
also during the training. This experiment was conducted to investigate the following
hypothesis: by freezing its weights, no knowledge can be learned by T1 during the train-
ing phase; thus, this configuration should force the second transformer to learn the most
important features from the document to perform the task it is trained for. Even if it
could lead to degradation in the sentiment classification performance, if this assumption
was confirmed, it could potentially lead to improving the explanation performances.

The ablation study experiments were conducted using the ExHiT model implementing
the concatenation merging strategy.

7.4. Results
The proposed models were evaluated for both sentiment analysis and explainability
outcomes. In Table 7.1, we reported the sentiment analysis results achieved in terms of
accuracy, and precision, recall, and F1-score per class. For the ExHiT model, various
proposed merging strategies were tested. As the accuracy column highlights, changing
the merging strategy does not significantly affects classification performance.

Following the same structure, in Table 7.2 we reported the explainability outcomes in
terms of precision averaged over all the documents. The performances are reported for
different annotators’ agreements, i.e., we built summaries by grouping the sentences for
which at least one, two, or three out of the four annotators judged them among the most
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Table 7.1.: Sentiment analysis results in terms of accuracy, and precision, recall, and
F1-score per class.

Model Merging Strategy Accuracy (%) Precision (%) Recall (%) F1 (%)
Neg Pos Neg Pos Neg Pos

ExHiT

Concatenation 92.59 90.97 94.34 94.56 90.62 92.73 92.44
Average 92.35 92.18 92.51 92.54 92.15 92.36 92.33

Masked Average 92.77 92.07 93.49 93.60 91.94 92.83 92.71
BiLSTM 92.34 90.97 93.80 94.01 90.67 92.47 93.06

SCC - 93.51 95.42 91.75 91.40 95.62 93.37 93.65

important ones. This implies that some annotators’ summaries of the j-th document
may contain more than three sentences (Nj > 3, especially in the first case) or less than
three sentences (Nj < 3, especially in the latter case). Therefore, we extracted the first
Nj sentences in the machine’s ranking and evaluated the overlap of these summaries with
the annotators’ ones. The formula of the introduced explainability metric is reported in
Equation (7.2):

Precision = 1
D

D∑
j

TPj

Nj

∈ [0, 1] (7.2)

where D is the number of documents, Nj is the number of sentences in the annotators’
summary, and TPj is the number of well-selected sentences in the system summary
of the j-th document. Documents for which Nj was equal to 0 were excluded from
the computation. This may happen, in particular, where an agreement of at least three
annotators was required. About the ExHiT performance, the results of the best layer are
reported. In general, the ranking from the first layer slightly outperformed the rankings
from the last layer and the rankings obtained by averaging both layers. Furthermore,
the empty sentences were removed by the machine rankings.

For what concerns the ablation study on the ExHiT model, we combined the config-
urations described in Section 7.3.2, exploiting only the concatenation merging strategy.
We reported the results of these experiments in Table 7.3, both in terms of accuracy
and explainability precision. Again, the explainability performances are related with the
first layer in general, except when the last layer or an average between both presents
(slightly) better summaries. However, in the models implementing the sentence mask-
ing for the second transformer we found out a greater degree of agreement between the
layers, and it was not rare to see the precision scores from the first layer only slight

101



7. Hierarchical Transformers to the Rescue: Extractive Summaries as Explanation

Table 7.2.: Explainability performance in terms of precision (averaged over all docu-
ments) for different annotators agreements, evaluated on both the annotated
documents from training and test sets. For ExHiT model the performances
from the first layer are reported, except when the rankings from the last layer
1 or from the average of layers a have shown better results.

Model Merging Strategy
Agreement at Least 1 Agreement at Least 2 Agreement at Least 3

Precision (%) Precision (%) Precision (%)
Test Train Test Train Test Train

ExHiT

Concatenation 53.82% 55.88%a 49.15% 45.00% 46.63% 46.45%
Average 58.04% 57.82% 50.42% 45.92%1 45.29% 41.84%

Masked Average 53.15%a 55.79% 45.97%a 44.92% 40.66% 39.80%
BiLSTM 55.51%a 55.85% 49.05%a 45.24%a 43.38%a 39.95%

SCC - 70.74% 65.61% 65.22% 57.83% 55.22% 47.52%

higher than the scores retrieved from the last layer (or the scores obtained by averaging
the attention weights from both layers).

Table 7.3.: Ablation study outcomes for the ExHiT model, both in terms of accuracy
and explainability precision. SM stands for sentence masking, SPE stands
for sentence positional embeddings. Frozen T1 indicates that the the weights
of T1 were frozen during the training. The model is intended to implement
the concatenation merging strategy. As in Table 7.2, results from the last
layer or from the average of layers are indicated with the apices 1 and a,
respectively. Otherwise, the reported results are intended to be related with
the first layer.

Model Accuracy (%)
Agreement at Least 1 Agreement at Least 2 Agreement at Least 3

Precision (%) Precision (%) Precision (%)
Test Train Test Train Test Train

ExHiT 92.59% 53.82% 55.88%a 49.15% 45.00% 46.63% 46.45%
+ SM 92.51% 67.24% 68.27% 59.82% 56.17% 54.88% 57.09%a

+ SPE 92.37% 64.34% 65.35% 58.13% 56.33% 52.19% 56.38%
+ SM + SPE 92.67% 70.27%a 69.11%1 63.65% 63.50% 55.56% 55.67%a

Frozen T1 89.50% 63.43% 68.16%a 52.78%a 56.00% 44.11%a 48.23%a

SCC 93.51% 70.74% 65.61% 65.22% 57.83% 55.22% 47.52%

In Tables 7.2 and 7.3, we compared the different models’ explainability with what
we may call the explainability precision. Such a metric may take place with a priori
annotations, i.e., the annotations are made on the original documents. To conduct a
more in-depth analysis on the explainability error, we are also proposing a new metric
that takes advantage of a posteriori annotations, i.e., the annotations are made on
the (N=) 3-sentences summaries retrieved by each model. Here, the annotators were
instructed to annotate each sentence as (1), negative (−1) or neutral (0) depending on
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the polarity of the document it lets them understand. The final score of the model
exploits a sort of Mean Absolute Error (MAE) for discrete variables. Hence, the total
score is computed by following Equation (7.3)

1 − 1
2MAE = 1 − 1

2D

D∑
j

1
Nj

Nj∑
i

|cj − sj,i| ∈ [0, 1] (7.3)

where D is the number of documents, N is the number of sentences per summary, cj

is the predicted class of the j-th document, and sj,i is the annotated score of the i-th
sentence (of the j-th document), and 1

2 is a corrective factor to map the range of the
MAE function (and, therefore, of the score) into an interval of [0, 1]. In particular, in
our case we fixed Nj to be equal to N = 3, also excluding the documents with less than
3 sentences from the computation of the total score). In this case, the previous equation
may be rewritten in the form of the following equation:

1 − 1
2MAE = 1 − 1

2DN

D∑
j

N∑
i

|cj − sj,i| ∈ [0, 1] (7.4)

The contribution of each sentence −1
2 |cj −sj,i| to the total score is, therefore, equal to

0 if the prediction and the sentence score belong to the same class, −1 if they belong to
opposite classes, and −1

2 if the sentence is annotated as neutral. Thus, the total score is
a real number that lies in the range between 0 (dramatic extreme case, in which all the
sentences belongs to the class opposite of the prediction) and 1 (desirable extreme case,
in which all sentences belongs to the same class of the prediction). In particular, if the
score is equal to 1

2 , it means that all the extracted sentences are evaluated as neutral by
the humans (or that the number of well-ranked sentences counterbalances the number
of the sentences classified as belonging to the class opposite of the prediction). Thus:

• If 1 − 1
2MAE < 1

2 ⇒ the model performance is worst than if it chose all neutral
sentences;

• If 1− 1
2MAE > 1

2 ⇒ the model is going better than if it chose all neutral sentences.

To avoid any bias for the annotators deriving from the prediction of the model or
from the other sentences of the document, the predicted class was obscured and the
sentences of all the documents were shuffled together. The annotations were performed
just for three of the models trained in this work, as reported in Table 7.4. In particular,
the results about the ExHiT -based systems come from the attention head of the first
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layer of the second transformer.

Table 7.4.: Explainability performance in terms of the proposed score, reported in Equa-
tion (7.4), and percentage of summary’s sentences annotated as neutral. The
ExHiT models are intended to be implemented with the concatenation merg-
ing strategy, and the summaries built by the first layer are analyzed.

Model 1− 1
2MAE (%) Neutral Rate (%)

Test Train Test Train

ExHiT 78.33% 74.67% 26.00% 35.37%
+ SM + SPE 86.50% 82.67% 13.00% 17.69%

SCC 92.67% 88.67% 11.56% 19.05%

7.5. Discussion
By analyzing Table 7.1, the SCC model seems to achieve a slightly better overall per-
formance. However, it is interesting to notice that SCC results are particularly good for
the precision for the negative class and the recall for the positive one while achieving the
worst performances for their counterpart metrics, for which the best results are obtained
by ExHiT using the concatenation merging strategy. About Table 7.2, the ExHiT ex-
plainability results are lower than those achieved by SCC, with respect to all the merging
strategies. This outcome may be due to an influence of the task on the two models: it
may be noticed that the task the second model accomplishes is closer to the one per-
formed by the annotators. It may, therefore, help the SCC model in the explainability
task. Furthermore, the average merging strategy leads to better performance than the
masked one, especially with respect to the test set (∼+5%). This seems to suggest that
masking the empty sentences from the average combination after the elaboration of the
second transformer does not help the model to better understand the task.

For what concerns the ablation study conducted in this work, the obtained results
are very interesting (Table 7.3), in particular, for what regards the explainability perfor-
mance. In fact, while the sentiment classification did not show significant improvements
in terms of accuracy, ExHiT models implementing the empty sentence masking have
shown significant improvements in terms of explainability precision, achieving results
comparable with the SCC model. In some cases, it reaches even better outcomes, es-
pecially when it is combined with the introduction of the sinusoidal sentence position
embeddings, a strategy that has shown explainability improvements even when imple-
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mented alone. Furthermore, exploiting a qualitative analysis of the outcomes of the
various models, it has been observed how the ExHiT -based systems “suffer” from the
noisy empty sentences added to achieve the maximum number of the sentence required
by the architecture, with the exception of the models implementing the sentence mask.
This behavior is highlighted in Table 7.5, reporting the sentences from the same docu-
ment ranked by two ExHiT models, one not implementing the sentence mask and one
that does it, respectively. In the example reported here, it is easy to notice the presence
of the empty sentences among the first positions of the ranking built by the former,
while they are always ignored by the latter model itself and thus put on the bottom part
of the constructed ranking.

Table 7.5.: Example of document summary generated by two ExHiT models, one im-
plementing sentence masking (right) and the other without the sentence
mask (left). The index columns indicate the position of each sentence in the
original document.

Index ExHiT Index ExHiT + SM

0 This film was a surprise. 0 This film was a surprise.
6 Jealousy, sexual tension, incest, intrigue, [...] 6 Jealousy, sexual tension, incest, intrigue, [...]
11 Even though her strength and lack of illusion [...] 1 The plot synopsis sounds kinky [...]
13 8 However, I wanted to clarify a point [...]
14 10 The attractive female slave successfully resists [...]
4 The child takes him to the girls [...] 9 I find that there is one.
10 The attractive female slave successfully resists [...] 3 There is that opening scene where [...]
3 There is that opening scene where [...] 11 Even though her strength and lack of illusion [...]
5 He takes advantage of the situation [...] 2 I didn’t know what to expect.
7 I’ve read the other comments here and find little to disagree with. 5 He takes advantage of the situation [...]
2 I didn’t know what to expect. 7 I’ve read the other comments here and find little to disagree with.
12 She, more than any of the other women [...] 4 The child takes him to the girls [...]
9 I find that there is one. 12 She, more than any of the other women [...]
8 However, I wanted to clarify a point [...] 13
1 The plot synopsis sounds kinky [...] 14

These considerations seem to suggest that the sentence mask is essential to filter out
the noisy empty sentences and, therefore, better understand the task. However, with or
without sentence masking, the performances of the classification task of the two kinds
of models are not so far from each other. Thus, we hypothesized that, in absence of
the sentence masking, the model captures other kinds of information from the text and
learns how to use them to perform the sentiment analysis task. Exploiting these features
thus leads to good performance in the main task, but being inherently less interpretable
for humans it is inevitable for the model to reach worse explainability performance.

The performed ablation study reports interesting results when T1 weights are frozen
during the training phase. In this case, the model has shown good improvements in
terms of explainability precision. This seems to confirm our hypothesis that freezing the
first transformer prevents it from adapting to the task during training and then forces
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the second transformer to boost its ability to extract important information from the
sentences. In fact, the results in Table 7.3 show that this trick can in part compensate for
the absence of sentence masking, at the cost of ∼3 percentage points on the classification
accuracy.

For what concerns explainability, in Table 7.4 results in terms of MAE are reported for
some models. We proposed this kind of metric after visualizing models’ outcomes. Figure
7.3 shows an example of document annotation performed by the annotators, in which
darker background means higher relevance in the document, computed as the average of
agreement among the annotators. Figure 7.4 shows the annotations performed by the
SCC model on the same example. Again, darker background means higher relevance,
in this case in terms of the probability scores.

Figure 7.3.: Example of document annotation performed (a priori) by the instructed
annotators.

Figure 7.4.: Example of document annotation performed by the SCC model during the
classification.

As it can be seen, if we consider the case of agreement of at least three out of the four
annotators, the explainability precision would be null. In fact, the annotators’ summary
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would be built by extracting the sentences numbered as {1, 3, and 4} while the model’s
summary would consist of the sentences numbered as {5, 6, and 9}. However, at a further
analysis, it seems clear that the second set of sentences contain a negative sentiment,
as well as the first set. Thus, the introduction of such a posteriori metric was necessary
to perform a fairer comparison between the models. Unfortunately, being a posteriori
metric brings the drawback to perform human annotations on the outcomes of each
model we want to compare. For this reason, this analysis was limited only to three
of the developed models. The outcomes in terms of this metric (Table 7.4) still show
the SCC model to outperform the other(s). Very interestingly, for the test dataset, it
achieves a very high score, greater than 92%. This seems to suggest that this model
not only can achieve a near state-of-the-art accuracy in the sentiment analysis task but
also provides a very accurate extractive summary as an explanation of the predicted
class. However, to compute this metric the introduction of a new class, the neutral one,
was necessary to perform the annotations. The reason is, of course, we cannot exclude
a priori that some summary extracted from the template may contain uninformative
sentences with respect to the sentiment of the full review. In particular, for both kinds
of models, many of the sentences classified by annotators as neutral are excerpts of plot
narration. For example, the sentence

But success has it’s downside, as Macbeth soon finds out, when he has to go
to hideous lengths to protect his murderous secret.

is simply a description of a plot passage in the movie Macbeth - The tragedy of ambition
and contains no information about the sentiment of the review provided by the user and,
therefore, would be impossible for an annotator to classify as black or white. Another
kind of sentence extracted by the models is sentences that may gain a sentiment sense
only if seen together with the previous or next parts of the document. For example, the
sentence

You’ll be glad you did.

has no particular sentiment when picked alone and gives no clue about the polarity of
the document. In fact, it is licit for an annotator to wonder: I’ll be glad I did what?.
Thus, this sentence alone does not give good hints to guess the sentiment nature of the
document. However, if you look at this sentence inside its context

Do yourself a favor and avoid this movie at all costs. You’ll be glad you did.

it can be easily noticed that it enforces the negative sense of the previous part of the
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discourse. The annotators reported this kind of behavior for the ExHiT model, in par-
ticular, and this seems to be confirmed by the last two columns of Table 7.4, where a
greater percentage of neutral annotations is reported for both training and test set with
respect to the SCC model. This seems to suggest that the ExHiT model it is less suited
to perform single sentence-extractive summaries, because of a more contextual under-
standing of the document classification task. However, the ExHiT version implementing
both the sentence masking and positional embeddings has been reported to less show
this behavior. In fact, its neutral percentage is way lower than the simpler version. In
the case of the training set, it is even lower than the SCC system. Furthermore, also the
proposed score presents a significant improvement. These outcomes suggest, once again,
how these components are of great importance to the interpretability of the hierarchical
model.

Both the proposed models have achieved good classification results, not so far from the
works at the state-of-the-art on the IMDB dataset, while also performing an explanation
in the form of a summary. The explainability component of the models, achieving good
results, as well as the classification one, is a feature that may become essential in several
applications. For example, while sentiment analysis may help to mark customer messages
and reviews, the explainability part may be helpful to get quick insights about the
strengths and the weaknesses of some product or service. Furthermore, both underlying
architectures allow their easy adaptation in any document classification task (e.g., topic
classification), and may be applied to any language: the only restriction is to use the
suitable pre-trained model as T1, i.e., a Transformer model that has been pre-trained
on the task language (or, at least, in a multilingual fashion). This is an interesting point
of view for the next research works to focus on: by using the proposed models it would
be possible to achieve the sense of their reasoning and ease the individuation of wrong
classified samples. Furthermore, in other scenarios, ExHiT may outperform the SCC
model thanks to its ability to get more insights from the context of the other sentences in
the document. Sentiment analysis is, in fact, a task that particularly relies on the lexical
meaning of the individual sentences, thus being less influenced by the entire context.

Another attractive idea to follow is to go in-depth with the analyses in the ablation
study for the ExHiT architecture. We have shown how masking the empty sentences
and adding the positional embedding may play an important role for the model, and how
freezing the first transformer during training may force the higher part to learn more
interpretable features. Future research may extend this kind of study by evaluating
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the performance (both in terms of classification and explainability) achieved by deeper
models, e.g., adding more layers and self-attention heads to the second transformer.
Plus, the explainability at a finer granularity (the tokens level) may be explored by
investigating the attention weights of the first transformer for both kinds of architectures,
e.g., by highlighting the most important words in each sentence, a strategy already
explored in the literature.

109



8. Breaking Bert: One Sentence
makes the Difference

As already stated, since the advent of the Transformers architecture [335], Pre-trained,
large neural Language Models (PLMs) such as BERT [23] have become quite ubiquitous
in the NLP literature. An advantage of using these models is that their weights can be
updated to address multiple downstream tasks with good results [336]. Usually, fine-
tuning these pre-trained language models on a downstream task shows improvements
in performance with respect to training these models from scratch. A common belief
is that pre-training on large corpora allows them to learn linguistic knowledge that is
then exploited during fine-tuning. Past works showed how BERT captures syntactic
information [61, 62] and other linguistic structures [63, 64], capturing the steps of the
traditional NLP pipeline across subsequent layers [65].

Although these results push the popular belief that capturing such information from
large upstream corpora underlies the success of these models, such a hypothesis remains
unproven. On the contrary, recent studies suggest that such benefits are induced by
mechanisms in pre-training not yet fully elucidated. The principal consideration regards
the quantity of pre-training data. Recent works showed good performance with models
pre-training on small amounts of data before fine-tuning [66, 67]. Other works regard the
quality of the pre-training data. Some have shown the benefits in fine-tuning after pre-
training with noisy data, such as shuffled texts [68, 69], with data from other domains
[67], or even from no-human languages [70], such as amino acid sequences, java scripts,
and randomly generated texts. Similar results were obtained by pre-training LSTMs on
music [337]; or in different fields such as computer vision [338, 339].

However, the presence in pre-training of texts outside the target test distribution can
degrade performance on the downstream task [340]. This limitation can be mitigated
when the generic PLMs are adapted to the target test data. An effective and relatively
fast way to do this is to further pre-train (FPT) with domain- or task-specific data these
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broad-coverage models before task-specific fine-tuning [341, 342, 343, 344]. This proce-
dure has led to a family of specialized pre-trained models, showing improvements against
their general-domain versions in a range of domains, from medicine (BioBERT [57])
and clinics (ClinicalBERT [58]), to finance (FinBERT [345]) and law (LEGAL-BERT-
FP [346]), passing by social media (Rob-RT [347]) and hate speech (HateBERT [348]),
among others.

Further pre-training may be seen as an intermediate training phase, between the
original pre-training and the downstream fine-tuning, with the usual aim of adapting a
general model to a specific domain. While FPT is by now common practice, there does
not seem to be a clear picture of which conditions make it fully successful. For example,
Mehri et al. [349] and Qiu et al. [350] show that models adapted for dialogue tasks do
not consistently outperform their generic counterparts. Gururangan et al. [343] show
that using a small amount of data from the task-specific training set to perform FPT
results in a more successful fine-tuning step than when using a much larger amount of
domain-specific data which is not the actual training set. This raises the question of how
to best choose and balance quality and quantity of data for FPT. A similar question is
raised by Rietzler et al. [351]: they observe that the size of data used in FPT impacts
downstream (sentiment analysis) performance in very different ways according to the
domains. For some domains, FPT data only starts to make a difference when extremely
large amounts are used, while for other domains smaller amounts are sufficient. In any
case, Zhu et al. [352] show that if the size of fine-tuning (FT) data is large enough, the
impact of FPT on the final performance on the downstream task is negligible.

With the work presented in this chapter we thus aim at further unpacking (i) the im-
pact of data size and training parameters on FPT, in terms of the measurable difference
between a base model and its FPT-ed counterpart; and (ii) the interplay between such
differences and the performance of FT-ed models on a downstream task. In other words,
we investigate under what conditions FPT yields measurable changes in a large model,
and how these changes influence the performance of subsequently fine-tuned models. To
this end, we implement a set of experiments where we controlled for the amount of data
(number of sentences), the number of epochs, and the learning rate used to FPT a large
model, and for the task-specific FT data size. Across all combinations (see Section 8.1 for
the full overview of the values and combinations we tested), we observed two sorts of un-
expected behaviors: (i) substantially different downstream performances when FT with
identical settings the original and the FPT models did not correspond to measurable dif-
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ferences in the internal model representations; (ii) FPT with just one single sentence, for
one single step and with a low learning rate triggers remarkable performance differences
when the models are FT-ed for the downstream task, while the internal representations
of the pre-trained models (before and after FPT) are measured as minimally different.
This latter observation is rather puzzling, especially considering that the original pre-
trained models have been exposed to massive amounts of data; hence the question: if a
minimal, barely detectable update of a large model has consequences on fine-tuning, what
can be said about model stability and reported results? Figure 8.1 graphically represents
the experimental settings discussed in this paper. The picture generalises to the whole
set of experiments if the size of the data for FPT is changed from "One Sentence" to any
other value we used.

The obtained results are counter-intuitive: being already trained on an enormous
amount of data, one can imagine one sentence should not make such a difference. Very
recently, other works have disclosed numerical instabilities of training neural networks
with gradient-based algorithms [353, 354] to which our results may relate. In any case,
our work poses new questions on the functioning of BERT-like models and the nature
of the FPT paradigm: deepening this research line may help the community’s under-
standing of these technologies. While other works have shown the frailty of fine-tuned
BERT-based models against adversarial attacks [355, 356, 357, 358, 359], for the best
of our knowledge, this is the first work assessing the impact of one sentence during a
training phase on BERT-like models.

8.1. Experiments
For our experiments we use the base BERT model1 [23]. Although newer models are
available, BERT makes a good candidate for this work since it has been substantially
used in FPT and fine-tuning procedures, and its manageable size allows us to run all
of our configurations with reasonable time and computation. For each experiment, we
follow the same two-step approach (Fig. 8.1): first, we further pre-train the original
BERT model (B0), using n sentences; in this chapter we describe, in particular, the
minimal case where n = 1, which already shows surprising behaviors. We perform
further pre-training for one step using only the Masked Language Modeling (MLM)
training objective, following the same setup as in [23] for the percentage of tokens to

1https://huggingface.co/bert-base-cased
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Figure 8.1.: Experiment workflow. We indicate the original BERT as B0 and any further
pre-trained model as B1. The ‘∗’ denotes their fine-tuned versions.

be masked. The outcome of this first step is a new, further pre-trained model (B1).
After pre-training, we go through a fine-tuning stage on a specific downstream task
using the same amount of data and hyper-parameter settings for the two pre-trained
models, B0 and B1, obtaining the two corresponding fine-tuned models B∗

0 and B∗
1.

As downstream task we take binary sentiment classification. As aforementioned, while
we performed several experiments with several combinations of parameters, we obtained
surprising results with even minimal FPT phase. While we focus on the single-sentence,
single-epoch experiments for the rest of the chapter, we report all the parameters and
their values taken into account in Table 8.1.

Further pre-training settings For the pre-training phase, we controlled for two vari-
ables: data and learning rate. To avoid effects of domain- and task-adaptation, we
ensured that the data comes from a different distribution of that used for the fine-
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Further Pre-Training (FPT) Fine-Tuning (FT)
Data size {1, 10, 100, 1000} {100, 200, 500}

Training Epochs {1, 10, 100} early-stopping
Batch Size 1 8

Learning Rate {1e−10, 5e−05} 5e−05

Optimizer Adam Adam
Scheduler const const

Table 8.1.: List of parameters and their values taken into account during the experimen-
tal phase.

tuning task (see also Section 6.2). Furthermore, to ensure we could assess if the nature
of the pre-training sentence might impact the downstream task, we collected three single
sentence datasets (positive, neutral, negative), to which we also added a dataset con-
sisting of a single nonsense sentence. For the learning rate, we employed a value equal
to 1e−10, which is several orders below the values (e.g., 1e−04 or 1e−05) usually employed
in domain adaptation FPT (e.g., [57, 58, 343]).

Fine-tuning settings In fine-tuning, we control data size and composition, as well as
the randomness of initialization and data order. Specifically:

• to avoid hiding the effects of the further pre-training on the downstream task [352],
we used a relatively small number of documents; plus, we varied the size to observe
its impact, i.e., n = {100, 200, 500};

• to avoid the impact of the randomness of initializing the task-specific classifier
and of picking the training samples, we initialized five different classifier layers
and selected five different training sets2 (for each sample size n); this led us to
fine-tune a total of 25 versions of B∗

0 and B∗
1 for each fine-tuning sample size.

Finally, to limit the effects of the hyper-parameters during FT, we fixed the optimizer,
the learning rate, and the batch size to be constant during each tuning and across all the
experiments3. We also applied early-stopping (no increase in validation accuracy after
5 epochs).

2Since the order of the training samples considerably impacts the tuning process [360], we fixed the
order of each fine-tuning set, too.

3opt = Adam, lr = 5e−05 and bs = 8
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8.2. Data
Regarding the two different training phases, we considered two separated dataset.

Further pre-training data In each experiment, the pre-training dataset consists of a
single sentence. To retrieve different sentences, we exploited the ROCStories dataset [361].
The choice of such data is two-fold, being a dataset unseen during the original pre-
training and belonging to a general domain, we mitigated the effects of already seen
samples and those given by an adaptation to the downstream domain. Each document
in the dataset consists of 5 sentences, from which we retrieved the longest one to mini-
mize the probabilities of presenting input texts without masked tokens since the masking
process as described by [23] is inherently random for each sentence.

To take into account the nature of the sentences with regard to the downstream
tasks, we retrieved three sentences with different sentiments, i.e., positive (pos), neutral
(neu), and negative (neg). To assess the sentiment of the sentences, we employed the
RoBERTa-based model trained on a three-classes sentiment classification task4 by [347].
Then, we selected the sentences with the highest scores for the given class. After a
human assessment of their sentiment, the three datasets we gathered are:

• pos (+): They had a really great day and couldn’t wait to go back again!

• neu (/): He will pitch at home against the Miami Marlins.

• neg (-): I felt sick as it tasted way too bland and mushy.

Furthermore, to analyse the contribution of unstructured text, we built a nonsense
sentence by replicating the token ‘the’, 32 times.

Fine-tuning data For the downstream task, we employed the IMDB dataset [304],
which contains positive and negative reviews of movies. To investigate the effects of the
downstream training set size, we retrieved datasets in three different sizes, i.e., with 100,
200, or 500 documents. Plus, to investigate the effect of the sample composition, for
each FT sample size, we collected five different data combinations, resulting in a total
of fifteen downstream tuning sets. For validation, we carved 5,000 documents out of the
original training set. We used the entire test set (25,000 samples) for final evaluation.

4https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
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8.3. Evaluation
To assess the impact of our experiments, we first conducted an intrinsic evaluation of
the FPT models. For a direct comparison of the original B0 and the corresponding
B1 models, we calculated two metrics on the representations of the [CLS] tokens of
the encoder’s last layer, known to be the most subjected to changes after a training
phase [362]. The first metric, the Averaged Infinity-norm (AIn), quantifies the intrinsic
variations in the representations B0 and B1. AIn is a new metric we introduce to
capture minimal differences between the representations encoded by two models. Given
two models Bi and Bj , for each n-th of the N = 5, 000 samples in the dev, we computed
the vector difference δn between the representations xn

i and xn
j of dimension d obtained

by the two models Bi and Bjδn = xn
i − xn

j

=⇒ ∀k ∈ {0...d}, δn
k = xn

i,k − xn
j,k

(8.1)

then, we computed the infinity norm (In) of the obtained vector

In = ||δn||∞ = maxk∈{0...d}|δn
k | (8.2)

and finally, we averaged the norms across all the samples

AIn = 1
N

N∑
n=1

||δn||∞ (8.3)

The second metric is the Representational Similarity Analysis (RSA), already used
in previous work [362, 352]. We calculate RSA on the same N = 5, 000 [CLS] dev
samples of the AIn metric. For each model, we computed the N × N pairwise cosine
similarity matrix. Then, we flattened the upper triangular part of the matrices of our
further pre-trained models and computed the correlation between the flattened upper
triangular part of the BERT-related matrix (the one sharing the same FT setup and
data). In line with previous work, we used Pearson correlation.

As extrinsic evaluation we assess and compare the performance of all the fine-tuned
models B∗

0 and B∗
1 on the downstream task. We used accuracy since the test set is

label-balanced. To assess the diversity of the fine-tuned models, we use a McNemar’s
test with a significance indicated for α < 0.05. By taking into account the positive (1)
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and negative (0) predictions of two models B∗
i and B∗

j , we first built the contingency
matrix as reported in Tab. 8.2.

B∗
j

positive (+) negative (-)

B∗
i

positive (+) a = count(+,+) b = count(+,-)
negative (-) c = count(-,+) d = count(-,-)

Table 8.2.: Contingency matrix example.

Then, we tested the null hypothesis of marginal homogeneity, i.e., the marginal prob-
abilities of the two models are the same:H0 : pb = pc

H1 : pb ̸= pc

(8.4)

In cases where the test revealed to be significant (α < 0.05), there would be sufficient
evidence to reject the null hypothesis H0, i.e., the marginal proportions of the two
models under exam are significantly different from each other, which is represented by
the alternative hypothesis H1.

8.4. Results
The AIn metric signals differences between any of the FPT-ed models B1 and the
original BERT B0, at most at the level of the sixth decimal digit (≈ (1.87±0.90)∗10−6).
Even if tiny, this result indicates that some changes took place during the one-sentence-
one-step FPT process. On the contrary, these tiny differences are not detected by RSA.
In any correlation between B1 and the original BERT B0, the resulting ρ was always
1.0, i.e., suggesting that the models are the same.

Results for the fine-tuned models on the downstream task are in Table 8.3. Since
we have 25 different fine-tuned versions for each of the FPT-ed models B∗

1 and for B∗
0

(see Fine-tuning settings above), we report the maximum, the minimum, and average
accuracy scores as observed across all the models. The most surprising result is that in
all settings the average performances of the B∗

1 models are always significantly better
than their original B∗

0 counterparts. This is remarkable since the averages are across 25
models, and the difference between the pre-trained models before FT is down to FPT

117



8. Breaking Bert: One Sentence makes the Difference

with a single additional sentence for a single step (with a low learning rate). A less
surprising result is that larger fine-tuning training sets yield substantially better perfor-
mances. This is evident both by the overall average accuracy and the min accuracies.
This result is in line with the findings in [352], who show that increasing the sizes of the
FT training data tends to neutralise the effects of the FPT phase.

FT size Model max min avg

n = 100 B∗
0 84.77 69.56 78.18

B∗
1 84.92 66.10 79.76

n = 200 B∗
0 86.25 78.17 83.76

B∗
1 86.63 77.79 84.55

n = 500 B∗
0 87.05 83.09 85.82

B∗
1 87.62 85.14 86.48

Table 8.3.: Accuracy (%) with 100/200/500 training samples. Each row shows
maximum, minimum, and average (avg) scores across all the 25 variants
of the fine-tuned models, either based on the original BERT (B∗

0) or on the
FPT-ed models (B∗

1).

FT size max min avg

n = 100 10.26 -9.31 1.57

n = 200 3.26 -2.9 0.79

n = 500 2.56 -1.52 0.66

Table 8.4.: Absolute difference in percentage points of the fine-tuned models. The differ-
ences are computed as B∗

1−B∗
0 with the B∗

1 and B∗
0 models sharing the same

FT settings. We report maximum, minimum, and average (avg) distance.

Table 8.4 zooms in on the differences between the FPT-ed and the original BERT
models. Specifically, we report the maximum and the minimum difference observed
between B∗

1 and B∗
0 within the very same FT setting. This difference is very large for

smaller fine-tuning sizes, while it reduces with the increase of the FT data size. This
suggests that FT size has an impact in the stability of the models, as the differences
constantly shrink with higher FT sample sizes.

Lastly, under the exact same fine-tuning settings, the differences between the B∗
1

models (each FPT-ed with a different single sentence) are minimal when compared to
the differences that we observe comparing each B∗

1 to their corresponding B∗
0 model,

suggesting that the impact of the nature of the sentence used for FPT is negligible, even
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if such sentence is nonsensical. In other words, fine-tuning a version of BERT which
has been further-pretrained with a single nonsensical sentence for a single step yields
consistently better results than fine-tuning (with exactly the same settings) original
BERT in the context of a sentiment analysis task. Table 8.5 reports the full results for
FPT with different sentence types.

Accuracy scores (%)
lrmlm = 1e−10 n = 100 n = 200 n = 500

max min ∆max,min avg max min ∆max,min avg max min ∆max,min avg
B∗

0 84.77 69.56 15.21 78.18 ± 3.71 86.25 78.17 8.08 83.76 ± 1.61 87.05 83.09 3.96 85.82 ± 0.85
B∗

1,− − B∗
0 10.26 -9.31 19.57 1.51 ± 5.27 3.45 -1.91 5.36 1.01 ± 1.45 2.67 -1.62 4.29 0.71 ± 0.95

B∗
1,/ − B∗

0 10.25 -9.31 19.56 1.54 ± 5.35 3.29 -1.91 5.20 0.93 ± 1.31 4.09 -1.69 5.78 0.70 ± 1.24
B∗

1,+ − B∗
0 10.26 -9.32 19.58 1.60 ± 5.27 3.15 -5.87 9.02 0.57 ± 1.88 0.83 -1.05 1.88 0.67 ± 0.61

B∗
1,? − B∗

0 10.25 -9.31 19.56 1.61 ± 5.25 3.13 -1.91 5.04 0.66 ± 1.32 2.65 -1.73 4.38 0.54 ± 1.02
B∗

1,− 84.92 66.10 18.82 79.7 ± 3.90 86.58 81.48 5.10 84.77 ± 1.15 87.62 85.4 2.22 86.53 ± 0.63
B∗

1,/ − B∗
1,− 5.91 -5.77 11.68 0.03 ± 1.77 1.19 -1.70 2.89 -0.08 ± 0.61 1.78 -1.56 3.34 -0.01 ± 0.80

B∗
1,+ − B∗

1,− 3.40 -0.92 4.32 0.09 ± 0.71 1.06 -9.18 10.24 -0.44 ± 1.96 0.83 -1.05 1.88 -0.04 ± 0.61
B∗

1,? − B∗
1,− 3.45 -2.10 5.55 0.10 ± 0.97 0.58 -4.83 5.41 -0.35 ± 1.10 0.70 -1.25 1.95 -0.17 ± 0.56

B∗
1,/ 84.92 66.10 18.82 79.73 ± 3.91 86.66 80.72 5.94 84.69 ± 1.31 87.71 84.96 2.75 86.52 ± 0.7

B∗
1,+ − B∗

1,/ 4.85 -5.90 10.75 0.06 ± 1.60 0.61 -8.42 9.03 -0.36 ± 1.71 2.10 -1.36 3.46 -0.03 ± 0.72
B∗

1,? − B∗
1,/ 4.50 -2.46 6.96 0.07 ± 1.05 0.95 -4.07 5.02 -0.27 ± 0.87 1.88 -1.44 3.32 -0.16 ± 0.67

B∗
1,+ 84.92 66.09 18.83 79.79 ± 3.90 86.58 72.30 14.28 84.32 ± 2.72 87.52 85.13 2.39 86.49 ± 0.61

B∗
1,? − B∗

1,+ 3.44 -2.07 5.51 0.01 ± 0.86 4.35 -1.08 5.43 0.09 ± 1.00 0.45 -1.20 1.65 -0.14 ± 0.40
B∗

1,? 84.92 66.10 18.82 79.80 ± 3.82 87.0 76.65 10.35 84.41 ± 1.92 87.62 85.05 2.57 86.36 ± 0.66

Table 8.5.: Accuracy scores (%) of the fine-tuned models with 100, 200, and 500 samples.
Results are reported in terms of the maximum and minimum, the difference
between the maximum and minimum ∆max,min, and the average across all
the 25 variants of the models. For each block, the first row reports the
performance of the single model (B∗

i ), either the original Bert or the ones we
further pre-trained with a learning rate equal to 1e−10. Subsequent rows in
each block report the differences of performance between models B∗

j − B∗
i .

The differences are computed between models having the same fine-tuning
setup (same classifier initialization, tuning data, and data order).

For each fine-tuning data size, all the B∗
1 models always resulted in being significantly

different from their B∗
0 counterparts (McNemar’s test). Interestingly, while most B∗

1

models are not significantly different from one another with small training sizes, they
instead are with the largest training size. This suggests that, while with larger FT sets
all B∗

1 performances get closer to the ones obtained when fine-tuning the original BERT,
FPT-ed models get more dissimilar from one another. Hence, as discussed above, while
our results confirm Zhu et al.’s observation [352] that the larger the FT train set the
smaller the measurable impact of FPT, they also show that with a larger FT training set,
the B∗

1 end up being more different from one another than when using little training
data. Such results are confirmed by the training trends of the different models, as
reported in Figure 8.2.
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Figure 8.2.: Training trends during fine-tuning of the original BERT and the further pre-
trained models to varying the number of samples used in training (along the
columns) and the initialization of the classifier (along the rows).

8.5. Discussion
We observed unexpected downstream performances in a BERT model that went through
a single-step and single-sentence further pre-training phase, with a low learning rate.
Findings that we deem not straightforward to explain are: (i) while the models’ internal
representations barely differ, fine-tuning the models under exactly the same settings
leads to consistently different performances; (ii) on average, all the FPT-ed models
outperform their original BERT counterparts when fine-tuned on the downstream task,
even when a single nonsensical sentence is used for FPT; (iii) the differences between
the B∗

1 and B∗
0 after FT are always significant; and (iv) although increasing FT data

size shrinks the gap in performance between B∗
1 and the corresponding B∗

0 models, it
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also leads to B∗
1 models being more dissimilar from one another: with a smaller trainset

(100 samples) the resulting B∗
1 models are never significantly different, while they are

always significantly different with the largest training set (500 samples). These results
seem to leave open some questions on model stability and on reliability of claims over
the impact of FPT, especially if not many different settings are tested.

We hope these issues will be picked up and further unpacked. Although we anal-
ysed such instability over several parameters, a few more parameters may be taken into
consideration. For example, the extent of the impacts of using higher learning rates in
further pre-training could be addressed. Furthermore, other large(r) language models
may turn out to be more robust than (base) BERT: an analysis of these models would
improve the relevance of our findings. Furthermore, while we exploited sentiment analy-
sis as the downstream task for providing us with easy control on the characteristics of the
FPT inputs, analysing other tasks may strengthen or weaken our findings. In particular,
moving from a document-level task to a token-level one (e.g., Named Entity Recognition
or Part-of-Speech Tagging) may present entirely different results. This could indicate
that PLM have different behaviors when FPT-ed and subsequently FT-ed on different
tasks, shedding new lights on how these models work.
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In this thesis, we explore the role of Natural Language Processing (NLP) in healthcare.
In the opening section, we examine the historical developments and recent advancements
in the field of NLP, with a particular emphasis on its potential applications in healthcare.
To better understand the vast landscape of NLP in healthcare, we narrow our focus to
the care of low back pain and related spine diseases, where NLP has shown great promise.

As part of our investigation into NLP in healthcare, we identified and undertook
two important tasks. To ensure balance, we tackled both NLU and NLG tasks. For
the former, in particular, we aimed to developed systems to help healthcare companies
identify flaws in their care services. To achieve this, we utilized a common NLU task:
sentiment analysis. By gathering data from Internet sources, we obtained the first Italian
dataset of healthcare reviews, which has already been used by other researchers. For
NLG, we aimed to create a system that simplifies medical texts for patients. Recent
studies have highlighted the challenges patients face in comprehending medical texts,
which can lead to reduced compliance with therapies and misunderstandings caused
by the abundance of uncontrolled information on the web. Our analysis, conducted
with both human experts (physicians) and laymen, demonstrated the effectiveness of
our system. Our system outperformed previous state-of-the-art systems and achieved
results comparable to the gold standard targets.

Furthermore, in the final section of this manuscript, we address one of the major
barriers to NLP applications in the sensitive domain of healthcare: explainability. To
overcome this challenge, we pursued a two-fold approach. Firstly, we aimed to provide
users with explanations of model decisions, thereby increasing their trust in the sys-
tem and enabling them to identify potential errors. To achieve this, we proposed two
models for document classification. Our comparison including human annotators with
a well-known benchmark demonstrated that our models performed similarly to previous
systems, while extracting high-quality summaries. Secondly, we conducted experiments
to analyze the mechanisms underlying the strategies for adapting large language models
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to new, specific domains such as healthcare.

Our work in the healthcare field has not only advanced our understanding of NLP’s
potential applications but has also provided valuable insights into the field itself. For
instance,

(i) for capturing the patients’ perspective, we discovered that modern Transformer-
based models struggle with data imbalance, and thus cannot be assumed to outperform
classical NLP methodologies outright.

(ii) In our efforts for reducing the expertise gap and improve communication
between physicians and patients, we implemented and analyzed several Semantic Textual
Similarity strategies to address the absence of parallel data, a major issue in sequence-
to-sequence tasks. Specifically, we investigated how data of varying quality, measured
in terms of similarity between the two texts in each pair, positively impacted the style
transfer task. To complement our findings, we conducted an extensive human evaluation
phase involving both experts and laypeople, and conducted a qualitative analysis to
identify the strengths and limitations of different models and datasets. Additionally, we
gained valuable insights regarding the evaluation metrics commonly employed in Text
Style Transfer tasks.

(iii) Both our proposed hierarchical models, ExHiT and SCC, can be applied to
various domains and document classification tasks, providing interpretable decisions. We
designed these architectures to take advantage of the inherent hierarchy in documents,
utilizing a transformer at the intra-sentence token level and one another at the inter-
sentences level. To evaluate the built summaries, we proposed two new human-based
metrics. This is the first attempt to build a document classification paradigm of models
that generate an extractive summary for easy user interpretation. Interestingly, both
models have the potential to operate on longer documents, which is a limitation for
traditional Transformer architectures. It would be valuable to explore whether they can
overcome this limitation by applying them to tasks involving larger documents, such as
those containing several hundred tokens or more.

(iv) In the "Breaking Bert" experiments, we conducted minimal-impact further pre-
training of BERT by training the model on one sentence for one step with a low learn-
ing rate. This approach yielded unexpected outcomes that are not straightforward to
explain. Firstly, although the internal representations of the models barely differed,
fine-tuning the models under exactly the same settings led to consistently different per-
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formances. Secondly, on average, all the FPT-ed models outperformed their original
BERT counterparts when fine-tuned on the downstream task, even when a single non-
sensical sentence was used for FPT. Thirdly, the differences between the original BERT
and the FPT-ed ones after fine-tuning were always significant. Finally, increasing the
size of the fine-tuning data set led to the fine-tuned FPT-ed models being more dissimi-
lar from one another, despite shrinking the performance gap between the original BERT
and the FPT-ed models. Specifically, when using a smaller training set (100 samples),
the resulting FPT-ed models were never significantly different, while they always were
with the largest training set (500 samples). These results raise questions about model
stability and the reliability of claims regarding the impact of FPT, particularly when
only a limited number of settings are tested.

We thus hope, and we do believe, that the materials presented in this manuscript will
effectively help the research communities to explore new directions of study, laying new
groundwork for the use of technologies such as NLP in domains as complex as healthcare.
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Artificial Intelligence in Low Back Pain

Reference Artificial Intelligence and Computer Aided Diagnosis in Chronic Low
Back Pain: A Systematic Review D’Antoni, F., Russo, F., Ambrosio, L., Bacco, L.,
Vollero, L., Vadalá, G., Dell’Orletta, F., Merone, M., Papalia, R., & Denaro, V. (2022),
In International Journal of Environmental Research and Public Health https://doi.
org/10.3390/ijerph19105971

Abstract Low Back Pain (LBP) is currently the first cause of disability in the world,
with a significant socioeconomic burden. Diagnosis and treatment of LBP often involve
a multidisciplinary, individualized approach consisting of several outcome measures and
imaging data along with emerging technologies. The increased amount of data generated
in this process has led to the development of methods related to artificial intelligence
(AI), and to computer-aided diagnosis (CAD) in particular, which aim to assist and
improve the diagnosis and treatment of LBP. In this manuscript, we have systematically
reviewed the available literature on the use of CAD in the diagnosis and treatment of
chronic LBP. A systematic research of PubMed, Scopus, and Web of Science electronic
databases was performed. The search strategy was set as the combinations of the follow-
ing keywords: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Neural
Network”, “Computer Aided Diagnosis”, “Low Back Pain”, “Lumbar”, “Intervertebral
Disc Degeneration”, “Spine Surgery”, etc. The search returned a total of 1536 articles.
After duplication removal and evaluation of the abstracts, 1386 were excluded, whereas
93 papers were excluded after full-text examination, taking the number of eligible arti-
cles to 57. The main applications of CAD in LBP included classification and regression.
Classification is used to identify or categorize a disease, whereas regression is used to
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produce a numerical output as a quantitative evaluation of some measure. The best
performing systems were developed to diagnose degenerative changes of the spine from
imaging data, with average accuracy rates >80%. However, notable outcomes were also
reported for CAD tools executing different tasks including analysis of clinical, biome-
chanical, electrophysiological, and functional imaging data. Further studies are needed
to better define the role of CAD in LBP care.

Decision Support Systems

Reference Layered Meta-Learning Algorithm for Predicting Adverse Events in Type
1 Diabetes In IEEE Access https://doi.org/10.1109/ACCESS.2023.3237992

Abstract Type 1 diabetes mellitus (T1D) is a chronic disease that, if not treated
properly, can lead to serious complications. We propose a layered meta-learning ap-
proach based on multi-expert systems to predict adverse events in T1D. The base learner
is composed of three deep neural networks and exploits only continuous glucose mon-
itoring data as an input feature. Each network specializes in predicting whether the
patient is about to experience hypoglycemia, hyperglycemia, or euglycemia. The output
of the experts is passed to a meta-learner to provide the final model classification. In
addition, we formally introduce a novel parameter, α, to evaluate the advance by which
a prediction is performed. We evaluate the proposed approach on both a public and
a private dataset and implement it on an edge device to test its feasibility in real life.
On average, on the Ohio T1DM dataset, our system was able to predict hypoglycemia
events with a time gain of 22.8 minutes, hyperglycemia ones with an advance of 24.0
minutes. Our model not only outperforms presented models in the literature in terms of
events predicted with sufficient advance, but also with regard to the number of false pos-
itives, achieving on average 0.45 and 0.46 hypo- and hyperglycemic false alarms per day,
respectively. Furthermore, the meta-learning approach effectively improves performance
in a new cohort of patients by training only the meta-learner with a limited amount
of data. We believe our approach would be an essential ally for the patients to control
the glycemic fluctuations and adjust their insulin therapy and dietary intakes, enabling
them to speed up decision-making and improve personal self-management, resulting in
a reduced risk of acute and chronic complications. As our last contribution, we assessed
the validity of the approach by exploiting only blood glucose variations as well as in
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combination with the information of the insulin boluses, the skin temperature, and the
galvanic skin response. In general, we have observed that providing other information
but CGM leads to slightly lower performances with respect to considering CGM alone.

Reference Machine Learning analysis of High-Grade Serous Ovarian Cancer pro-
teomic dataset reveals novel candidate biomarkers, Farinella, F., Merone, M., Bacco,
L., Capirchio, A., Ciccozzi, M., & Caligiore, D. (2022), In Scientific Reports https:
//doi.org/10.1038/s41598-022-06788-2

Abstract Ovarian cancer is one of the most common gynecological malignancies,
ranking third after cervical and uterine cancer. High-Grade Serous Ovarian Cancer
(HGSOC) is one of the most aggressive subtype, and the late onset of its symptoms
leads in most cases to an unfavourable prognosis. Current predictive algorithms used
to estimate the risk of having Ovarian Cancer fail to provide sufficient sensitivity and
specificity to be used widely in clinical practice. The use of additional biomarkers or
parameters such as age or menopausal status to overcome these issues showed only weak
improvements. It is necessary to identify novel molecular signatures and the development
of new predictive algorithms able to support the diagnosis of HGSOC, and at the same
time, deepen the understanding of this elusive disease, with the final goal of improving
patient survival.
Here, we apply a Machine Learning-based pipeline to an open-source HGSOC Proteomic
dataset to develop a decision support system (DSS) that displayed high discerning ability
on a dataset of HGSOC biopsies. The proposed DSS consists of a double-step feature
selection and a decision tree, with the resulting output consisting of a combination of
three highly discriminating proteins: TOP1, PDIA4, and OGN, that could be of interest
for further clinical and experimental validation. Furthermore, we took advantage of the
ranked list of proteins generated during the feature selection steps to perform a pathway
analysis to provide a snapshot of the main deregulated pathways of HGSOC.
The datasets used for this study are available in the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) data portal (https://cptac-data-portal.georgetown.edu/).

Pharmaceutical Sciences
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Reference The impact of the intestinal microbiota and the mucosal permeability on
three different antibiotic drugs, Palombo G., Merone M., Altomare A., Gori M., Ter-
radura C., Bacco L., Del Chierico F., Putignani L., Cicala M., Guarino M., & Piemonte,
V. (2021), https://doi.org/10.1016/j.ejps.2021.105869

Abstract Background The totality of bacteria, protozoa, viruses and fungi that
lives in the human body is called microbiota. Human microbiota specifically colonizes
the skin, the respiratory and urinary tract, the urogenital tract and the gastrointestinal
system. This study focuses on the intestinal microbiota to explore the drug-microbiota
relationship and, therefore, how the drug bioavailability changes in relation to the mi-
crobiota biodiversity to identify more personalized therapies, with the minimum risk of
side effects.
Methods To achieve this goal, we developed a new mathematical model with two com-
partments, the intestine and the blood, which takes into account the colonic mucosal
permeability variation - measured by Ussing chamber system on human colonic mucosal
biopsies - and the fecal microbiota composition, determined through microbiota 16S
rRNA sequencing analysis. Both of the clinical parameters were evaluated in a group of
Irritable Bowel Syndrome patients compared to a group of healthy controls.
Key Results The results show that plasma drug concentration increases as bacterial
concentration decreases, while it decreases as intestinal length decreases too.
Conclusions The study provides interesting data since in literature there are not yet
mathematical models with these features, in which the importance of intestinal micro-
biota, the "forgotten organ", is considered both for the subject health state and in the
nutrients and drugs metabolism.

Biometrics

Reference Single beat ECG-based Identification System: development and robust-
ness test in different working conditions, Sorvillo, R., Bacco, L., Merone, M., Zom-
panti, A., Santonico, M., Pennazza, G., & Iannello, G. (2021), In Proceedings of IEEE
Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT) https://doi.org/10.1109/
MetroInd4.0IoT51437.2021.9488474
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Abstract One-lead electrocardiogram (ECG) tracings have already shown to be a
good candidate as a feature for a biometric identification system. Also, the reduced
computational burden and the fact that it can ensure that the subject is alive put the
ECG ahead of currently used biometric features. Most of the literature provides studies
exploiting acquisitions made with clinical instrumentation, preceded by invasive prepa-
ration of the subject, in a structured environment and with the subjects at rest. These
conditions are not very feasible for an application in a real-world context. Therefore, we
are proposing a system that is performant with acquisitions collected with (non-invasive)
non-clinical instrumentation and in an unstructured environment, and that is robust to
variations of the psycho-physical state of the subjects (i.e. at rest or under mental or
physical stress). To do so, we developed an acquisition protocol that we followed to col-
lect a new dataset to evaluate our method. The proposed system achieved up to the 97%
of single segments (beats) classification accuracy when the test segments come from the
same kind of acquisition procedure of the training beats. The same result was obtained
by training and testing by combining the three trials. An 88% and 68% of accuracy were
achieved by testing the system under mental and physical stress conditions, respectively,
while trained at the rest state. Our findings suggest that the proposed method may be
put at the base of a future application in a real-world context.
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