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Abstract 
 

The 21st century has been an era marked by profound technological innovation that 

has led to the digitization of every aspect of our daily lives. Among the sectors that have 

been most involved in the process, the 4.0 paradigm has had a particular impact on 

industry and healthcare, placing the well-being of workers and patients in the spotlight. 

In fact, the digital breakthrough has brought substantial changes in the way of working, 

putting the occupational health and safety of the workers at the foreground. On the 

other hand, digitalization has enabled the transition from a hospital-centered to a 

patient-centered approach to healthcare. 

In this context, the use of wearable technologies has been given wide resonance, as 

wearables can be valuable allies in the care of individuals, helping to make an 

assessment of their general health status by monitoring some significant parameters 

related to physical (e.g., respiratory rate, posture, or body movement) and psychological 

conditions (e.g., respiratory rate) of the user. This is of great utility in both the 

occupational field, to assess the health status of ever more stressed and sedentary 

workers, and the clinical setting, to monitor the well-being of patients and the correct 

execution of rehabilitation tasks. 

This thesis work aims at presenting novel flexible wearable systems based on fiber 

Bragg grating (FBG) sensing technology to take advantage of their excellent features 

(i.e., small dimensions, flexibility, high sensitivity to strain and immunity to 

electromagnetic radiations). The preliminary study, the design and the fabrication steps 

that led to the realization of the devices, as well as their validation process have been 

accurately described. Such wearable systems aim to monitor the state of health of 

workers in their occupational setting and patients during rehabilitation processes 

through the detection of parameters related to the respiratory activity, movements and 

body postures. 
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Chapter 1 – Introduction 
 

1. Rationale and aims of the thesis work  
 

The 21st century technological revolution has been a source of change and 

opportunities for industry and healthcare. The ever-increasing amount of scientific 

knowledge has led to a constant technological advancement which has accompanied 

the evolution of human society in multiple ways and continues to do so. The modern 

electricity generation systems, the power transmission and distribution facilities, 

together with the capillary transport interconnection, highly advanced education and 

modern medicine are just several of the countless scientific innovations which have 

been achieved during the succession of the industrial revolutions and that impacted and 

improved our everyday lives [1]. Among the sectors that have been most involved in the 

process, the technological innovation has had a particular impact on industry and 

healthcare fields. 

Indeed, in the 21st century, the growing global demand for fast and massive 

production of consumer goods, which nevertheless collided with the urgency to adopt 

a more environmentally sustainable and resource-saving manufacturing, has carried 

industrial progression to its fourth and latest phase so far, also known as “Industry 4.0” 

(I 4.0) [2], [3]. The information technology (IT) approach led the industry to a new 

digitally evolved era which laid its basis on novel methodologies such as Internet of 

Things (IoT), Big Data Analytics (BDA), Cloud Computing (CC) and Artificial Intelligence 

(AI) and advanced scientific technologies [4]–[6] This digital breakthrough has brought 

substantial changes in the way of working, resulting in modification in how to conceive 

occupational health and safety. Moreover, the wave of this scientific progress has also 

swept over the healthcare ground, profoundly changing it [7]. IoT, BDA, CC and AI have 

contributed to a deep digitization of the health system, in an epoch in which the 

increasing demand for healthcare services that could only be provided in hospitals was 

leading the system to collapse. Therefore, the IT approach together with the use of 

innovative technology, has enabled the transition towards the 4.0 paradigm by shifting 

from a hospital-centric to a patient-centric smart healthcare (SH) approach. 

Within this framework, the usage of wearable devices (WDs) has become extremely 

diffused and popular. Indeed, their use allows a careful analysis of the user's psycho-

physical state through the detection of physiological and motor-related variables. This 

is of major importance both in the occupational sphere, where workers are increasingly 

sedentary and stressed, and in the medical sphere, as it promotes home monitoring of 

the patient by means of telemedicine, thus avoiding overloading the hospital system. 
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Among the wide range of physiological variables that can be detected for assessing 

an individual's state of health through the usage of WDs, respiratory rate (RR) has been 

recognized as one of the most informative, because an alteration in its physiological 

values easily correlates with states of psychophysical stress. In addition, the estimation 

of the body motion (BM), intended as the control of movements performed by specific 

body districts, can be highly useful both in clinic and in occupational context to check 

the correct execution of a movement or verify the subject's behavior in maintaining a 

sitting or standing posture.  

 

Starting from these premises, this work thesis wants to find its space in the context 

of the scientific research which arose on new wearable technologies at the service of 

the care of the subjects in both occupational settings and SH.  

More precisely, this work aims at presenting the study, design, fabrication and 

validation of flexible wearable systems based on FBG technology, specifically focusing 

on the following applications: RR and BMs monitoring in SH and occupational contexts.  

 

To do so, the following course of research objectives was followed: 

1. Study of the literature background to identify the clinical and occupational need 

to be addressed; 

2. Project and design and of the WD following the principle of wearability to meet 

the need; 

3. Identification of the features that would make the system innovative compared 

to what is found in the literature; 

4. Fabrication of the WD and preliminary test to verify the WD’s acceptability by 

the user;  

5. Assessment of the WD on a population on volunteers to verify the WD’s usability 

in the desired context and the impact of the results on the current literature. 

 

This thesis work is organized as follows:   

In this first chapter, an analysis of the socio-economic and technological changes 

brought by the advent of I 4.0 and SH has been presented. Then, an insight on the roles 

played by the WDs in the occupational and healthcare context has been reported, 

together with an analysis of the main informative physiological variables to be detected. 

Then, a brief description of the technical features that a WD must fulfil, and an analysis 

of the main technologies used in the realization of these systems are given. 

Chapter 2 will be dedicated to deepening of the knowledge of FBG technology. A 

focus will be placed on the theoretical background and the measurement principles 

which enable the detection of respiratory and motion movements. 

In Chapter 3, a deepen study of the literature will be reported showing the solutions 

based on FBGs proposed to date for RR and BMs monitoring. 
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In Chapter 4, the design and development of soft flexible systems based on FBG 

technology for RR and BMs monitoring will be presented, following the evolutionary 

process that led from the manufacture of a single sensor to more complex multisensory 

systems.  In addition, their assessments performed on healthy volunteers and patients 

against a benchmark, with particular attention to the results obtained will be described. 

In Chapter 5, the contributions that this thesis has made to the current state of 

research within the WDs will be discussed. Also, the limit of this thesis work will be 

pointed out, together with some hints for future developments.  
 

2.  Social context and technological advancements leading 

industry and healthcare to a 4.0 approach  
 

This paragraph will take an in-depth look at the historical and social context, as well 

as the main technological factors that led to a reorganization and modernization of the 

industrial and clinical systems. 

2.1.  From the first industrial revolution to Industry 4.0 

The term “industrial revolution” indicates a process of deep technological innovation 

which entailed a profound and irreversible transformation in the productive system of 

the human society, leading to changes in its economic and social background [8]. It is 

common to refer to four different industrial revolutions (i.e., first, second, third and 

fourth industrial revolutions) as these took place in as many distinct periods, ranging 

from the 1760s to the present days. Below, the main features of the four industrial 

revolutions are reported: 

 

1) First Industrial Revolution: from the 1760s until the late 1840s, an epoch of rapid 

technological development took place mainly in England and the United States, 

that lead to the transformation of many rural societies into urbanized 

metropolises [9]. The first industrial revolution has been depicted as the initial 

essential step toward the transition from the ancient to the modern age industry. 

In fact, for the first time, more efficient methodologies and innovative scientific 

breakthroughs drove manufacturing, production, and transportation processes 

to a more advanced level. Indeed, before the advent of the first industrial 

revolution, the society was predominantly agricultural, but the mechanization 

promoted by this phenomenon implemented the economy based on industrial 

production. Relevant innovations worth mentioning are textile machines, steam 

power, telegraphs and railways, all discoveries that have profoundly contributed 

to changing the social economy of the time.  



26 
 

 

2) Second Industrial Revolution: almost a century later, between 1870 and 1914, a 

novel wave of technological improvement has rapidly raised, which led to the 

discovery and exploitation of new sources of energy such as electricity, oil and 

gases [10]. The massive availability of such resources profoundly revolutionized 

the world of transports as it provided the suitable substrate for the invention 

and perfection of faster transports such as automobiles and airplanes. Also, 

telegraphs and telephones drastically changed the telecommunications sphere. 

This period has been defined as second industrial revolution. 

 

3) Third Industrial Revolution: the third industrial revolution occurred in 1969, thus 

starting the so called “digital revolution”[11]. In this context, novel technologies 

such as personal computers and modern electronic components supported by 

efficient telecommunications, paved the way to a scientific improvement which 

found its climax in the space research and biotechnology. Also, a great focus was 

placed in the employment of nuclear power as innovative and enduring source 

of energy. Moreover, these discoveries were promoted by the high level of 

automation reached by means of programmable machineries.  

 

4) Fourth Industrial Revolution: the fourth industrial revolution, or more commonly 

called “Industry 4.0” (I4.0), promotes the evolution of industrial manufacturing 

via digitization of modern technologies. I 4.0 emerged in Germany in the first 

years of the 2010s as part of a government program promoting the 

computerization of industrial production. It spread first across Europe and then 

across the entire globe [1], [12]. I 4.0 based its revolution on the inclusion of the 

so-called “intelligent machines” in the production chain. This was boosted by the 

introduction of novel and breakthrough technological methods such as IoT, BDA, 

CC and AI [4]–[6], that promoted the development of an industry based on the 

IT approach (i.e., IT industry) [13]. Even nowadays, the 4.0 paradigm continues 

to profoundly influence and modify the way the modern industry is conceived. 

 

In Figure 1.1, a schematization of the four industrial revolutions is reported, showing 

their period of occurrence and their main characteristics. 

https://context.reverso.net/traduzione/inglese-italiano/telecommunications+sphere
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Figure1.1. The four industrial revolutions, their period of occurrence and main features.  

In the following subparagraphs, the architecture of I 4.0 is first presented, followed 

by an analysis of how the adoption of the 4.0 paradigm has changed work roles and, 

consequently, led to an evolution of the concept of occupational health and safety. 

 

2.1.1.  Architecture of Industry 4.0  

I 4.0  is founded on an architecture based on the four design principles identified by 

Hermann et al. in [14] and discussed as follows: 

 

1) Interconnection: capability of technological devices, components (such as 

machines, sensors, WDs, etc.) and personnel to connect and share data via IoT.  

 

2) Information Transparency: context-aware information on the treatment of the 

acquired data; 

 

3) Technical Assistance: ability of the system to offer technical support to operators 

through the provision of clear and comprehensible information to help them 

make autonomous and informed decisions. Also, we talk about technical 

assistance in the case of cooperation with robots performing unpleasant tasks 

instead of the operator; 

 

4) Decentralized Decisions: ability of the system to autonomously make decisions 

and perform task with no operator control. Operators are called to take action 

only in cases of conflict or interferences. 

 

In Figure 1.2, a schematic of the I 4.0 architecture is shown. To summarize, these 

complex design principles enable the establishment of factories 4.0 by integrating at 
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different hierarchical levels. Machineries and devices communicate between them and 

with human being, so improving the production through the semi-automatic control of 

each execution step. Also, this approach enables increasingly fast and high-performance 

manufacturing through decentralized and automated complexity management. 

 
Figure 1.2. The architecture of Industry 4.0. 

 

2.1.2.  Industry 4.0 leads to changing work roles and evolution of the 

occupational safety and health concept 
 

Besides the economically measurable success brought by the application of the 4.0 

approach to the manufacturing system, it is now necessary to understand how I 4.0 has 

impacted and still continues to impact the type, quality and quantity of work and, 

consequently, the lives of the workforce.  

Autonomous process optimizations and independent decision-making procedures, 

together with advancing computerization imply a reorganization of the work pyramid 

[15]. A targeted and extensive planning of the production line (ensured by the huge 

amount of data from the machines) makes the worker's presence on site often 

unnecessary, so foresting flexible working conditions and improved life balance [16], 

[17]. Also, ever more digital factories exploit industrial robots instead of human 

personnel to perform dangerous or tiring tasks (e.g., manual lifting and carrying), leading 

employees to quit risky and  routinary manual roles [18]. In this frame, collaborative 

robots (cobots) are becoming increasingly popular [19]. Indeed, workers start devoting 

themselves to performing more intellectual and supervisory positions. This entails that 

employees are exposed to more challenging and mentally stimulating problems and that 
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they can perform creative and diverse activities promoting their own self-development 

[20]. In this respect, due to a decreasing in manual and physical labor which is replaced 

with computer work, the working class is less subjected to traumatic risks but is adopting 

even more sedentary behaviors. As consequence, sedentary-related diseases such as 

low back pain and cardiovascular issues are becoming increasingly widespread across 

the working population [21]. Moreover, risks related to the psychological sphere should 

not be underestimated since decision-making positions involve greater mental load and 

pressure, which can eventually lead to depressive moods [22].  

In this context, a large space has been carved out for the concept of occupational 

health and safety. Based on a new approach to risk management, innovative methods 

have been adopted to make workers safer and healthier by monitoring both the working 

environment in which the operators are immersed and the workers themselves. 

Regarding the control of the working environments, several technologies are used 

starting from the most common gas and chemical detectors. Also, industrial machines 

can be equipped with interconnected sensors that detect faults and lead to a rapid 

resolution if a malfunction occurs [23]. Moreover, in the case of cobots, such sensors 

not only allow for self-monitoring, but can also investigate the operating environment 

to become aware of their surroundings in order to safely interact with the operators 

with whom they share the workspace [19]. Based on this, Gisbert et al. [24] pointed out 

that the creation of a technological platform capable of remotely controlling the 

industrial machinery through feedback acquired from a network of sensors could be the 

next step in improving occupational risk management.  

Regarding the monitoring of the workers’ health status, new technologies have 

brought useful tools for real-time detection of changes in environmental or physiological 

factors which would be predictor of the occurrence of dangerous situations. More in 

detail, personal protective equipment incorporating technology that can detect the 

presence of risk factors (e.g., excessive noise, temperature changes, open flames, 

presence of toxic gases or chemicals, etc.) is widely used [23]. However, this equipment 

detects only exogenous factors coming from the environment, while in recent times 

interest is turning towards monitoring parameters originating from the worker. In fact, 

early and continuous risk assessment can be achieved through the use of smart WDs 

embedding sensing technology capable to collect physiological variables related to the 

subject’s phyco-physical well-being. Indeed, respiratory frequency, heart rate, 

temperature and information regarding the body positioning in the space are useful to 

identify sudden anomalies such as dyspneas, hearth failures, heat strokes or falls [20]. 

This approach is particularly successful since it is worker-centered and provides an all-

round check on his/her status regardless of the presence of environmental risk factors, 

thus allowing preventive measures to be taken to avoid hazards occurrence [25].  
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2.2.  The Smart Healthcare era: a clinical revolution driven by 

technological advancement 
 

The 21st century was marked by enormous social changes, the most significant of 

which is an expanded life expectancy [26]. Better hygiene conditions, public sanitation 

and improved attention in leading a healthy and active lifestyle are just some of the 

factors which played a key role in in achieving greater longevity. In these regards, recent 

studies conducted by the Department of Economic and Social Affairs of the United 

Nations emphasize that the percentage of the people whose age is above 65 years will 

reach the 16% of the worldwide population in 2050, increasing by 6% with respect of 

2022. Also, for the first time in human history, by 2050 the population of over-65s will 

be twice the number of both the pre-school children and children under the age of 12 

[27]. While extending the population’s life expectancy is one of the primary objectives 

of a developed nation as it is deeply correlate to an attained condition of high wellness 

and social welfare [28], [29], it also source of major challenges. In fact, as a consequence 

of an ageing population, there is an increasing incidence of age-related disorders. In 

addition to common conditions related to the normal ageing (e.g., hearing and vision 

loss) the occurrence of age-related chronic diseases (such as cardiac and neurological 

disorders, osteoporosis, respiratory complications, diabetes, reduced motility and 

more) is becoming increasingly frequent [30], [31]. The treatment of chronic diseases is 

time-consuming and extremely expensive, as well as burdening the national health 

system and increasing insurance costs. Moreover, the traditional hospital-centric 

patient management based on doctor-patient direct relationship is no longer capable of 

sustaining the rising demand of medical support, pushing the system to the brink of 

collapse [32].  

On these grounds, in the last few decades a modernization and digitization of the 

healthcare system have been carried out with the aim of decentralizing the role of the 

hospital and placing greater emphasis on patient self-monitoring [33]. Indeed, by taking 

advantage of the new technological breakthroughs, it has been possible to shift the 

medical care approach to a smarter one, giving rise to Smart Healthcare (SH) [32]. SH 

relies on the use of novel technologies and IT innovations (such as advanced sensing 

systems, IoT, BDA, CC etc.) for remotely monitoring patient’s state oh health and 

constantly sharing their data with clinicians, who can make diagnoses remotely, or 

choose to receive the patient by appointment. SH also promotes the decentralization of 

the medical care from the hospital to several clinical sites interconnected and 

distributed over the territory which deliver personalized health services focused on the 

needs of the patient. More in practice, the new SH paradigm of patient management 

aims to achieve the following goals: i) transition from a disease-centered medical model 

to a patient-centered one; ii) distribution of health assistance on the territory, iii) 
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promotion of remote monitoring and assistance to the patient and iv) improvement of 

preventive healthcare [32]. In few words, SH offers tailor-made patient service through 

continuous remote monitoring, fast data sharing and consultation with clinicians and 

customized treatments, with de benefit of reducing associated costs and time and 

limiting hospital crowding [7]. 

In the following subparagraphs, the technologies the SH system relies on are 

illustrated. Also, the 4.0 novel healthcare architecture is presented. 

 

2.2.1.  The Smart Healthcare key technological players 

 

As illustrated in the previous section, the SH system rests deeply on the various 

sophisticated technologies and advanced IT breakthroughs brought by the I 4.0 

revolution.  For better comprehension, the main technological solutions exploited in this 

context are listed below: 

1) Wearable technology and implantable sensors: WDs of various shapes and 

types embedding sensing elements together with high technological 

implantable sensors offer real-time monitoring of the patient's state of 

health via detection of vital physiological variables (e.g., respiratory rate, 

cardiac rate, blood pressure, glucose levels, etc.) [7], [33]; 

 

2) Cloud platforms: the patient’s data retrieved by the WDs and implantable 

sensors are recorded and stored in remote cloud platforms real-time where 

they can be consulted and check [34], [35]; 

 

3) Big data analytics algorithms: BDA-based approach to data analysis is a 

crucial requirement to manage the statistical evaluation of a massive 

quantity of data [34], [35]; 

 

4) Artificial intelligence and machine learning algorithms: AI and machine 

learning algorithms (together with the statistics provided by BDA-based 

algorithms) are of prominent importance to make decisions in the light of the 

data analyzed. This is even more important aiming the promotion of a remote 

diagnosis service [35];  

 

5) Simulation, modeling and virtualization: Simulations and computational 

models make it possible to assess the performance of health systems 

management, enabling structural changes [36]. 
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2.2.2.  The 4.0 paradigm redesigns the architecture of the healthcare 

system 

 

Depending on where healthcare services are delivered, two main settings can be 

identified in the SH scenario: the domestic setting and the clinical setting. In this 

framework, it can be observed that the three main tasks to be performed by the health 

service (i.e., prevention, diagnosis and treatment of the human diseases), which were 

previously only supported by the hospital, are now carried out in both domestic and 

clinical settings [37]. To enable this, the new SH architecture is highly hierarchical and 

composed of several actors [33], as illustrated in Figure 1.3 and described below: 

 

Domestic Setting: the domestic environment is where remote monitoring and virtual 

diagnosis, as well as home care services take place. The main actors of this setting are 

the users which can be, for example, elderly individuals with reduced mobility or chronic 

diseases [38], or people undergoing home rehabilitation after a hospital discharge [39], 

[40]. Remote monitoring, in fact, permits to continuously assess and control the 

patients’ state of health, enabling quick intervention in the event of a sudden injury (e.g., 

stroke or fall) or to evaluate the goodness of the recovery pathway. Patient monitoring 

is made possible by the use of smart WDs which collect real-time data that are stored in 

the cloud and made available to the doctors. In this way, it is possible to obtain direct 

feedback from the clinician and constant follow-up without the need to visit the hospital 

[41]. Moreover, the clinician's constant feedback can motivate the patient to regularly 

perform the rehabilitation exercises or can be an incentive to follow a healthier and 

more active lifestyle. This setting is particularly relevant as it offers personalized and 

tailored care to the patient in the comfort of his/her own home environment, also 

limiting the number of hospital admissions with consequent improvement of the 

hospitalized patient management, reduction in waiting times and facility costs. 

 

Clinical Setting: the main players of this scenario are multiple and are all those large and 

small clinical facilities, located across the territory, that are headed by the central 

healthcare center (i.e., the hospital). Rural, urban, regional healthcare centers are clinics 

offering a differentiated range of health services driven by high qualified personnel with 

diversified medical backgrounds. These centers deal with medical services at a lower 

level, decentralizing the figure of the hospital as a single entity providing services in 

order to limit its burdening. As consequence, hospitals will be able to focus on more 

intensive treatments, giving priority to the care of more serious and severe patients. 

Thanks to the SH management, which is largely supported by a highly computerized and 

IT-based network that allows interconnection between different clinical facilities, 

medical staff are able to provide optimal treatment and care to the patient [42]. In 
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addition, doctors themselves rely on the support of technologies that assist them in 

performing surgical operations (e.g., surgical robots), clinical exams (e.g., latest 

generation computed tomography, echographs, etc.) and in the choice of therapies (e.g., 

AI and machine learning-based tools), thus limiting the human error [43]. 

 

 
Figure 1.3. The architecture of the Smart Healthcare system.  
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3.  The role of the wearable devices in 4.0 occupational safety 

and Smart Healthcare 
 

The 21st century technological advances boosted popularity of WDs since their use 
has become an integral part of our everyday life, deeply changing our quotidian [44]. 
The WDs market is flourishing more than ever, presenting an almost unlimited range of 
models. Nowadays, each of us owns at least one of these devices among smartwatches, 
fitness wristbands, smart glasses, which provide us with information on our lifestyle and 
related to our physical state anywhere and anytime [45]. Apart from the everyday life, 
it is clear that WDs have played a relevant role in both the fields of occupational health 
and safety, and healthcare.  

In fact, as also pointed out in the previous paragraphs, WDs are becoming part of 
the everyday life of workers. These systems can help preventing musculoskeletal 
diseases by improving user’s posture in different working conditions, such as sitting (in 
the case of video terminal job), standing and handling heavy objects. Furthermore, the 
monitoring of physiological parameters helps to identify stress-correlated disease. This 
topic, although not sufficiently considered, is of paramount importance as a state of 
excessive mental load is usually accompanied by a lowering of work performance and 
an increase in the probability of incurring accidents in the workplace [46], [47]. However, 
although useful, the daily usage of wearable devices may also encounter some 
difficulties in this area. In fact, in the workplaces some particularly rigid, bulky or, in 
general, poorly fitting systems may not be easily accepted as they could restrict the 
user's range of motion. 

Also, several are the benefits brought by the use of WDs in the healthcare sphere. In 
fact, multiple studies proved that the use of such systems is of great encouragement to 
patients in maintaining a healthy and active lifestyle [48], [49], monitoring, for example, 
the  diet [50] or sedentariness [51]. Since continuous feedback can be obtained both 
from the device and the doctor (via telemedicine), the user is typically more proactively 
involved in rehabilitation process, not skipping exercise sessions. WDs are also largely 
exploited for real-time monitoring of patients in domestic environments to control a 
recovery course and intervene promptly in case of sickness [48]. In fact, in order to avoid 
hospitalization or depriving the elderly patient from the comfort of his or her own home, 
in some cases it is preferable to adopt a home course. On the other hand, this approach 
may not be successful for those patients who are older and therefore more reluctant to 
use new technologies. In addition, it is not uncommon for patients to unproperly wear 
the devices causing data loss or data corruption. 

In the following sections, emphasis will be placed on the physiological variables of 
greatest interest in establishing the health status of patients or workers. The essential 
characteristics that a WD must fulfil will then be examined, and a brief description of 
the most used sensing technologies for wearables will be given. 
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3.1.  The investigated physiological variables 

 
There are many physiological variables in the medical literature that are directly 

related to a person's state of health, as sudden changes in these values can be linked to 

states of risk, disease, discomfort or distress [52]–[54]. However, with the aim of 

remotely monitoring the patient/worker in the SH and I4.0 context, a non-invasive 

approach to measurement (i.e., using non-invasive devices) was required. As 

consequence, in this section more stress will be placed on parameters classified as 

“physical” (i.e., detectable through non-invasive measurement approaches), while 

biochemical ones will not be mentioned.  

Among others, respiratory rate (RR) and heart rate (HR) are of fundamental 

importance in determining a subject's state of health. Moreover, they are some of the 

easiest parameters to retrieve by means of WDs.  

RR is considered to be one of the most informative physiological variable as it is 

highly sensitive to physical and emotional stress [55], [56]. In the medical practice, RR 

monitoring is highly used to predict the occurrence of adverse events such as cardiac 

arrest [57] or myocardial infarction, as well as it is used to check the improved health of 

in-patients [58]. Also, since it is extremely sensitive to states of psychological distress, it 

can be a useful ally in detecting stress-related discomfort conditions both in workers 

exposed to weight responsibilities and long-term patients. Another variable of interest 

is HR, which is closely associated with oxygen uptake, as it is sensitive to training-induced 

adaptations both at rest and during exercise. Together with RR, it is used to monitor 

psychophysiological stress and adverse health conditions, for example elevated resting 

heart rate is an independent risk factor for cardiovascular as well as all-cause mortality, 

and a prognostic factor in patients affected by coronary disease [59].  

 In addition to these two, although not strictly a physiological variable, also body 

motion (BM) (in terms of movement of specific body parts with respect to the body and 

movement of the body through the surrounding environment) is highly investigated. In 

fact, being able to monitor the movement of a joint can help both the patient and the 

clinician to identify an incorrect rehabilitation task execution, while keeping their 

tracking helps to verify the patient's improvement over time. In addition, controlling 

correct posture when lifting and handling loads can prevent the onset of 

musculoskeletal disorders [60], [61]. However, given the increasingly sedentary working 

environment, controlling the correct maintenance of sitting posture has also become of 

prominent importance [62]. 

 

3.2.  Design consideration for wearability 

To realize a WD, it is first necessary to identify the possible positioning sites on the 

user's body according to the variable (among those presented in the previous section - 
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RR, HR and BM) to be retrieved. In Figure 1.4, areas of the body in which each of the 

three above-mentioned variables can be measured according to [63] are shown. 

 

Figure 1.4. Positioning sites of the human body to retrieve RR (in yellow), HR (in blue) and BMs 
(in green) variables. 

A prototype design process must then be carried out taking into account certain 

characteristics that the device must respect in order to ensure user acceptability. In an 

extensive literature review work, Genaro et al. [64] identified up to twenty principles 

that a WD must comply with, however the main characteristics taken into account by 

the manufacturers are considered to be the following: 

1) Comfort: it is defined as freedom from pain and distress after a prolonged use of 

the wearable [65]. The concept of comfort must be taken into account in the 

process of finding the proper shape and material for the device. It also involves 

acceptable temperature at the skin interface and no movement constrains [66]; 

 

2) Ergonomy: in order to be compliant with the user's body, the WD must be 

ergonomic, that is it must adapt to the body anatomy [67]; 

 

3) Unobtrusiveness and Weight Distribution: the device must not impede the 

natural motility of the body or burden the user with loads [63]. The consequence 

of this requirement is the increasing miniaturization of the technology, and the 

study of which body areas better bear the loads; 

 

4) Reliability: this word embodies the concepts of security, precision and 

effectiveness [65]; 
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5) Wearability: combines the already described concepts of comfort, ergonomy 

and unobtrusiveness with the features of ease of wearing and aesthetics [68]. 

Over the last decades, a wide range of WDs have appeared on the market showing 

different functionalities and wearing options. The most frequently used are sensorized 

accessories (e.g., smartwatches, wristbands, smart glasses, jewelry, etc.) and smart 

garments (e.g., smart textiles, T-shirts, etc.) [69]. Nevertheless, considering both the 

abovementioned requirements and the clinical and occupational contexts of 

applicability, in recent years more and more space has been given to the production of 

flexible WDs made of soft materials [70]. In fact, their high flexibility and stretchability 

allow for good adaptation to the body anthropometry and no reduction in range motion, 

making these systems extremely comfortable and compliant. In addition, most of them 

are composed of polymeric materials that render them soft to the touch and suitable to 

be placed in direct skin contact, hided under ordinary clothes.  

 

3.3.  The sensing technology behind flexible wearable devices 

As indicated in the previous section, since wearables research field has been recently 

moving towards the production of flexible systems, an overlook of the sensing 

technologies supporting this process will be given.  

Strain sensors are extensively employed in this context as they allow the RR, HR and 

BM to be easily detected by means of the transduction of mechanical deformation into 

electrical signals [71]. Strain sensors are mainly classifiable into resistive and capacitive 

ones, although there are several other types. Soft flexible sensors can then be produced 

by means of different materials, such as low dimensional carbons (such as graphene [72] 

and nanotubes [73]), nanowires [74], nanoparticles [75] and their structures, or 

incorporating lightweight and thin resistive/conductive fabrics into silicone (e.g., Ecoflex 

and Dragonskin) or rubber -based matrices. Although popular, these sensors are not free 

of drawbacks. In fact, most of them are composed of conductive films and dielectric 

layers that make them incompatible for use in the presence of electromagnetic fields 

(which is likely, for example, in healthcare).  

A possible solution to these limits is given by the utilization of an alternative strain 

sensing technology based on fiber optics: the fiber Bragg grating (FBG) sensors. In fact, 

in recent times, FBGs are gaining ever more acceptance due to their valuable features 

such as electromagnetic immunity, intrinsic electrical safety (as FBGs are empowered by 

light) and high sensitivity to strain. Also, extremely reduced size and weight, high 

flexibility and multiplexing capability allow for easy insertion into flexible substrates 

[76]–[78].  
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Chapter 2 – Fiber Bragg grating sensors 
for monitoring respiratory rate and 
body movements 

 

1. Fiber Bragg grating sensors: measurement principle and 

metrological properties 

 

In recent decades, FBGs have become increasingly popular for RR and BMs detection 

applications due to their unique properties such as small size, electromagnetic 

compatibility, high sensitivity and multiplexing capability. This paragraph provides an 

analysis of the FBGs’ working principle and metrological features, together with the 

operating principles underlying the existing types of interrogation units. In this 

paragraph, parts of the work [79] which the PhD candidate has co-authored have been 

freely extracted. 

 

1.1 Theoretical background 

The FBG is a wavelength-selective fiber components and implements an in-fiber 

resonator concept, similar to notch filters in electronics [80]–[82]. An FBG is a 

modulation of the effective refractive index (ηeff) of the core of an optical fiber. In its 

simplest configuration (which is called “uniform FBG” [80]), the spatial periodicity (Λ) of 

the ηeff modulation is constant along the fiber core length. FBGs resonates at the so-

called Bragg wavelength, λB. In fact, once illuminated by a broadband light sourced by 

an optical interrogator unit, most of the light spectrum passes through the grating, 

except for a small amount, which is centered around λB (i.e., reflected spectrum of light) 

and back-reflected to the source. λB can be defined as [81], [82]: 

𝜆𝐵 = 2 ∙ 𝜂𝑒𝑓𝑓𝛬 (2.1) 

The spectrum of an FBG can be computed through the coupled mode theory [81], 

which studies the waves coupled forward and backward into the grating. The reflectivity 

R(λ) of an FBG having total length L and refractive index modulation amplitude δηeff, at 

each wavelength λ, can be expressed as follows [81], [83]  

𝑅(𝜆) =
𝑠𝑖𝑛ℎ2(𝐿√𝑘2 + 𝜎2)

𝑐𝑜𝑠ℎ2(𝐿√𝑘2 − 𝜎2) − 
𝜎2

𝑘2

∙ 𝛬 (2.2) 

where the term σ(λ) contains the wavelength dependence: 
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𝜎(𝜆) =
𝜋

𝜆
𝛿𝜂𝑒𝑓𝑓 + 2𝜋𝜂𝑒𝑓𝑓 (

1

𝜆
− 

1

𝜆𝐵
) (2.3) 

The grating strength and the maximum reflectivity can be defined as atanh2(kL), 

where kL is a unitless parameter, and depend on the FBG fabrication method. In fact, 

phase-mask inscription [84] and direct inscription [85], [86] can implement strong 

gratings with kL usually within 1 to 3 value, while draw-tower inscription methods 

achieve low-reflectivity gratings with kL < 0.5 [87].  

While the spectral features of a single FBG can be entirely encoded in its geometrical 

and fiber properties, the key aspect of an FBG element in sensing applications is its 

narrow bandwidth, which is in general reported as a full-width half-maximum (FWHM) 

bandwidth [80]. For an FBG having kL value ranging from 0.5 to 3 (the typical values in 

FBGs), the FWHM of the grating ranges from 0.15 nm to 0.38 nm: hence, the FBG acts 

as notch resonator, with a very narrow spectrum. This way, it is possible to stack multiple 

gratings in the same fiber, all having different λB values: this approach, labeled 

wavelength-division multiplexing (WDM), allows simultaneously detecting multiple 

gratings, up to several tens, all inscribed in the same fiber in a single array. As a plurality 

of FBGs can be inscribed on the same fiber, and it is possible to interrogate 

simultaneously multiple fibers, significant sensing networks can be obtained. In this 

framework, FBGs have the capability not only to detect physical parameters, but also to 

localize their detection in a specific point of the fiber, identifying their spatial 

distribution [88]. 

Figure 2.1 (a) shows the spectral characteristics of FBG elements.  

 
Figure 2.1. Reflection spectra of FBGs, simulated using the coupled mode theory, for different 
grating strength (kL) values. (a) Single FBG at 1550 nm; (b) Array of 4 FBGs at 1550-1556 nm 
with 2 nm spacing. 
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An FBG behaves as a narrow reflective filter, having reflectivity that ranges from 8% 

to 99% as the kL coefficient rises from 0.3 to 3. The main spectral lobe defines the 

bandwidth reflected by the FBG, while the spectral lobes that appear on the side of the 

grating have a progressively lower amplitude. The spectrum of a 4-element FBG array is 

shown in Figure 2.1 (b); by choosing an appropriate spacing between adjacent λB values 

(2 nm typically [88]), it is possible to have an almost perfect spectral separation between 

each element, hence implementing a WDM scheme. 

 

1.2 FBGs for strain and temperature measurements  

FBGs are excellent instruments for strain and temperature measurements since 

the sensitivity to strain and temperature is encoded directly in the λB. In fact, when a 

strain variation (Δε) and/or a temperature variation (ΔT) are applied to the FBG, a shift 

in the reflected spectrum is obtained, with consequent λB shift (ΔλB), as depicted in 

Figure 2.2. ΔλB can be expressed as [81]: 

𝛥𝜆𝐵 = 2 ∙ (𝛬
𝜕𝜂𝑒𝑓𝑓

𝜕𝜀
+ 𝜂𝑒𝑓𝑓

𝜕𝛬

𝜕𝜀
)𝛥𝜀 + 2 ∙  (𝛬

𝜕𝜂𝑒𝑓𝑓

𝜕𝑇
+ 𝜂𝑒𝑓𝑓

𝜕𝛬

𝜕𝑇
)𝛥𝑇 (2.4) 

Moreover, the Equation 2.4 can be written as a linear combination of strain sensitivity 

(𝑆𝜀) and temperature sentitivity (𝑆𝑇) as shown in the following:  

𝛥𝜆𝐵 = 𝑆𝜀𝛥𝜀 + 𝑆𝑇𝛥𝑇 (2.5) 

In FBG sensing networks operated in WDM, the strain or temperature values are 

estimated by monitoring the ΔλB from the reference position, knowing 𝑆𝜀 and 𝑆𝑇 

through a previous calibration or from datasheet values. The value of the sensitivity 

terms depends on the fiber material, and on the wavelength of operation. For FBGs on 

glass or ormoceramic fibers operating in the near infrared (around 1550 nm), the strain 

sensitivity is around 1 pm·με-1, while the thermal sensitivity is around 10 pm·°C-1 [80]–

[82]. On the contrary, for plastic fibers the thermal sensitivity is around -50 pm·°C-1  to -

200 pm·°C-1 [89].  

The dual strain/temperature sensitivity is both an advantage and a disadvantage 

of this sensing technique. On one side, since the system exhibits a similar response to 

strain and thermal variations, it is important to provide either a temperature-

compensation method or a technique to isolate strain events from thermal methods. A 

possible method is to use a loose FBG, decoupled from any strain, as a temperature 

sensor, and then using this temperature reading to compensate thermal variations from 

the strain sensors [90], [91]. Also, in the analysis of pulsatile strain waveforms (as in the 

case of respiratory waveforms), another method is to isolate the contributions of 

respiratory patterns, having frequency contributions higher than 0.2 Hz, from 

temperature variations having frequency << 0.1 Hz through the use of digital bandpass 
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filters [78] under the assumption, where possible, that temperature variations occur at 

a much slower rate than strain events. In fact, in applications where an extremely rapid 

temperature change can occur (e.g., during intense physical activity or in a non-

thermoregulated environment) such a solution would prove fallacious. However, since 

the sensitivity terms are both linear for a very high range of strain and temperature 

variations, this ensures that a compensation is always accurate, and the sensors are 

stable over long-term operation. 

 
Figure 2.2. Representation of the working principle of an FBG sensor. The incident broadband 
spectra of light, the transmitted spectra and the reflected spectra whose peak is centered at the 
Bragg wavelength (λB) are shown. In (a) it is reported the unperturbed FBGs’ configuration, while 
the perturbed configuration is shown in (b), where the strain and/or temperature variations 
caused a shift in the reflected spectrum (ΔλB). 
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1.3 Operating principles of optical interrogator units 

FBG sensors inscribed within an optical fiber are read by the optical interrogation 

units, that are devices which supply a light source to the FBG sensors and read their 

output expressed as ΔλB. Interrogation units are capable to interrogate multiple fibers 

simultaneously. Although several methods have been proposed based on one or two 

wavelengths monitoring, the most common techniques for the interrogation of FBGs is 

based on the detection of the whole FBG spectrum, in a wide range of wavelengths [92]. 

The methods used in most interrogation systems are sketched in Figure 2.3. 

 
Figure 2.3. (a) Schematic of an FBG interrogation system based on a broadband source (BBS) and 
a spectrometer; a switch 1xN multiplexes in time domain N channels, each hosting an FBG or 
FBG array in WDM; (b) Schematic of an FBG interrogation based on a swept laser and a series of 
photodetectors, with the laser is controlled by a sweep function generator. The N channels are 
physically separated by a 1xN splitter. 
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The first method, shown in Figure 2.3 (a), makes use of a broadband source (BBS), 

and a spectrometer for detection. The BBS is usually a superluminescent LED, matching 

the bandwidth of the spectrometer; the two devices are interconnected with a coupler 

of circulator, routing the spectrum reflected by the FBG arrays to the detector. A switch 

1xN can be used to multiplex N channels in the time domain, commuting between 

multiple output fibers; this approach combines WDM with TDM, to arrange sensor 

networks spaced in wavelength and time. The method based on spectrometer has 

several advantages in terms of portability, power consumption, and cost; as shown in 

previous works, a spectrometer-based interrogator can be packaged in a portable 

battery-powered device [93].  

The second method, integrated in several commercial devices, aims at detecting FBG 

spectra on a denser wavelength grid (below 10 p), is called swept-lased method. The 

system is based on a swept laser, either implemented as a laser controlled by a thermo-

electric controller (TEC) and a sweep function generator, as illustrated in Figure 2.3 (b), 

or as a Fabry-Perot laser tuned by an acousto-optic filter [94]. In this system, the 

channels are physically split and simultaneously detected, by means of a 1xN splitter and 

N couplers, routing the light to the N channels. The detector is based on a photodiode 

(PD) followed by a variable-gain transimpedance amplifier (TIA). The data acquisition 

(DAQ) system synchronizes the readout from all photodetectors with the sweep 

function generator. This method leads to a device that is bulkier, more expensive, and 

with limited field operativity due to the need to mains power supply, however it has 

better precision thanks to the narrow wavelength grid and 1 kHz speed thanks to the 

rapid wavelength scans, regardless of the number of channels. 

 

2.  Measurement principle of systems based on FBGs for 

monitoring respiratory activity 
 

This paragraph is devoted to display the main techniques used to detect RR and BMs 

variables starting from the breathing activity by means of the FBG sensors. In this 

paragraph, parts of the work [79] which the PhD candidate has co-authored have been 

freely extracted. 

 

2.1.  Introduction to respiratory mechanics  

Breathing (or ventilation) consists in recalling and expelling air into and from the 

lungs to promote carbon dioxide (CO2) and oxygen (O2) gas exchanges. More precisely, 

at the alveoli site, CO2 is released while O2 diffuses into the bloodstream.  
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The breathing process is composed of two different phases, which are described 

below [95], [96]: 

 

1) Inspiration, or inhaling: it is the phase in which air enters the lungs. Inspiration is 

promoted by the contraction of the principal (the diaphragm and external 

intercostal muscles) and accessory (the scalene and the sternocleidomastoid) 

inspiratory muscles. The diaphragm flattens while ribs and sternum are elevated, 

thus increasing the volume of the thoracic cavity and, as consequence, of the 

lungs. As lungs’ volume increase, a drop in pressure occurs. Pressure inside the 

lungs is lower than in the external environment, recalling the air. The air enters 

the nose/mouth, runs through larynx and pharynx, and reaches the lungs. 

 

2) Expiration, or exhaling: in this phase the air is expelled from the lungs to the 

external environment. Expiration can be both passive and active. In the case of 

passive exhalation, the lowering of the volume of the thoracic cavity is given by 

the relaxation of the main respiratory muscles coming to their resting position. 

Moreover, active exhalation occurs when also the abdominal, 

sternocleidomastoid and internal intercostal muscles are involved by active 

contraction (e.g., during forced breathing or asthma cases). The pressure 

increases in the lungs becoming greater than in the external environment, 

forcing the air to flow outside going backwards through the airways. 

 

During the respiratory process, the air undergoes transformations in the 

thermohygrometric conditions [97]. Outside air is inhaled at room temperature (which 

is about 23 °C) and relative humidity (RH) ranging between 40% and 80%, but as it passes 

through the airways it is humidified and heated.  This difference is significant as air is 

exhaled at body temperature (i.e., around 37 °C) and saturated by vapor (i.e., RH = 100%) 

[98]. In Figure 2.4, the two phases of the respiratory mechanics and the 

thermohygrometric conditions of inhaled/exhaled air are represented. 
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Figure 2.4. Schematic of the respiratory mechanics and thermohygrometric characteristics of the 
inhaled and exhaled air are shown for the two breathing phases. 

Based on this knowledge, in the following subsections the description of the most 

popular FBGs-based techniques for monitoring RR and, more in general, respiratory 

parameters are reported. In Subsection 2.2.1 the technique based on the monitoring of 

the chest wall movements caused by the respiratory activity is shown. Subsection 2.2.2 

focuses on the estimation of the respiratory parameters exploiting the difference in RH 

between inspiratory and expiratory air. In Subsection 2.2.3 the technique based on 

monitoring the respiratory airflow has been described. Particular attention will be 

focused on the working principle of these solutions. 

 

2.1.1. FBG-based system for respiratory monitoring via chest wall 

displacements 

During quiet breathing, the rib cage undergoes displacements of 3-5 mm in the 

ventral part and 1-2 mm in the lateral parts but can reach much greater shifts for 

heavy breathing [99], [100]. Being able to monitor the chest circumference changes 

occurring during breathing can be crucial to understand respiratory mechanics 

better. FBGs are highly suitable for this purpose. Often, solutions based on the 

encapsulation of FBGs in soft materials (e.g., silicone rubbers) are preferred to 

improve the robustness of the system and to improve the adherence to the chest 

wall. When the substrate undergoes a deformation, the strain is transmitted to the 

FBGs that experience a ΔλB. Although ΔλB is caused by both strain and temperature 

variations (please refer to Equation 2.5), in this context, the ΔλB can be considered 

caused only by strain, since the contributions given by temperature variations are 

negligible (as pointed out in Subsection 1.2). As consequence, ΔλB can be obtained 

as follows: 
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𝛥𝜆𝐵 = 𝑆𝜀𝛥𝜀 (2.6) 

The maximum and minimum deformation of the sensors corresponds to the end 

of the inspiratory and expiratory phases, respectively. Therefore, considering the 

elapsed time between two consecutive maxima (i.e., two consecutive inspiratory 

ends) or minima (i.e., two consecutive expiratory ends) is possible to estimate the 

respiratory period and so the RR.  

In Figure 2.5, a representation of the working principle of this technique is 

reported, together with an example of the obtained ΔλB trend in time, showing the 

minimum and maximum peaks corresponding to the end of expiration and 

inspiration phases, respectively. 

 

Figure 2.5. (a) Representation of the working principle of the technique for RR monitoring based 
on the measurement of the chest wall displacements occurring during the breathing activity. In 
the expiration phase the sensor undergoes minimum deformation, while in the inspiration phase 
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a maximal sensors deformation occurs. In (b) an example of ΔλB trend in time is given, showing 
minimum and maximum peaks corresponding to expiration and inspiration phases, respectively. 

 

2.1.2. FBG-based system for respiratory monitoring via difference of 

thermohygrometric conditions between inspiratory and 

expiratory airflow 

During the breathing activity, the airflow is inspired at environmental temperature 

and humidity while is expired at body temperature and full saturated of water. The 

difference in the content of water vapor and so in RH can be exploited to discriminate 

the inspiratory from the expiratory phase.  

Although the description of the FBGs’ principle of work and Equation 2.4 highlight 

the sensitivity of FBGs to only strain and temperature, solutions based on FBGs for 

measuring RH have been investigated [101], [102]. To make an FBG sensitive to RH, the 

sensing part is coated by hygroscopic polymers. Several coatings, that can be roughly 

divided into synthetic polymer coatings (e.g., polyimide and polymethyl methacrylate), 

natural polymer coatings (e.g., agar and agarose), and other material coatings (e.g., 

ORMOCER), have been investigated [101]–[103]. These materials absorb/desorb water 

vapor for RH increase/decrease with a consequent volume increase/decrease.  

Thus, two contributions cause an increment of ΔλB when expired gas hits the sensing 

element for two reasons: i) the positive temperature change from inspired to expired 

air and ii) the positive RH change from inspired to expired air with consequent swelling 

of the coating and so the strain of the grating.  

Modeling a functionalized FBG as an infinitely long rod made of two bonded 

materials (i.e., the coating and the fiber silica) and assuming the behavior of both the 

materials linear, isotropic and elastic so causing linear transmission of the volumetric 

changes of the matrix on the grating in terms of longitudinal ε, Equation 2.4, can be 

rewritten as the following [104]: 

𝛥𝜆𝐵 = 𝑆𝑅𝐻𝛥𝑅𝐻 + 𝑆𝑇𝛥𝑇 (2.7) 

with 𝑆𝑅𝐻 the sensitivity to ΔRH, expressed in nm·%-1.  

In many applications the ΔT contribution is deemed negligible and the ΔλB can be 

considered product of the sole ΔRH. Moreover, RR and its subcomponents (i.e., 

inspiratory time and expiratory time) can also be investigated by exploiting FBGs 

sensitivity to ΔT. As the temperature increase/decrease, FBG sensors undergo a shift to 

higher/smaller λB values (ΔλB), so ΔT can be obtained by dividing ΔλB by the temperature 

sensitivity coefficient. The temperature difference between the inhaled and the exhaled 

air may allow estimating RR. 

In contrast to what was said for the chest wall displacements, in this configuration 

the maximum FBG deformation is retrieved at the end of the expiratory phase, while the 

minimum deformation is given at the end of the inspiratory phase. Once again, RR can 
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be obtained considering the inverse of the period (which is the elapsed time between 

two consecutive maxima or minima). A representation of the working principle and the 

ΔλB evolution in time is given in Figure 2.6.  

 

 

Figure 2.6. (a) Representation of the working principle of the technique for RR monitoring based 
on the difference of thermohygrometric conditions between inspiratory and expiratory airflow. 
In the expiration phase the sensor undergoes maximum deformation, while in the inspiration 
phase a minimal sensors deformation occurs. In (b) an example of ΔλB trend in time is given, 
showing minimum and maximum peaks corresponding to inspiration and expiration phases, 
respectively. 

 

2.1.3. FBG-based system for respiratory monitoring via breathing 

airflows 

This technique exploits FBGs to directly measure inhaled and exhaled airflows and 

takes advantage of the high sensitivity to the strain of the FBGs. In this case the FBGs, 

usually embedded in highly flexible membranes or diaphragms, are subjected to the 
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direct flow of air inhaled and exhaled through the nose or mouth. As consequence, the 

sensors undergo deflections and compressions causing ΔλB which is the larger, the 

greater the flow of exhaled/inhaled air. As for chest wall movements, also in this case 

ΔλB can be considered product of the sole Δε contribution (please refer to Equation 2.6). 

Again, RR can be retrieved considering the inverse of the breathing period. In figure 2.7 

the working principle is shown, together with an example of the ΔλB trend in time [105].  

 

 

Figure 2.7. (a) Representation of the working principle of the technique for RR monitoring based 
on the direct measurement of inspiratory and expiratory airflow. In (b) an example of ΔλB trend 
in time is given, showing minimum and maximum peaks corresponding to expiration and 

inspiration phases, respectively. Adapted from [105]. 

  

           

          

   

   

           

           
 
 
 
  

 
 



50 
 

3. Measurement principle of systems based on FBGs for 

monitoring body movements and posture 

This paragraph is devoted to display the main techniques used to monitor body 

movements and discriminate the sitting postures starting from the movement of the 

different body districts by means of the FBG sensors. 

 

2.2.  Introduction to body movements mechanics 

Humans are capable to reproduce an extended variety of posture and movements 

by controlling body’s structures through the generation of forces. The main actor in this 

activity is the musculoskeletal system, consisting of muscles, bones, tendons and 

ligaments.  

Given the high number of movements/postures the human body can reproduce, it 

is needed to define to them starting from a reference position, also known as the 

anatomical position: the body has an upright posture, the upper limbs along the hips, 

palms facing forward, head erect, face forward, the lower limbs stretched out in contact 

with each other, the feet resting fully on the ground and parallel to each other. In this 

position, a main tern of perpendicular planes (see Figure 2.8) can be identified [106]: 

1) Sagittal plane: or medial plane, is the plane of symmetry that divides the body 

into its left and right parts; 

2) Frontal plane: is the vertical plane perpendicular to the sagittal plane, passing 

through the body's center of gravity; 

3) Axial plane: or transversal plane, is the horizontal plane passing through the 

center of gravity of the body. 

 
Figure 2.8. Representation of the three planes of the human body. 
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The movements which can be executed by the body segments are accounted as 

rotation around cardinal axis are classified with reference to anatomical position [106]: 

1) flexion/extension: is the rotation around an axis parallel to the sagittal plane; 

2) abduction/adduction: is rotation around an axis parallel to the frontal plane; 

3) intra/ extra rotation: is rotation around a vertical axis; 

4) plantarflexion/dorsiflexion: are respectively extension and flexion of the foot; 

5) pronation/supination: rotations around to the long axis of the hand or foot. 

 

In Figure 2.9, some examples of body movements of flexion/extension, 

adduction/adduction and rotation are represented for several body segments.  

 
Figure 2.9. The movements of flexion/extension, adduction/adduction and rotation.  

 

Movement originates from the rotation of body segments around the body joints (or 

articulations). Depending on whether the movement is performed around one, two or 

three axes, the body joint responsible for the movement will have one, two or three 
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degrees of freedom [107], [108]. For example, the knee joint can only perform the 

flexion-extension movement, so it only has one degree of freedom. The ankle, on the 

other hand, in addition to flexing and extending, can also invert and evert, thus gaining 

two degrees of freedom. The hip joint, on the other hand, has three degrees of freedom, 

as it can perform flexion and extension, adduction and abduction, and internal and 

external rotation. 

 

2.2.1. FBG-based system for body movements and sitting posture 

monitoring 

During the execution of a movement, a distortion of the surrounding tissues such as 

ligaments, muscles and skin is produced in the area of interest. Sites of particular 

interest are the body joints because they are the anatomical structures that separates 

two or more adjacent elements of the musculoskeletal system and that permits the 

movement of a body segment with respect to another. It is on the joints that most of 

the strain is concentrated. Therefore, being able to monitor the Δε occurring while 

changing a posture or performing a movement can be pivotal to establish the nature of 

the movement. To do so, FBGs are a viable option.  

For these applications, FBG sensors are usually encapsulated into soft flexible 

matrices, both to improve their robustness and ensure compliance with the body 

anthropometry. They are applied, directly to the skin or with the help of bands or special 

garments, on the area of the body whose displacement is to be measured, longitudinally 

to the direction of movement. For example, on the back area for posture detection or in 

correspondence of a particular joint (e.g., knee) to monitor the extent of a movement 

(e.g., flexion and extension). Due to the movement, the skin undergoes deformations, 

the strain is transmitted to the soft matrix and, as consequence, to the FBG, resulting in 

ΔλB. Once again, in case of thermoregulated environment and light physical activity, for 

this applications temperature variations could be considered negligible due to a much 

slower dynamic with respect to body movements. As consequence, ΔλB can be obtained 

as indicated in Equation (2.6).  

Through ΔλB analysis, it is possible, for example, to distinguish the flexion-extension 

movements. In fact, flexion leads to greater Δε, resulting in ΔλB maxima, while extension 

results in ΔλB minima. In Figure 2.10, the flexion-extension movements of the knee joint 

(a) and back (b) are shown, together with a corresponding ΔλB trend in time. 

Nevertheless, it should be pointed out that this approach allows a movement to be 

correctly recognized only if it is performed along a single axis.  
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Figure 2.10. The movements of flexion/extension of knee joint (a) and back (b). On the right, an 

example of ΔλB trend, showing minimum and maximum peaks corresponding to extensions and 

flexions, respectively. 
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Chapter 3 – Solutions based on FBG 
technology for respiratory rate, body 
posture and movement monitoring: a 
literature overview 

 

1. FBG-based solutions for respiratory rate monitoring 

Techniques used to measure directly inhaled and exhaled airflows are the most 

popular to assess respiratory health. Indeed, the most common approach used as a 

screening test is the spirometry, which measures the inhaled and exhaled volume or 

flow of air as a function of time during breathing [109]–[111]. However, such systems 

are often impractical to be used outside the clinical setting, especially for prolonged 

periods of time. In fact, they are generally fitted with a disposable cardboard 

mouthpiece that must be inserted in the subject's mouth. This mouthpiece tends to 

deteriorate with use and creates feelings of mouth fatigue and discomfort for the user. 

Another valuable option is represented by motion capture (MoCap) systems which are, 

to date, one of the leading and most reliable instruments to evaluate the respiratory 

biomechanics of patients [112]. However, the need for equipped spaces and qualified 

operators, the application of photo-reflective markers to the subjects’ torso, as well as 

the high costs of infrared cameras and dedicated software have limited the usage of this 

technology to hospital or ambulatory scenarios. 

Current research has attempted to solve these drawbacks by exploiting the excellent 

features of FBG technology to offer innovative solutions for continuous, non-intrusive 

and comfortable respiratory monitoring, also in harsh environments such as in presence 

of electromagnetic interferences (e.g., during magnetic resonance imaging -MRI- 

routines).   

In the following sections, an in-depth study on the state of the art of the proposed 

FBG-based solutions was made, dividing them into non-wearable and wearable systems. 

In this paragraph, parts of the work [79] which the PhD candidate has co-authored have 

been freely extracted. 

 

1.1.  Non-wearable systems  

Non-wearable system embedding FBG sensors aiming at investigating the breathing 

patterns are mainly used to monitor the subjects in static conditions, such as during 

sleep, during the execution of medical exams (e.g., magnetic resonance imaging -MRI- 

or computed tomography -CT-routines) or while sitting. These solutions typically come 
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as pads made by different materials (e.g., Plexiglass or resins) or cushions to be placed 

under the user’s back. In fact, such devices exploit the pressures induced on FBGs by the 

vibrations caused by breathing activity. Although some solutions are effective, their use 

is limited to clinical and static scenarios. Hereafter some examples are reported.  

The work of Dziuda and colleagues [113], [114] focused mainly on the development 

of a system for respiratory monitoring of subjects performing MRI routines. The system 

was composed of an FBG attached to the central part of a Plexiglass plate (whose 

dimensions were 95 mm x 220 mm x 1.5 mm) with epoxy glue. This device was designed 

to be placed between the back of the patient undergoing MRI and the mattress of the 

MRI machinery to allow the vibrations resulting from the respiratory activity to be 

transferred to the sensor. The device was preliminarily tested on three volunteers lying 

in a hospital bed by interposing it between the user’s back and the mat [113]. From the 

obtained data, it was clearly possible to depict the respiratory cycle by identifying the 

inspiratory phase with the increase of ΔλB and the expiratory phase with the decrease 

of ΔλB. An experiment was also carried out on 12 subjects in MRI environment (Achieva 

1.5 T MRI scanner by Philips) by testing the device’s capability in retrieving RR against a 

reference system (i.e., respiration bellows) [114]. The FBG’s output was denoised (by 

applying a 250-sample averaging), RR were calculated and compared with the values 

retrieved by the reference system, finding a mean relative error <7%.  

A similar approach was used by Fajkus et al. who in [115] presented a plexiglass pad 

40 mm x 15 mm x 0.3 mm with an FBG attached at its center with epoxy adhesive. The 

performances of this system in retrieving respiratory pattern were compared to the 

ones of a soft device which came as a rectangular-shaped (60 mm x 30 mm x 5 mm) 

polydimethylsiloxane (PDMS) matrix holding an FBG and intended to be worn at chest 

level secured by an elastic belt. The presented system reported slightly inferior 

performances in RR monitoring since it showed 0.36% lower accuracy than that of the 

WD. 

Always remaining within the scope of monitoring respiration in lying patients, Hao 

and his coworkers [116], [117] fabricated a smart bed by integrating 12 FBG sensors 

forming a 3 x 4 matrix array on the bed surface. The bed surface was then covered with 

the mattress. Every FBG was embedded into a curved structure made of carbon fibers 

which is elastic and allows the sensor to deform but at the same time prevents it from 

breaking. The system was tested by 10 subjects which assumed six different sleeping 

positions. Data were analyzed and RR values ranging from 10 bpm and 25 bpm were 

obtained, which are in line with values reported in the literature for adults sleeping.  

Dziuda’s research group in [118], [119] explored a new field of application by 

proposing a smart cushion for RR monitoring to be applied on the back of chairs or 

vehicle seats. In [118] a first prototype was created by equipping an inflatable cushion 

with a single FBG attached with epoxy glue at its center. Seven healthy subjects used the 

cushion for 60 s in presence of a benchmark. The signal was filtered (i.e., low-pass-filter 

with 1.8 Hz of cutoff frequency) and the RR were extracted with a maximum relative 

error of 14%. A step forward was made in [119] where two FBGs were used to 
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instrument the cushion and were placed one at its center and one laterally. Once again, 

the system was tested on seven volunteers and RR was calculated with a smaller error 

(i.e., 12%). 

 

Figure 3.1. Examples of some of the non-wearable systems depicted. In (a) the Plexiglass plate 
equipped with the FBG sensor for MRI routines presented by Dziuda et al. (adapted from [5][6]). 
In (b) the cushion realized by Dziuda et al. (adapted from [118]). In (c) the smart bed fabricated 
by Hao et al. (adapted from [116], [117]). 

 

1.2.  Wearable systems 

A hot spot of current research is represented by smart systems based on FBG 

technology intended to be worn by the users. Fabrics, T-shirts or, more in general, 

garments can be made “smart” by the direct integration of FBG sensors or application 

of flexible sensors which can be made of soft materials or 3D printed. Also, accessories 

commonly used in clinical settings such as surgical masks, PVC masks and nasal oxygen 

cannulas and spirometers equipped with FBG sensors can be useful tools for 

investigating the breathing pattern of subjects. Such devices are usually well accepted 

by users as they are easy to wear and typically non-intrusive. Also, allow free movement 

of the subjects during monitoring. 
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In the following subsections, an overview on the current state of the art of these 

devices is given. 

1.2.1. FBG-based systems for respiratory monitoring via chest wall 

displacements 

The wearable solutions for respiratory monitoring based on chest wall 

displacements can be divided into three main categories: smart textiles, soft flexible 

sensor and 3D printed sensors. 

Are defined as “smart textiles” all those fabrics in which the FBGs, and more 

generally the optical fibers which embed them, are sewn, knitted or glued directly to the 

garment [120], as shown in Figure 3.2 (a). The development of such solutions has found 

wide application as FBG sensors are particularly suited to these uses. In fact, due to their 

lightness, flexibility and small size, FBGs are ideal sensors to be exploited [121]. Several 

works presenting innovative smart textiles integrating FBGs for respiratory monitoring 

are described in Subsection 1.2.1.1. 

Soft flexible sensors are preferred in all the applications where the FBG undergoes 

greater deformations. Generally, these sensors consist of a matrix of flexible material 

(usually silicone rubbers) into which the optical fiber is inserted following determined 

geometries [122]. These sensors are usually attached to garments, bands or other 

accessorizes by means of various anchoring systems (such as Velcro stripes, buttons, 

etc.). The manufacturing of soft flexible sensors is more elaborated and time consuming 

with respect to the smart textiles as the fabrication typically requires the following steps, 

shown in Figure 3.2 (b): i) design and printing of the cast that typically consists of two 

parts: one smooth and one with a protrusion to create the groove in which the optical 

fiber has to be inserted; ii) first pouring of the liquid silicone material into the cast and 

curing of the material to form the first matrix layer; iii) insertion of the fiber optic 

following the groove created with the addition of glue if needed; iv) second pouring of 

the liquid silicone to create the second layer and curing and v) removal of the final sensor 

from the cast. Some examples of soft flexible prototypes based on FBG technology are 

reported in Subsection 1.2.1.2.  

In the last years, growing interest has been shown in the 3D printing technique giving 

light to a new generation of FBG-based sensors [123]. Compared to the soft flexible 

sensors, 3D sensors’ production is faster and more automated. In fact, the production 

steps are: i) design of the sensor; ii) printing of the first layer, iii) positioning of the fiber 

optic and iv) printing of the second layer.  The four steps for the production of the 3D 

printed sensors are reported in Figure 3.2 (c). Moreover, as the printing process is fully 

automated, such sensors present a higher reproducibility [124]. In Subsection 1.2.1.3. 

an insight into the proposed 3D printed sensors for RR monitoring is given. 

In Figure 3.2 a representation of the three aforementioned categories of wearable 

sensors and their fabrication techniques is reported.  
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Figure 3.2. Representation of the three categories of wearable sensors. In (a) smart fabrics in 
which optical fibers are woven (first and second pictures) and glued (last picture) are depicted 
(adapted from [125][126], respectively). In (b) and (c) are depicted the steps composing the 
fabrication process of the soft flexible sensors and 3D printed sensors, respectively (adapted from 
[127], [128], respectively).   

 

1.2.1.1. Smart textiles 

In the framework of an ambitious project (i.e., OFSETH), Grillet et al. [129] presented 

an elastic belt made by an elastic textile above which a fiber optic (enclosed into a 

coating) was fixed by sewing it to the fabric and adding glue to the extremities. The fiber 

optic was made of silica and embedded a single FBG. The design of the system, although 

basic, avoids the total transmission of the strain to the FBG in order to prevent its 

damage. The system’s feasibility to measure strain values, and consequently RR, has 

been assessed by means of a tensile machine equipped with a load cell. The mechanical 

characterization was performed by investigating the sensor response to deformation 

and the FBG output trend in time during 10 strain cycles at maximum strain of 5% with 

respect to the initial length. The response of the sensor was linear up to 40% of the 

textile elongation with no corruption of the fiber optic. Also, the system was capable of 
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following cyclic deformations, showing its applicability in detecting respiratory 

movements. 

A different design for fiber integration into textiles was explored in [125],[130] by 

De jonckeere and co-workers. In the activities of the same project, an unobtrusive device 

based on FBG technology capable of monitoring thoracic respiratory displacements has 

been investigated. The fiber optic was sewed and glued onto a fabric band following a 

curved path to minimize the risk of breakage. Once again, the linear behavior to strain 

deformation (i.e., from 0.1 % up to 5% in elongation without degradation of the optical 

fiber), as well as the high stability and reproducibility of the device was assessed by 

means of a mechanical respiratory simulator. Moreover, the sensor presented a 

sensitivity of 0.32 nm·% -1 (no uncertainty reported). Furthermore, a preliminary test on 

healthy volunteers was performed. Although the experiments have not been executed 

in the presence of a benchmark system, the thoracic displacements given by inhalation 

and exhalation were clearly identifiable from the FBGs outputs, making the smart device 

suitable for detecting respiratory phases. 

An amount of novelty was brought by Ciocchetti et al., who designed a light and 

unobtrusive respiratory monitoring smart textile MRI compatible [131]. The wearable 

consists of a commercial t-shirt equipped with a single fiber optic housing two FBGs 10 

mm in length. The FBGs were glued on the tissue with silicone rubber. The sensors’ 

positioning was guided by previous experiments carried out with the use of an 

optoelectronic system (OEP) that revealed the chest landmarks in which the highest 

displacements are experienced during breathing. Then, a preliminary test was carried 

out by four healthy volunteers who were asked to perform two sessions of normal 

breathing for 60 s each while wearing the smart garment in the presence of the OEP 

system. The sensitivities of the FBGs were 0.66 nm·L-1 and 0.35 nm·L-1 (no uncertainties 

reported), respectively. A Bland-Altman analysis showed a good accuracy (i.e., < 0.045 

s) in discriminating the time interval between two consecutive inhalations. 

Starting from this, Massaroni and his research group increased the number of FBGs 

embedded into the T-shirt to improve the performances of the systems. In [132] and 

[133] a multi-sensors smart T-shirt embedding six FBGs in the frontal area was 

presented. Three FBGs were positioned on the right side and three on the left side, 

identifying three areas of the torso (i.e., pulmonary rib cage, abdominal rib cage and 

abdomen compartments). A further step forward was made in [126], [134] in which the 

FBGs were increased to 12, also covering the back of the shirt for total torso monitoring. 

Preliminary assessments on volunteers showed the possibility of detecting the 

respiratory pattern either from the sum signal of all FBGs, or by using the signal of the 

sensors belonging to each torso compartment. No substantial difference in device 

performance was noted with female volunteers, thus showing good device fit in both 

male and female subjects [134]. Also, experiments conducted on patients undergoing 

MR procedures showed that such wearables were capable of detecting RR with good 

accuracy (i.e., 0.29 bpm of maximum error was calculated). However, data processing 

was required to separate the respiratory contribution from the cardiac one. 
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In [135] Ogawa and co-workers proposed a system composed of two separated FBGs 

attached to surgical tape for RR evaluation. The sensors were tested on a healthy 

volunteer who was asked to breathe normally for 180 s, placing one sensor at the carotid 

artery level and the second in correspondence of the tricuspid valve. The results 

demonstrated the feasibility of distinguishing the respiratory component of the signal 

from the cardiac ones by applying a digital low pass filter with cutoff frequency of 0.2 

Hz. Also, the system showed good agreement with the reference device in the detection 

of respiratory acts. 

A similar approach was used by Koyama et al. [136] who studied the strain induced 

on the body areas by the respiratory cycle using two FBG sensors applied on different 

parts of the body. An FBG was preliminarily assessed proving its ability in detecting RR 

against a sensor used as reference. Then the first FBG was always kept in abdominal 

position as benchmark for the respiratory activity, while the second was positioned in 

different zones such as wrist, elbow, shoulders and chest. The abdominal area has 

proven to be the best positioning for controlling respiratory activity. The shoulder and 

chest area also provided usable signals, while elbow and wrist detection failed. 

Issatayeva et al. proposed in [137] two smart elastic bands to be worn at chest and 

abdomen levels. Each band consisted of a central elastic part and two lateral rigid parts; 

an optical fiber containing five FBGs sensitive to chest variations is inserted in the central 

part. The FBGs were not fixed to the tissue to be free to elongate. The sensors were 

preliminarily characterized to retrieve 𝑆𝜀 and  𝑆𝑇, obtaining values of 1.03 pm ·με-1 and 

10.2 pm ·°C-1, respectively (no uncertainties reported). The performances of the system 

were assessed on two volunteers breathing normally during sitting, lying, staying and 

running activities. As expected, the most challenging condition proved to be running as 

the signals were affected by massive motion artefacts. However, the breathing signals 

were reconstructed with promising results in all the stance by summing the outputs of 

the 10 FBGs.  

Lastly, Defrianto and co-workers [138] proposed the use of an elastic band equipped 

with a both a single-mode fiber (SMF) and a FBG-based fiber attached following a  

sinusoidal macro bending pattern to experimentally relate the amount of air 

inspired/expired in/from the lungs with the deformation experienced by the chest walls. 

Seven people were tested on normal breathing conditions while wearing the device and 

the different chest circumference variations were calculated for each subject. Based on 

these data, an airflow model and a finite element model of the lungs were developed. 

In general, all the proposed systems, some more than others, showed good 

performance in detecting movements related to the respiratory activity. No degradation 

or rupture of the optical fiber was reported. However, it remains clear that such 

configurations (in which the fiber is glued, sewn or woven into tissues) have inherent 

fragility. Some of the described solutions are reported in Figure 3.3.  
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Figure 3.3. Collection of some of the smart textiles described and area of the human body suitable 
to their application. In (a) the solution proposed by Grillet et al. (adapted from [129]), in (b) the 
elastic band developed by De jonckeere et al. (adapted from [125], [130]). In (c) and (d) the smart 
T-shirt created by Massaroni and co-workers embedding 6 (adapted from [132], [133]) and 12 
FBG (adapted [126], [134]), respectively. In (e) the elastic belt presented by Issatayeva et al. 
(adapted from [137]).  

   

1.2.1.2. Soft flexible sensors 

Da Silva et al. [139],[140] proposed a smart soft sensor equipped with Velcro stripes 

enabling easy attaching and removing at the chest level. The sensor was composed of 

two overlapping layers of PVC containing at their center an optical fiber (with a single 

FBG embedded) in a sinusoidal path. This configuration increased the fiber robustness 

while maintaining its flexibility. The prototype was tested against a benchmark system 

(i.e., Zephyr BioHarness) on 12 volunteers performing normal breathing tasks in standing 

position. A filtering stage (band-pass digital filter, cutoff frequencies of 0.1 Hz – 0.4 Hz) 

was applied to the signal to separate the respiratory component from the cardiac one 

and the RR was estimated for all subjects. Also, the relationship between the FBG output 

and the change in chest circumference due to the breathing activity was established. 
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In the same year, the same research group [141] proposed a large-area soft sensor 

based on FBG technology to be integrated into a corset, covering the whole garment 

surface. The sensor was composed of a polychloroethanediyl (PVC) matrix of 400 μm in 

thickness in which a fiber optic containing two FBGs was enclosed. The sensing system 

was tested using a tensile machine, showing a 𝑆𝜀 = 0.8 pm· με-1 (no uncertainty 

reported). The system was then assessed on 12 healty subjects showing its feasibility for 

RR evaluation purposes after the use of digital filters to eliminate the component 

attributable to the cardiac activity.  

Fajkus et al. in [142] and Nedoma et al. in [143] proposed a new soft sensor for RR 

evaluation by encapsulating an FBG sensor into a polydimethylsiloxane (PDMS) 

elastomer substrate. The sensor was in the shape of a rectangular probe. The probe was 

firstly tested on a single subject breathing normally in three static positions (i.e., 

standing, laying on the back and sitting upright) showing its capability in retrieving RR. 

An evolution of this soft sensor was reported in [144] by the same research group. This 

time, two FBGs were encapsulated in a PDMS rectangular matrix. A preliminary 

characterization to temperature variation showed an increase in the 𝑆𝑇 of FBGs after 

encapsulation in PDMS. Then the probe was fixed at the chest level of 10 volunteers 

(both males and females) with the help of an elastic band. A time domain and frequency 

domain analysis were performed to retrieve RR. The maximum relative error of 5.41% 

was observed, probably due to the presence of motion artefacts not attenuated by the 

use of a signal filtering step. 

In [145] Chethana and co-workers proposed a soft sensor with a brand new design 

to increase the sensitivity of the FBG to the chest-wall displacements. In fact, an FBG is 

attached to a silicone diaphragm which is, in turn, inserted inside a PVC dome structure. 

The outer dome ensures stable positioning on the subject's chest, while the inner 

diaphragm accompanies the movement of the FBG as it is deformed by respiratory 

activity. The system, tested on four lying subjects, showed good performances in 

retrieving RR. 

A significant step forward has been made in [146], [147] by Lo Presti et al., who 

fabricated two flexible sensors each embedding an FBG into a rectangular silicone (i.e., 

Dragon Skin silicone rubber) patch that can be fixed onto an elastic band. Such a 

structure improves the sensor robustness and its compliance with the body. Promising 

results in estimating RR were obtained as the mean absolute percentage error was ≤ 

1.97% during quiet breathing. The system capability to detect RR during sports activities 

was then assessed on two professional archers [147]. The aforementioned systems were 

designed to be used both in clinical settings (i.e., respiratory rehabilitation process or 

during MRI exams) and during sport and exercise. 

Few years later, Lo Presti and co-workers [148] made a marked enhancement in this 

field by presenting a new soft sensing system with improved shape. The sensor came as 

a multilayered structure formed by a silicone rubber substrate in a bone shape 

embedding a single FBG at its center. This shape enabled the breathing-related strains 

to focus on the FBG. The structure was then layered between two fabric liners to impart 



63 
 

a skin-like softness improving the acceptability to the user. The metrological assessment 

of the smart patch was then held retrieving 𝑆𝜀 = 0.10 nm·mε-1, 𝑆𝑇 = 0.01 nm· °C-1 and 

𝑆𝑅𝐻= 0.0002 nm·RH-1. A feasibility assessment on nine volunteers was performed for 

eupnea and tachypnea breathing in three positions (i.e., standing, lying and sitting). 

Maximum RR error values of 0.10 bpm and 0.14 bpm were calculated in standing 

position for eupnea and tachypnea breathing, respectively.  

An amount of novelty was finally brought by Li and colleagues in [149]. The proposed 

sensor had a rectangular silicone rubber substrate which enclosed a fiber optic 

containing two FBGs. The FBGs were positioned at the two edges of the rectangle and 

embedded into two protective sleeves not to be deformed, while the fiber optic 

connecting them was embedded in the rectangle with a Ω-shape pattern. This time, the 

breathing signal was obtained by considering the light power fluctuation caused by 

deformation of the non-sensorized portion of the optical fiber due to the chest-wall 

displacements. The sensor’s resistance was tested in several challenging working 

conditions (i.e., a deformation > 30% was applied, it was curved up to 120° and bended 

multiple times around objects of different radii −4.7 mm the smallest one−, it was 

soaked and exposed to water drops) never deteriorating the signal. Also, the 

applicability of the presented sensor to evaluate respiratory patterns was assessed 

testing it on a healthy volunteer performing tachypnea and eupnea breathing trials. 

The wearable systems reported in this subparagraph have taken a step forward in 

terms of fiber reinforcement by inserting the sensing part into polymer matrices of 

various shapes. This choice also makes it possible to minimize heat exchange between 

the sensing element and the subject's skin. However, some systems flaw in terms of 

wearability as they are bulky and may be difficult for a user to accept. Some of the 

described solutions are reported in Figure 3.4. 
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Figure 3.4. Collection of some of the soft flexible sensors described and area of the human body 
suitable to their application. In (a) the solution proposed by Da Silva et al. (adapted from [140]), 
in (b) the elastic band developed by Fajkus et al. (adapted from [144]). In (c) the sensor made by 
Li et al. (adapted from [149]) and in (d) the smart patch created by Lo Presti and co-workers 
(adapted from [148]). In (e) the instrumented silicone diaphragm presented by Chethan et al. 
(adapted from [145]). 

 

1.2.1.3. 3D printed sensors 

An amount of novelty has been brought in this field from the fruitful collaboration 

of two research groups. In [150] Tavares et al. presented a first prototypes of sensors 

for respiratory monitoring made by 3D printing and integrating an FBG. The sensors 

came as rectangular-shaped structures (i.e., 30 mm x 40 mm) made of printable material 

(Flexible by Avistron, Bergheim, Germany) holding at their center a 10 mm length FBG. 

A total of six prototypes were produced: three with a thickness of 2 mm at 100%, 60% 

and 20% infills, and other three with 3 mm thickness at 100%, 60% and 20% infills. All 

the samples were assessed by means of an actuator capable to reproduce movements 

mimicking in amplitude and frequencies the chest-wall movements related to both the 

breathing and cardiac activity. Results shown that the 2 mm thick sensor with 20% infill 

had the best performances. Also, the sensor was tested against a reference (i.e., 

BioHarness by Zephys) on three volunteers wearing the sensor at the chest level with 
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the help of an elastic band. The volunteers were asked to breath normally while lying. A 

filtering step was employed to separate the respiratory and cardiac contributes. RR was 

calculated and matched with the values retrieved by the benchmark. 

In [128] Lo Presti et al. moved a step forward with the sensor’s design. In fact, they 

changed the manufacture material (i.e., TPU 95 A) and presented a rectangular shape 

which is thinned in the central part (in correspondence of the FBG’s location) to 

maximize the strain in that site. In addition, two 3D printed loops have been added at 

the edges of the structure for easy attachment of the elastic band to be tightened 

around the user's chest. They fabricated four sensors which differed in the infill 

percentages (30% and 60% infills values) and infill paths (triangle and gyroids). The 

responses of the sensors to strain, temperature and humidity were investigated, 

together with the hysteresis error. Highest 𝑆𝜀 and lower hysteresis errors (i.e., 3.9 

nm·mε-1 and 5.6% at 12 bpm and 11.9% at 70 bpm, respectively) were reported for the 

sensor with 30% infill and triangle infill path. This sensor was then assessed on a 

volunteer while performing eupnea and tachypnea breathing, showing that the 

respiratory acts were clearly identifiable during both the breathing conditions. 

Such solutions are extremely innovative and give the chance of minimizing the 

sensor encumbrance as they allow the optical fiber to be inserted inside substrates with 

low thickness. In addition, the almost fully automated fabrication process by means of 

the 3D printer allows the fiber to be placed into the substrate with great precision. On 

the other hand, this methodology is still at the beginning of its development, so the 

literature still lacks real tests on subjects in different application scenarios. 

The described solutions are reported in Figure 3.5. 
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Figure 3.5. Collection of some of the 3D printed sensors described and area of the human body 
suitable to their application. In (a) the solution proposed by Tavares et al. (adapted from [150]). 
In (b) the 3D sensors presented by Lo Presti and co-workers (adapted from [128]). 

 

1.2.2. FBG-based systems for respiratory monitoring via difference of 

thermohygrometric conditions between inspiratory and 

expiratory airflow 

Different solutions have been proposed to monitor ventilatory variables, and some 

of these have been tested on volunteers during breathing. In [151]–[154] an FBG 

functionalized with agar has been used to develop a needle-like probe that was tested 

during mechanical ventilation [151]–[153], and on 9 volunteers during quiet breathing 

[154]. The performance was assessed in terms of RR estimation and was compared with 

the RR set on the mechanical ventilator in [152] and with the RR estimated by a 

spirometer in [154]. In both cases, the results were promising in terms of percentage 

error (i.e., <3%).  

In [155], a tilted FBG was made sensitive to RH by deposition of graphene oxide. The 

proposed system was not assessed on humans, but the good static (e.g., of 18.5 

pm·%RH-1 and 0.027 dB·%RH-1 in the range of 30%−80% RH) and dynamic characteristics 

(e.g., response time ∼42 ms) make the sensor suitable for breath monitoring.   
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In [156], Liang et al. presented a novel wearable system for respiratory monitoring 

that consists of a commercial face mask equipped with a couple of FBGs. One sensor 

was directly connected to the mask (active FBG) while the other was at room 

temperature, working as a temperature reference. The active FBG was so exposed to 

warm and cold air during exhalation and inhalation phases, respectively. Two sequences 

of regular and heavy breathing were performed for 30 s and the sensor capability to 

follow a 30 bpm (with bpm is intended breathing per minute that is a unit of 

measurements popular in respiratory monitoring) breath rate was assessed. Moreover, 

the device showed a linear response over a 15 °C – 20 °C range of temperature.  

A similar approach was presented by Nedoma et al.[157] who proposed an oxygen 

mask equipped with a FBG sensor for respiratory monitoring during MRI routines. The 

FBG was encapsulated within a cylindric support directly inserted into the oxygen mask 

and so exposed to ΔT. The system was tested by six subjects executing MRI exams 

showing the advantages of the brought by the method compared to other 

methodologies commonly used in MRI (e.g., limited bulkiness and elimination of motion 

artefacts caused by devices placed on the abdomen). For the same scenario of use, the 

same research group proposed in [158] a nasal oxygen cannulas holding an FBG sensor 

as an alternative to oxygen masks. Following the same working principle, once again RR 

detection was assessed in MRI environment on ten volunteers. The accordance of the 

proposed sensor with two reference devices placed at chest and abdominal levels in 

evaluating RR was analyzed via Bland-Altman analysis, reporting a total relative error 

<5%.  

Nasal oxygen cannulas and masks were also  subjects of the research of Sinha et al. 

[159]. Also in this case, commercial cannulas and masks were equipped with FBGs. In 

this case, the devices were assessed on 15 subjects under controlled bradypnea, eupnea 

and tachypnea breathing regimes (i.e., 5 bpm, 12 bpm and 30 bpm, respectively) by 

asking them to breath following a digital metronome. Also, a trial performing shallow 

breathing was performed by each of the subjects. RR was extracted from the ΔλB signal 

with mean accuracy of 88.1%.  

Gautam et al. in [160] described the realization and the assessment of an oxygen 

mask equipped with an FBG and a BME 280 module, both sensitive to ΔT. A comparison 

between the performance of the FBG and electronic module in RR retrieving was carried 

out. Five volunteers breathed normally while wearing the mask. High accordance 

between the two devices was observed, testified also by the overall percentage error of 

5.29% across the five subjects. Also, the FBG response times to ΔT were 1.82 times faster 

in rise and 5.1 times faster in decay than the response times shown by the electronic 

module. 

A light WD exploiting a single FBG was presented by Manujło et al. [161]. A first 

comparison between the sensor and an electronic LM35 integrated circuit in measuring 

static temperatures was made. Although the FBG presented a not perfectly linear 

response, RR could be successfully calculated as it is obtained comparing relative ΔT 

rather than absolute values. Then, the systems were tested by placing the sensors under 
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the subjects’ nose during quiet breathing. Results showed that the electronic circuit 

sensitivity was higher, but both the sensors were able to discriminate inhalations and 

exhalations.  

Both Hernandez et al. [162] and Morgan et al. [163] presented two WDs for 

respiratory monitoring capable of detecting RH and temperature variations 

simultaneously. In [162], a sensor probe was made by covering the tip of an optical fiber, 

which embeds an FBG, with 23 PAH/SiO2 layers whose refractive index changes with RH. 

In [163], a further step forward was made by adding an ulterior FBG, which works as 

temperature reference and incorporating the sensitive system into a respiratory mask, 

so enhancing the design and fitting. The presence of the FBG is targeted for ΔT detection, 

but also for calculating the absolute humidity (AH). In fact, AH can be obtained 

comparing ΔT and the RH values detected by the PAH/SiO2 film. The system was tested 

into a mechanical ventilator, confronting its performance with that of two 

thermocouples and a humidity sensor. Experiments showed a relatively small sensitivity 

to RH (i.e., -1.4·10-12 W· %RH-1), an FBG sensitivity value of 10 pm·°C-1 and assessed the 

system feasibility to measure ΔT and RH together, so allowing estimating RR. 

The described devices are interesting and innovative as they offer an alternative to 

elastic bands to be worn around the torso for controlling breathing activity. This is most 

useful in those cases where the user resents possible chest constriction. On the other 

hand, masks and nasals can only find real application and acceptance in a clinical setting. 

Some of the described solutions are reported in Figure 3.6. 
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Figure 3.6. Collection of some of the solutions for respiratory monitoring via difference of 
thermohygrometric conditions between inspiratory and expiratory airflow and area of the 
human body suitable to their application. In (a) the instrumented cannula proposed by Fajkus et 
al. (adapted from [158]). In (b) and (c) the oxygen masks proposed by Gautam et al. (adapted 
from [160]) and Sinha et al. (adapted from [159]), respectively. 

1.2.3. FBG-based systems for respiratory monitoring via breathing 

airflows 

Among several techniques used to design spirometers and flowmeters (in Seventies 

Hayward found more than 100 types on the market [164]), different configurations 

based on FBGs have been investigated.  

In [165], a spirometer based on the strain of an FBG due to respiratory air has been 

developed and tested on volunteers. Results in terms of some crucial respiratory 

parameters (i.e., forced expiratory volume in the first second – FEV1, forced vital 

capacity -FVC-, and peak expiratory flow -PEF-) were compared to a commercial 

spirometer used as reference and showed promising results. 

In [105], basing on the same principle, Pant and co-workers designed a new device 

made of soft foam rubber to be worn on the nose. Two FBGs were applied at the 

extremities of the device, one at each nostril, to flex with the air passage. 10 subjects 

tested the device in eupnea breathing trials. The respiratory periods of each subject 
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were evaluated and were in line with what has been reported in the literature for 

eupnea breathing.   

More recently, Nepomuceno et al. [166] integrated two FBG directly into a 3D 

printed component of the spirometer. One FBG is enclosed into a needle and is used to 

compensate the temperature effect, while the second FBG is, in turn, free to be 

deformed by the air flows passing. The experimental assessment was performed on a 

volunteer by evaluating the FVC, FEV1, PEF and FEV1/FVC parameters, showing good 

agreement between the proposed device and the electronic flowmeter taken as 

benchmark. 

In recent times, the increase in the use of surgical masks due to the covid-19 

pandemic led Das et al. [167] to design a surgical mask for RR monitoring purpose with 

an FBG incorporated into a silicone diaphragm mounted on the vent valve. The study 

shown the applicability of this approach as the output given by the sensor could clearly 

depict the breathing pattern. In fact, outward deflection of the sensor due to exhaled 

air caused an increase ΔλB, while the inward deflection due to inhaled air was 

responsible for a decrease in ΔλB. 

An interesting solution investigated by several authors is the development of a hot 

wire anemometer using two FBGs [168]–[171]. The principle of work of this type of 

sensor is underpinned by the phenomenon of heat transfer. Usually, the sensing part is 

heated by an external energy source. When the airflow hits the sensing element, there 

is heat exchange. The equilibrium temperature or the energy used to maintain the 

sensing element at a constant temperature can be used as an indirect measure of the 

airflow velocity. Finally, the flowrate can be estimated by the velocity. In [168]–[171], 

the sensing part consists of one or more FBGs heated by a laser source, which makes 

them similar to a hot wire anemometer. Experiments show the valuable characteristics 

of high sensitivity at low flowrate which can be crucial in respiratory monitoring. All 

these sensors were not used in clinical trials, although the working principle and the 

performance foster future experiments in a real scenario.  

Once again, such solutions are an alternative to the most canonical smart textiles. 

Nevertheless, in a scenario other than clinical, I would see such solutions applied with 

difficulty given the impracticality of using systems such as the mask or flowmeter in 

everyday life. 

Some of the described solutions are reported in Figure 3.7. 
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Figure 3.7. Collection of some of the solutions for respiratory monitoring via breathing airflows 
and area of the human body suitable to their application. In (a) the surgical mask proposed by 
Das et al. (adapted from [167]). In (b) the solution presented by Pant and co-workers (adapted 
from [105]) and in (c) the spirometer equipped with  two FBGs by Nepomuceno et al. (adapted 
from [166]). 
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2.  FBG-based solutions for body movement monitoring: joint 

motion and posture evaluation 

Body motion sensing has been deeply investigated since is a source of a great deal 

of information for the study of disabilities, the development of rehabilitation techniques 

or, more simply, for the identification of the most common postural attitudes in sitting 

or standing positions to prevent the occurrence of musculoskeletal diseases [172]. 

Limbs’ orientation and joint angle variations have been extensively explored by means 

of different tools, the most common of which are inclinometers and goniometers [107], 

[173]–[175] and inertial sensors [259]. However, the use of such mechanical and rigid 

instruments can result often impractical, given the particular anatomical structure of 

many joints (which permit more than one degree of freedom in movement) or the 

curved surfaces of some body areas (such as the back). Indeed, goniometers offer 

accurate monitoring of a few joint districts, and the quality of the measurements strictly 

depends on the operator’s skills and experience, since the procedure is carried out 

manually. On the other hand, inertial sensors may manifest inaccuracy in detecting slow 

movements. Moreover, the usage a limited number of inertial sensors often causes a 

low spatial resolution in the movement reconstruction. 

Given this, camera-based systems played an important role in this field as well, but, 

as expected, mainly for research purposes and relegated to laboratory environments 

[176]–[178]. In fact, as also pointed out for respiratory monitoring, MoCap systems are 

extremely expensive and unfeasible to use in everyday settings (e.g., working 

environments or home settings) due to need for dedicated space and operators.   

In this background, the research has moved more and more towards the 

development of viable alternatives and in the last twenty years smart WDs have gained 

momentum as represent a good option for body motion monitoring allowing free 

movements without being an impediment to the subject. Also in this context, FBG 

sensors have gained large acceptance as they are highly integrable in fabrics, tissues and 

soft matrices and have high sensitivity to strain, a key feature to be exploited for joint 

monitoring. However, albeit to a much lesser extent, non-wearable FBG-based 

alternatives have also been proposed for BMs monitoring purposes in more static 

conditions (such as during sleep or for monitoring sitting or static standing postures).  

This paragraph is devoted to display the solutions currently proposed to detect body 

movements by means of the FBG sensors’ integration, once classified as non-wearable 

and wearable systems. 
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2.1.  Non-wearable systems 

Several research groups have focused their efforts on finding innovative solutions 

exploiting the FBGs’ sensitivity to pressure in order to improve and facilitate the care of 

the bedridden or disabled patient. In this respect, Abro and co-workers [179] designed 

a smart bed to identify the patient’s sleeping postures. Two pressure sensing elements 

were created by enclosing two FBGs into a 3D printed disk (i.e., PLA plastic material) by 

means of the fusion deposition printing technique. The pressure sensors were then 

calibrated by applying a vertical load form 0 N to 350 N in six steps for six times with the 

help of a tensile tester machine. The sensors showed the following sensitivity values: 

0.00053 nm ·N-1 and 0.00012 nm ·N-1. Also, 13.3% of maximum measurement error was 

found for vertical loading and unloading tests. The sensors were then glued to a thin 

foam foil at 200 mm of distance to each other. The system was then placed under a 

mattress, in its center zone. An assessment test was conducted on a male volunteer 

getting four different lying postures, maintaining each of them for 10 s. The two FBGs 

showed different ΔλB for each posture, thus providing the possibility to distinguish the 

four lying positions.  

Starting from this, a further step forward has been taken by  Fook et al. [180] who 

proposed both a smart bed and chair to provide monitoring of the patient's lying and 

sitting postures, respectively. 5 mm long FBG sensors were embedded in arcuate 

reinforcement structures composed of carbon fibers. Such pressure sensors showed 

good linearity when calibrated to pressure. The sensors were applied to the bed wooden 

structure by forming a 6 x 7 matrix and to the chair seat forming a 3 x 2 matrix. 

Experiments showed that by applying a baseline pressure value, it was possible to 

determine whether the patient was sat or stood up from the chair. On the other hand, 

the use of the smart mattress provides a more precise indication of the position 

assumed by the patient. In fact, by analyzing the data provided by the 42 FBGs, it was 

possible to classify five postures: turn left, turn right, sit up, lie down and get out of the 

bed.  

In [181], Tavares and co-authors presented a wheelchair equipped with six FBG-

based pressure cells to identify maximal pressure areas in the disabled patient's seat in 

order to avoid incorrect postures often responsible for ulcers. The pressure cells 

consisted of six FBG encapsulated at the center of six epoxy resin cylinders, 20 mm in 

diameter. The sensors were characterized to pressure starting from 0 Pa to 319 kPa for 

three times, showing sensitivity values ranging from 9.5 pm ·kPa-1 to 18.7 pm ·kPa-1. The 

cells were then applied in six sites of the wheelchair: right and left scapular zone, right 

and left ischiatic zone, and right and left heel zone. A test was performed on a volunteer 

who was asked to assume nine different positions. Results proved the capability of the 

system to discriminate the nine postures thanks to the different output of each FBG. In 

addition, it was investigated whether the ΔT could affect the performance of system by 

adding two temperature sensors (i.e., two FBG inserted into plastic cannulas) in the 
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scapular and ischiatic area. No error was induced by the T increase on the posture 

assessment. 

Finally, to check the correct distribution of body weight, the postural stability and, 

in turn, to detect the possible development of musculoskeletal diseases, a sensorized 

plantar platform was developed by Prasad and colleagues [182]. The platform was 

composed of two Perspex foils enclosing six FBGs, three placed on the right half (each 

covering the fore-, mid- and hind- foot plantar area of the right foot, respectively) and 

three on the left half (each covering the fore-, mid- and hind- foot plantar area of the 

left foot, respectively). Ten subjects were asked to stand on the platform for 30 s while 

wearing an accelerometer as reference. The data provided by the platform made it 

possible to determine the plantar strain distribution. Also, the postural stability has been 

investigated in terms of plantar strain variance with good agreement with the 

benchmark device.  

In Figure 3.8, a representation of the systems described is given. 

 

Figure 3.8. Representation of the non-wearable systems for posture and movement detection 
described in the section. In (a) the smart bed and chair equipped with the FBG-based sensors 
presented by Fook et al. (adapted from [180]). In (b) the wheelchair realized by Tavares et al. 
(adapted from [181]). In (c) the smart bed fabricated by Abro et al. (adapted from [179]) and in 
(d) the FBG-based plantar platform designed by Prasad and co-workers (adapted from [182]).  
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2.2.  Wearable systems  

With greater advancement in technologies, research in the context of wearable 

systems for monitoring body movement and posture based on FBG sensing technology 

has undergone a major acceleration. In fact, in this field, even more so than in 

respiratory monitoring, the onset of new 3D printing technologies, the discovery of 

extremely strong fabrics and textiles, as well as innovative flexible and stretchable 

materials has boosted the spread of novel highly reliable measurement systems 

resistant to the extreme deformations caused by body motions. Also in this case, FBGs 

are integrated into textiles and fabrics, making gloves and knee braces “smart”, or 

directly inserted into 3D printable structures. Also, FBG-based soft flexible sensors are 

applied to common accessorizes such as knee pads and elbow bands to assess their 

angle variation. In the following subsections, an overview on the wearable systems 

devoted to body motion and posture monitoring is given, again classifying the proposed 

solutions into smart textiles, soft flexible sensors and 3D printed sensors. 

  

2.2.1. Smart textiles 

Da Silva and co-workers in [183] designed a novel glove based on FBGs for hand 

gesture recognition. In order to detect the flexion/extension movement of the 14 

phalanx joints present in the hand, 14 FBGs multiplexed along a single fiber optic were 

enclosed into two flexible polymeric foils following a curvilinear path in correspondence 

of each joint. Such design allows the fiber to withstand the deformation caused by the 

flexion/extension movement (> 14% of Δε). The foils were then sewed on a commercial 

glove. The glove was characterized in respect to the fingers’ flexions and extensions. In 

fact, a test was performed by asking a volunteer to wear the device and open and close 

the hand repeatedly, in presence of a reference device to assess the angles of hand joints 

motions. The sensorized glove determined the 14 joint angles with maximum error of 2° 

in a motion range of 0° - 90°.  

Still remaining on the hand gesture, also Lin et al. [184] fabricated a FBG-based glove 

but implementing a different approach for sensor integration. A commercial glove was 

used where each phalanx was covered by a piece of rectangular sponge 10 mm thick. 

On each piece of sponge fiber optic was glued containing two or three FBG sensors, 

depending on the number of joints in the phalanx. A calibration process was carried out 

to relate the FBGs output to the degrees of angle motion. ΔλB showed linear behavior 

until the fingers close into a fist. In that last phase ΔλB assume non-linear trend. A cubic 

spline interpolation proved to be the most suitable interpolation to fit the finger posture 

motions of six postures.  

The joints of the limbs are the subject of equally interesting studies. Both Rocha et 

al. [185] and Dominguez et al. [186] focused their attention on the knee joint. The 

system proposed by Rocha and co-authors [185] comes as an elastic knee brace upon 

which a foil of PVC embedding a single FBG is applied with the help of metallic pressure 
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buttons. The PVC foil permits the strain transmission to the FBG without damaging it. 

This system was intended to be worn on the knee to distinguish the flexion and 

extension movements. The system was tested by a subject running and walking at 

several speeds, for 10 s of data recording. Raw data showed ΔλB increase for flexion and 

decrease for extension movements. Also, ΔλB trends were smoother at higher speeds. 

On the contrary, Dominguez et al. [186] developed a sensor by applying a FBG on a stripe 

of Kinesio tape to be attached directly to the user’s skin at the knee level. The sensor 

was calibrated performing different angular motions (i.e., from 5° to 60°) for three times 

guided by a goniometer. The ΔλB showed an exponential dependence with the applied 

angle, probably given by the tissue elasticity. Moreover, the system was assessed during 

a walk by a volunteer for a total of seven gaits, which could be clearly identified in their 

flexion/extension phase from the FBG output. Also, in a single gait, it was possible to 

detect the seven phases which compose the gait cycle.  

Moreover, in [187] Butt and co-workers developed a smart insole to collect data of 

the plantar pressure distribution as support for an ambitious study. In fact, those data 

were matched with those retrieved by an electroencephalogram to predict the brain 

signals corresponding to three postures (i.e., sitting, standing and walking) by means of 

AI algorithms. The smart insole came as a commercial insole made by polyethylene foam 

5 mm thick and equipped with three FBG sensors at different plantar zones: front, 

middle and back plantar. The outputs of the three FBGs had different trends depending 

on the position assumed by the subjects. In sitting position, no change in ΔλB was 

observed, while in standing position there were minimal ΔλB due to the weight 

displacement on the plantar. During the walk, on the other hand, it was again possible 

to recognize the gait phases progression. 

Summing up, the described WDs represent working solutions for the detection 

mainly of hand, ankle and knee movements. However, all the devices described are 

particularly bulky. In fact, because body movements imply a wider range of motion than 

the chest displacements caused by the respiratory activity, it is necessary to reinforce 

the fiber by inserting it into thicker or larger substrates. 

In Figure 3.9, an outlook on some of the proposed solutions is displayed.  
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Figure 3.9. Collection of some of the described smart textiles for motion and posture monitoring 
and area of the human body suitable to their application. In (a) and (b) the smart gloves proposed 
by Da Silva and co-workers (adapted from [183]) and Lin et al. (adapted from [184]), respectively. 
In (c) and (d) the solutions presented for knee flexion/extension detection by Rocha et al. 
(adapted from [185]) and Dominguez et al. (adapted from [186]), respectively.  

 

2.2.2. Soft flexible sensors  

Jang and his research group [188] proposed three different FBG-based sensors to 

identify the three different movements executable by the arm by means of the shoulder 

and elbow joints (three degrees of freedom are permitted). The three sensors were 

divided into: i) “shape sensor” (to be applied on the shoulder) which monitored the arm 

orientation; ii) “angle sensor” (to be applied to the elbow) which detected the angle 

variation, and iii) “twist angle sensor” (to be applied to the elbow and shoulder) which 

detected the twisting movements. Each sensor presented a different structure to 

maximize the output of the embedded FBG given the motion. The shape sensor 

consisted in three fiber optics (with multiple FBGs each) inserted into a 300 μm in 

diameter polyamide tube. The angle sensor consisted of a 150 mm wide x 250 μm thick 

matrix of epoxy resin embedding at its center a single fiber optic holding several FBGs. 

Lastly, the twist angle sensor came as a rigid tube housing a fiber optic arranged in a 

spiral holding a single FBG. The accuracy of the three sensors were evaluated. Average 
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error < 1.98 mm was made by the shape sensor in detecting arms’ orientation in 3D 

space. Angle error < 0.2° was committed by the angle sensor, while the twisting angle 

showed a resolution of 0.47° in measuring rotation angles. 

A different approach was applied by Abro et al. [189] in the production of a FBG-

based  smart belt for knee posture identification. An FBG sensor was fixed over a 

rectangular-shaped silica gel substrate whose dimensions were 3 mm x 6 mm x 25 mm 

and covered with a PVC strip. This sensing structure was secured at its edges to a belt to 

be tied around the knee. The functionality of the device has been tested in both static 

(the subject moved from stand to seat position in three steps and kept each position for 

10 s) and dynamic experiments (the subject was asked to run). The system showed a 

sensitivity of about 0.03 nm/°. A further step forward has been made by the same 

research group in [190]. In this work they explored the functioning of the smart belt at 

different body joints such as fingers, wrist and elbow. Linear increase in the FBG’s output 

was always obtained by varying the angle of each investigated joint from 0° to 120 °.  

However, experiments carried out dynamic conditions (i.e., running trials) showed that 

knee movements are the most suitable to be detected by this system. 

Still on the topic, in [191] Resta and co-workers fabricated two soft sensing elements 

by encapsulating a 1 mm length FBG into two silicone rubber matrices with rectangular 

shape (dimensions: 50 mm x 30 mm x 10 mm for the bigger sensor and 40 mm x 30 mm 

x 10 mm for the smaller ones). Their strain sensitivity was investigated by applying a 

maximum deformation of 2% and the 𝑆𝜀 values of 3.944 nm ·mm-1 and 2.897 nm ·mm-1 

were calculated. The soft sensors were then applied to the upper part of a knee pad. 

The system was then tested by a subject walking on a treadmill at three speeds.  For 

both the soft sensors, flexion/extension movements caused maximum/minimum strains 

which corresponded to the maximum/minimum points in ΔλB trends.  

The same operating principle was exploited by Domingues and colleagues [192] to 

produce a novel system for plantar flexion/extension recognition. An FBG was enclosed 

into a rectangular epoxy resin substrate. At the edges of the substrate two 3D printed 

PLA adapters were glued. The adapters were designed to link to two sockets to be 

secured to some stripes of Kinesio tape which was attached to the dorsum of the foot. 

The FBG was subjected to maximal strain during plantar flection. The system’s 

calibration was performed and a sensitivity of 0.041 nm/° was assessed. Also, the 

performance of the system during walking was investigated: similar trends were 

identified for all the gait cycles, and in every gait, it was possible to distinguish both the 

stance and the swing phases. 

An attempt was made by Kim and colleagues in [193] to fabricate a novel wearable 

solution to determine the hand posture in real-time. The system was composed of five 

finger modules which could be regulated in length to adapted to the user’s hand size. 

Each module came as a silicon spring structure to be fixed to the finger which enclosed 

an FBG fixed to a polyurethane polyhedron structure in correspondence of the central 

phalange. The modules were characterized to bending by performing bending tests with 

the help of a stepping machine until reaching an angle of 90° for 10000 times. FBGs’ 
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showed linear behavior and high accuracy in performing the measurements. The 

average error among all joints occurring in measuring the fingers’ angles was 0.47° ± 

2.51° with a MAE of 1.63° ± 1.97°.   

Lastly, Guo et al [194] proposed a soft flexible sensor based on FBG technology 

suitable for monitoring multiple joints. The sensor was a rectangular-shaped substrate 

(15 mm x 10 mm x 2 mm) made of polydimethylsiloxane in which a fiber optic (holding 

a single FBG) was placed with curved path. The sensor was highly stretchable (until 50% 

of deformation), flexible and transparent. This system was tested applied upon different 

garments (i.e., on a knee band and on a glove) or directly to the skin (i.e., on the neck 

and on the wrist) with the help of some chirurgical tape to assess its capability to 

evaluate the angle variation of different body articulations. In all these application, 

flexion and extension movements could be clearly identified by the sensor output over 

time. In fact, once again, flexion movements led to maximum sensor’s deformation 

which corresponded to ΔλB peaks. On the contrary, extensions were traceable to the 

minimum ΔλB points.  

The insertion of the optical fiber into soft matrices is presented as a winning strategy 

to reinforce the sensing element and enhance its thermal insulation, not losing the 

flexibility which allows freedom of movement to the user. However, in very few studies 

trials have been carried out on volunteers, so the real ease of use of such systems has 

not been proven. 

In Figure 3.10, some of the proposed devices are shown.  
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Figure 3.10. Collection of some of the described soft flexible sensors for motion and posture 
monitoring and area of the human body suitable to their application. In (a) the modular solution 
proposed by Kim and colleagues (adapted from [193]) for finger joint motion detection. In (b) the 
sensorized knee pad fabricated by Resta et al. (adapted from [191]) and in (c) the knee belt 
proposed by Abro et al. (adapted from [189]) are shown. In (d) the high stretchable sensing 
element presented by Guo and co-workers (adapted from [194]) is reported. In (e) the system for 
plantar flexion/extension monitoring designed by Domingues and colleagues (adapted from 
[192]) is shown.  

 

2.2.3. 3D printed sensors 

Cheng-Yu et al. [195] presented an innovative solution for both elbow and joint 

movements monitoring. The research group fabricated via fusion mold 3D printing 

technique two elastic rings of PLA which enclosed a fiber optic with a single FBG each. 

The two smart rings were designed to be worn 50 mm below the joint elbow and few 

centimeters above the knee. This design permitted to exploit the expansion/reduction 

of muscles size during movements to strain the FBGs and, in turn, to obtain ΔλB. A first 

test was executed to assess the ring’s capability to display increase/decrease in elbow 

angle. A subject was instructed to wear the ring and maintain seven band elbow angles 

(i.e., 0°, 15°, 30°, 45°, 60°, 75° and 90°) maintaining each position for 15 s. This ring 

shown 0.0056 nm/° of measurement sensitivity, 0.18° of minimum resolution and 9.5% 

of maximum error at 90°. A similar experiment was conducted to test the smart ring for 
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the knee angle monitoring. A sensitivity of 0.0276 nm/° and resolution of 0.39° were 

found. Both the rings demonstrated to be valid tools for joint angle detection purposes. 

This proposal is a novelty in the field of 3D printed sensors. The chosen design limits 

the encumbrance and allows stable fixation to arms and legs for monitoring the subject's 

movements at two different joint sites. However, tests should be carried out on 

volunteers by reproducing daily motor activities to verify the real usability in terms of 

comfort. 

A picture of the presented system is shown in Figure 3.11.  

 

 
Figure 3.11. Representation of the described smart rings for elbow and knee angle monitoring 
presented by Cheng-Yu (adapted from [195]) and area of the human body suitable to their 
application. In (a) the rings design, in (b) and (c) their application to the elbow and knee, 
respectively.   
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Chapter 4 − Design and development 
of novel wearable systems based on 
FBG technology for respiratory rate, 
body movement and posture 
monitoring  

 

1. FBG-based smart wearable solutions for respiratory rate 

monitoring 

In this paragraph, the design and development of two WDs for respiratory activity 

monitoring are described. In particular, the first device is equipped with soft flexible 

sensing elements embedding FBG sensors to monitor RR via chest wall displacements. 

The second one is instead a system integrating an FBG functionalized in agarose 

substrate to be placed at the nostrils levels, which exploits the variation in thermo-

hygrometric conditions of the respiratory flow to discriminate inspiratory and expiratory 

breathing phases. Their assessment on volunteers is also reported.   

 

1.1.  Elastic bands instrumented with four soft flexible FBG-based 

sensing elements for chest-wall displacements detections  

This system is composed of four flexible dumbbell-shaped sensing modules 

anchored to two elastic bands for chest-wall displacement detection. The system is light 

and easy to wear and can be adapted to any anthropometry. This device is intended to 

be used for respiratory monitoring in both occupational and clinical environments. In 

fact, its assessment has been performed on employees performing active and static 

working activities and patients whose respiratory pattern could be affected by 

disabilities (i.e., hemiplegic patients).  

In this section, parts of the works [196]–[198] which the PhD candidate has co-

authored have been freely extracted. 
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1.1.1. Design and manufacturing process 

A representation of the wearable system is given in Figure 4.1 (a). The wearable 

system comes as two elastic modules to be worn around the chest and abdomen, each 

of which consists of two parts: a stretchable element and a sensing element.  

The stretchable element is a 1 m-length elastic band (50 mm of width) with two 

Velcro® straps at the ends to be adaptable to different anthropometric characteristics.  

 

Figure 4.1. Representation of the wearable system. In (a), an insight into the wearable system is 
given, showing the two stretchable elements (which come as two elastic bands), each of which 
is equipped with a sensing element composed by two flexible sensors. In addition, a 
magnification of a flexible sensor is reported on the right. In (b), a schematic representation of 
the nominal geometric characteristics of the custom flexible sensors is given. A photo of the 
flexible sensor is shown in (c), illustrating the position of the FBG. 

The sensing element consists of two multiplexed flexible sensors. Each flexible 

sensor (FS) comes as a commercial polyimide (PI) -coated fiber optic (developed by 

Broptics Technology Inc.) holding a 10-mm length FBG sensor encapsulated into a 

dumbbell shaped-flexible matrix. The λB of the FBG sensors were 1549 nm and 1557 nm 

respectively for each pair to avoid overlap. The choice of PI as fiber coating is motivated 

by the higher flexibility and handiness of PI-recoated optical fiber than the acrylate-

recoated one [199]. Moreover, Dragon Skin™ 20 silicone (produced by Smooth-on Inc.) 
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was chosen as casing material because it is very flexible and highly stretchable [200]. 

Regarding the size and shape of the encapsulating matrix, the design has been guided 

by the international standard ISO 37:2017 (Tensile Stress-Strain Properties of Vulcanized 

or Thermoplastic Rubber) [201]. Among various specimen size included in the standard 

ISO 37:2017, Type 1A (Figure 4.1 (b) and (c)) has been chosen to enhance the FS’s 

sensitivity to uniaxial ε and ensure the well-anchorage of the sensors on the elastic 

bands through the dumbbell extremities (which improves the adhesion of the FBG to 

the band and, in turn, its compliance with the rib cage deformation). The silicon matrix 

was designed with overall dimensions of 100 mm x 22 mm x 2 mm and narrow portion 

dimension of 21 mm x 5 mm x 2 mm in the conformance with specimen size Type 1A in 

[201]. On each end, two 3mm-diameter holes interspaced by 5 mm allow the FS to be 

quickly bonded to a garment. In this way, no matrix cracks and lacerations occur because 

of the implementation of a bonding mechanism (e.g., the use of automatic buttons) after 

the polymer vulcanization. 

The main steps of the manufacturing process are as follows:  

1) the FBG sensor was positioned between two matching 3D printed molds 

designed into a dumbbell shape in a sandwich construction;  

2) the silicone was fabricated by mixing Dragon Skin™ 20 (A and B bi-component, 

at a 1:1 ratio);  

3) the mixture was placed inside a degassing pot connected to diaphragm pump for 

making a bubble-free casting;  

4) the mold was clamped to an inclined surface at an angle of 60° to the horizontal 

plane, and the silicone was poured into the mold through an injection port;  

5) the FS was removed from the mold after the polymer curing which lasted 4 h at 

room temperature (as suggested on the technical data sheet of the material). 

The anchorage of each FS to the band is achieved by means of the anchorage system 

depicted in Figure 4.2.  
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Figure 4.2. The wearable system with a zoomed detail of the anchoring system. The front 
rectangular plate is highlighted, the back-pad plate with U-shaped loops in dotted line, hooks in 
yellow. 

The anchorage system is composed by four hooks handsewn on the fabrics and two 

rectangular pad plates with two loops each. The rectangular-shaped pad plates are 

provided (55 mm x 10 mm x 2 mm) with two u-shaped loops (3 mm of diameter) to join 

a hook couple. The hooks-and-loops anchoring system allows the FS to be placed on the 

band along a specific direction after its dressing around the chest (i.e., on the thorax and 

the abdomen). The locking of the FS to the pad plates is performed by clamping the 

matrix ends of each sensor between the pad plate in contact to the back surface (back 

pad plate in Figure 4.2) of the sensor, and an additional smaller rectangular plate (21 

mm x 10 mm x 2 mm) on the front (front plate in Figure 4.2). 

 

1.1.2. Metrological characterization 

The 𝑆𝜀 was evaluated considering that when the subject inhales, the diaphragm 

contracts and the stomach inflates, so the FS that is positioned on the chest is strained. 

Conversely, during the exhalation, the diaphragm expands, the stomach depresses, and 

the sensor is compressed. Simultaneously, in the scenario of interest, the sensor can 

work at different environmental conditions, so that the temperature effects were also 

taken into account, and 𝑆𝑇was obtained. Lastly, considering the repetitive inward and 

outward chest movements during breathing, the hysteresis error (expressed in terms of 

percentage, %ℎ𝑒𝑟𝑟) was calculated. 
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1.1.2.1. Response to strain 

One of the four nominally identical FSs was calibrated by performing tensile testing 

using the tensile testing machine (Instron 3365) to apply controlled ε values (from 0% to 

2.5%) in a quasi-static condition (at a low displacement rate of 2 mm·min−1). The static 

assessment of the flexible FBG sensor was executed by positioning the dumbbell-shaped 

specimen between the lower and the upper clamps of the machine (please, refer to 

Figure 4.3 (a)), at room temperature. A total of ten repetitive tensile tests were carried 

out, straining up the specimen to 2.5% of its initial length (l0) (see Figure 4.3 (b)). The 

term l0 is defined as the initial free matrix length between the clamps. The maximum ε 

value of 2.5% was chosen to cover the working range experienced by the FS in the 

application of interest (in accordance with the results of a preliminary test). The strain 

applied by the tensile machine on the FS was recorded at the sampling frequency of 100 

Hz. At the same time, the ΔλB of the encapsulated grating was collected by the optical 

spectrum interrogator (si425, Micro Optics Inc.) at the sampling frequency of 250 Hz. 

The calibration curve (ΔλB vs. ε) was obtained by processing the collected data through 

a custom algorithm in MATLAB R2019b. The average value of ΔλB and the repeatability 

of the system was determined by calculating the related uncertainty across the ten tests 

by considering a t-student reference distribution with nine degrees of freedom and a 

level of confidence of 95%. To find out the 𝑆𝜀, the best fitting line of the calibration curve 

was calculated, and its angular coefficient was calculated. Results showed an 𝑆𝜀 value of 

0.08 nm·mε-1 and an excellent agreement between the experimental data and the linear 

fitting (Figure 4.3 (c)), as confirmed by the high value of the coefficient of determination 

(R2 >0.998). 
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Figure 4.3. In (a) the positioning of the flexible sensor between the clampers of the tensile 
machine is shown. In (b) a representation of the tensile test is depicted. In (c), the average ΔλB 
vs. mε (in blue line), the uncertainty (in shadow blue), and the best fitting curve (in red dotted 
line). 

1.1.2.2. Response to temperature influence 

The effects of T were investigated to retrieve 𝑆𝑇. The specimen was placed inside a 

laboratory oven (PN120 Carbolite®) using a thermocouple probe (EL-USB-TC-LCD, 

EasyLog, Lascar Technology) as a reference. In the experiment, both the sensors were 

rapidly exposed to a T increment of 20°C (from 20°C to 40 °C). In this case, the maximum 

T value was chosen in accordance with the application of interest. When the highest T 

value was reached, the oven was switched off, and both sensors were kept inside all 

night long. It allows a quasistatic T decrement to the room temperature without any 

perturbation. The ΔλB values were collected by the optical spectrum interrogator at 1 Hz 

and the reference ΔT values by the thermocouple at 10 Hz, respectively. The calibration 

curve (ΔλB vs. ΔT) was obtained by processing the collected data in MATLAB and 𝑆𝑇 as 

the angular coefficient of the best fitting line (see Figure 4.4). Results showed an 𝑆𝑇 of 

0.008 nm·°C-1 and a high agreement between experimental data and the linear fitting 

(R2 >0.998). 
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Figure 4.4. The average ΔλB vs. ΔT (in blue line) and the best fitting curve (in red dotted line). 

 

1.1.2.3. Hysteresis loops 

A total of ten repeated hysteresis loops were performed at three different velocities 

simulating RR values of 12, 24, and 36 breaths per minute (bpm), respectively. During 

each cycle, the dumbbell-shaped specimen was positioned between the clamps, and 

strained and unstrained, repeatedly. The ΔλB values were collected by the optical 

spectrum interrogator at the sampling frequency of 250 Hz while the tensile testing 

machine (Instron 3365) loads and displacements at the sampling frequency of 100 Hz. 

The %ℎ𝑒𝑟𝑟 of each test was calculated starting from the difference between value of 

wavelength changes during the ascending and descending phases (i.e.,  

𝛥𝜆𝐵
𝑢𝑝(𝜀) − 𝛥𝜆𝐵

𝑑𝑜𝑤𝑛(𝜀)) of each loop at the same ε (expressed in %); then, the maximum 

value of this difference was computed and divided by the 𝛥𝜆𝐵
𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒

 of each loop as: 

%ℎ𝑒𝑟𝑟 =
𝑚𝑎𝑥[𝛥𝜆𝐵

𝑢𝑝(𝜀) − 𝛥𝜆𝐵
𝑑𝑜𝑤𝑛(𝜀)]

𝛥𝜆𝐵
𝑓𝑢𝑙𝑙−𝑠𝑐𝑎𝑙𝑒

∙ 100 (4.1) 

Results showed maximum %ℎ𝑒𝑟𝑟 of 14.8%, 15.0%, and 15.9% for velocities 

mimicking RR values of 12 bpm, 24 bpm, and 36 bpm, respectively (see Figure 4.5 (a), 

Figure 4.5 (b) and Figure 4.5 (c), respectively). 
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Figure 4.5. In (a) the hysteresis cycles at 12 bpm (in blue), in (b) at 24 bpm (in red) and in (c) at 
36 bpm (in black) are reported. 

 

1.1.3. Experimental assessment  

In this section, the assessment of the wearable system in retrieving RR is described. 

The device was tested in occupational and clinical settings.   

1.1.3.1. Assessment in occupational settings 

In this subsection, the wearable system was tested in RR retrieving on volunteers 

simulating different working conditions. The choice to test the device in occupational 

environments is driven by the awareness that RR is a valuable indicator of the 

psychological load and fatigue state of workers and, more in particular, it is one of the 

most precise indicators of several stressing conditions such as excessive cold, heat, 

hypoxia, pain, and discomfort which can be related to working environments [56]. 

Protocols mimicking both active real-life tasks (e.g., handling loads, walking, standing up 

and sitting down, etc.) and static working tasks (e.g., videoterminal work) were carried 

out and described in the following subsections. 
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1.1.3.1.1.  Active working activity scenario 

 

A) Experimental setup and protocol  

The assessment of the wearable system was performed in different scenarios 

mimicking real occupational activities on ten healthy volunteers. The volunteers have 

the following age and anthropometric features expressed as mean ± standard deviation: 

age of 28 ± 4 years old, height of 165 ± 9 cm, body mass 61.5 ± 10.5 kg, and chest 

circumference 87.7 ± 9.7 cm. 

Each volunteer was invited to wear a tight shirt and stand still while an operator 

helped him/her to wear the wearable system. The two stretchable elements were 

tightened with some Velcro strips around the subject’s torso in thoracic and abdominal 

positions, respectively. Then, two sensing elements (each of which embeds two FSs) 

were securely anchored upon the two elastic bands via the adjustable systems of hooks 

fixed at the extremities of the sensors, as depicted in Figure 4.2. The experimental setup 

is shown in Figure 4.6. An FBG interrogator (Hyperion si255, Micron Optics) was used to 

collect FBGs’ outputs at the sampling frequency of 100 Hz. To assess the performances 

of the wearable system, a flowmeter (SpiroQuant P by EnviteC, Honeywell) was used as 

reference instrument, which allows transducing the flowrate in a pressure drop. The 

flowmeter has been coupled with a differential pressure sensor (163PC01D36, 

Honeywell) which transduces the pressure drop into a voltage. This voltage was then 

recorded using a custom electronic board embedding a 12-bit analog-to-digital 

converter (ADC MAX 1239 by Maxim), a microcontroller (STM32F446RET by 

STMicroelectronics), and a Bluetooth module (SPBT2632C2A by STMicroelectronics) for 

wireless data transmission at 100 Hz. The box containing the pressure sensor and the 

data acquisition board was placed in the sternal position with some stripes of bi-

adhesive polymeric tape, and the flowmeter was placed at the volunteer’s mouth with 

the help of a commercial breathing mask. 

 
Figure 4.6. The experimental setup used for all the proposed protocols. 
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To pilot the experimental protocol, two Graphical User Interfaces (GUIs) were 

developed in LabVIEW (National Instruments, TX, USA). The first GUI was used to 

synchronize and save the outputs readout of the wearable system, namely the FBGs, 

and the benchmark, namely the flowmeter. The other GUI has been implemented to 

make the experiment clearer to the participant and improve engagement during the 

test, guiding the subject to perform the current task associated with an image, as a 

virtual instructor. The subject was then instructed on the movements to be executed 

and invited to follow the sequence of images displayed in the GUI.  

The protocols used are detailed below and represented in Figure 4.7:  

1) 1st protocol: 60 s of eupnea and 60 s of tachypnea, both in standing, sitting and 

supine static postures;  

2) 2nd protocol: 120 s of self-paced walking;  

3) 3rd protocol: cyclical changes of three different postures (i.e., standing, sitting 

and supine), keeping each position for 30 s;  

4) 4th protocol: isolated upper limbs and trunk movements (i.e., frontal bending of 

the trunk, maximum right torsion of the trunk, maximum left torsion of the trunk, 

maximum arms up, lateral lifting of the arms and frontal lifting of the arms), 

keeping each position for 10 s;  

5) 5th protocol: combination of different upper limbs and trunk movements 

consecutively performed (i.e., starting from a standing position, grab a target 

item laterally placed on the ground -on the left and on the right-, move it 

frontally on a rack and then replace it back on the ground), repeating each cycle 

four times. 

The experimental design of the presented protocol aimed at assessing the ability of 

the sensing system in tracking the subjects’ breathing activity in selected static and 

dynamic conditions characterizing working settings. Specifically, trial 1 aims at 

evaluating RR in the absence of body motions, while trials 2, 3 and 4 aim at estimating 

RR during the execution of dynamic tasks. Finally, trial 5 aims at investigating the 

performances of the wearable in a real working scenario, mimicking some typical 

working tasks. The protocol STUCBM 27/18 OSS received the approval of the ethical 

committee of Università Campus Bio-Medico di Roma. 
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Figure 4.7. The five designed protocols and the related ΔλB trend in time. Each box is colored as 
the icon representing the activity performed by the volunteer during the execution of the 
protocol. The activities are: standing (yellow icon), sitting (pink icon), supine (azure icon), walking 
(dark yellow icon), lateral lifting of the arms (orange icon), front lifting of the arms (light green), 
maximum arms up (dark green), maximum right torsion of the trunk (blue icon), maximum left 
torsion of the trunk (light-blue icon), front bending of the trunk (purple), lifting an item from the 
ground on the left (dark pink icon), moving the item from left to right (brown icon), lifting an item 
from the ground on the right (bordeaux icon) and moving the item from right to left (light brown 
icon). 

 

B) Data analysis and results 

The acquired data have been processed offline in MATLAB environment. Firstly, the 

flowmeter signals were filtered with a 3rd order Butterworth bandpass filter (0.05 Hz and 

2 Hz of low and high cut-off frequencies, respectively). The four FBGs data were summed 

together and filtered with the same bandpass filter used for the flowmeter. The RR 

values were estimated by identifying the inspiratory maxima peaks. Given the variability 

of the respiratory ranges within each trial, the identification of maxima peaks has been 

performed by considering a moving time window of 15 s for each sampling point (see 

Figure 4.8 (a)). Then the reciprocal of the averaged time differences between 

consecutive peaks was calculated, thus obtaining 𝑅𝑅𝑟𝑒𝑓(𝑖) and  𝑅𝑅𝐹𝐵𝐺(𝑖) both the 

reference and the wearable systems in each i-th time window (see Figure 4.8 (b)). 

Finally, 𝑅𝑅𝑟𝑒𝑓(𝑖) and  𝑅𝑅𝐹𝐵𝐺(𝑖) were averaged obtaining 𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ and 𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅  for each 

protocol. To assess the overall performance of the system for each protocol we also 
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calculated the mean 𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ and 𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ among all volunteers. Results are listed in Table 

4.1. 

 

 
Figure 4.8. (a) Maxima peaks identification (blue triangles) considering a time window of 15 s 
(green area) moving along the signals at every sampling point (yellow framed window area). The 
black trend on the left represents the FBGs output signal and the red trend on the right represents 

the reference flowmeter signal. (b) Estimated RR trends representing 𝑅𝑅𝑟𝑒𝑓(𝑖) (red line) 
and 𝑅𝑅𝐹𝐵𝐺(𝑖) (black line). 

To evaluate the performance of the proposed WD compared to the reference 

instrument, the percentage error (%E) has been computed as in the following equation 

%𝐸 =
𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ −  𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅

𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅
∙ 100 (4.2) 

  

The average %E and the absolute percentage error (%Eabs) have been computed for each 

subject and protocol (see Table 4.1). In contrast to other works, the error was here 

evaluated taking into account the average RR values (i.e., 𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ and 𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ). This choice 

has been made to get a general quantitative overlook on the system’s ability in retrieving 

RR and a quick evaluation on its overestimation and underestimation.  

The proposed wearable system showed proper match with the reference 

instrument as testified by both the 𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅  and 𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ values shown and the %E values 

(see Table I). Indeed, the %E was lower than 5% in all volunteers but one (i.e., the 

volunteer 2 during the third protocol, in which the error was of 9.9%). The last row of 

Table I shows the values of 𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅  and 𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ , %E and %Eabs resulted by averaging out 

volunteers’ data for each protocol. Regarding the average errors, %E ranged from -0.33 

% and 3.38 %, while %Eabs from 1.0 % and 4.2%. 
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Table 4.1. Average estimated Respiratory Rate values, %E and %Eabs obtained from the data 
analysis. Smean represents the calculated parameters averaged among all volunteers. 

 
 

 

1.1.3.1.2. Sedentary working activity scenario 

In this case, the WD was assessed on two volunteers in a more static occupational 

scenario and for long-term acquisitions. Taking into account the excellent performance 

obtained by testing the device under more active and challenging occupational 

conditions (see previous section), it was deemed appropriate in this case to use a single 

elastic band equipped with two FSs for the benefit of greater user comfort. Also, the 

performance of the system in RR monitoring was investigated by following a single- and 

multi- sensor configuration to check whether the number of sensors affects the system 

performance.  

 

A) Experimental setup and protocol 

Two videoterminal workers (both males) were enrolled as volunteers. The subjects 

were invited to seat and wear the FBG-based wearable system and the BioHarness (BH) 

devices (the Zephyr™ BioModule and Strap commercialized by Medtronic, Nederland) 
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used as gold standard. Each volunteer was invited to perform a self-induced apnea of 10 

s and then to breath normally for about 40 min while executing videoterminal tasks. 

During the trial, both the wearable system (equipped with two flexible sensors hereafter 

named as FS1 and FS2) and the reference system were worn around the torso, one 

beneath the other. The FSs’ outputs were collected at a sampling rate of 1 kHz by means 

of an FBG interrogator (si255, Hyperion platform, Micron Optics, USA) while the BH data 

(i.e., respiratory waveform at 25 Hz) were stored on board. A representation of the 

experimental setup is given in Figure 4.9.  

 
Figure 4.9. Representation of the experimental setup: (a) the FBG interrogator, (b) the elastic 
band instrumented with two flexible sensors and (c) the laptop dedicated to the acquisition of 
data from the interrogator.  

 

B) Data analysis and results  

Raw data acquired by the FBGs-based system (FS1, FS2 and FStot signals) and the BH 

were synchronized by means of the apnea performed by the volunteers at the beginning 

of the acquisition. All the signals were windowed by splitting them into 40 windows 

lasting 60 s each and the power spectral density (PSD) was computed for every window. 

The dominant frequency (i.e., f0 that is the frequency where the maximum peak of the 

PSD is located) was saved and used to estimate RR value window-by-window (see Figure 

4.10). The estimation of RR values was then executed by converting the 40 values of f0 

from the PSD computed on the windowed signals into breaths per minute (bpm) by 

multiplying for 60. 
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Figure 4.10. (A) 60s-lasting window of BH signal (magenta line); (B) FS1, FS2 and FStot signals 
(black, red and blue lines respectively); (C) PSD of the windowed BH signal; (D) PSD of FS1, FS2, 
FStot (black, red and blue lines respectively). 

Then, the performance of the proposed system was assessed by comparing the RR 

values obtained considering the single- (i.e., obtained by analyzing the signal of FS1 and 

FS2) and multi-sensor configurations (i.e., obtained by analyzing FStot) to the ones from 

BH. The mean absolute error (MAE) was calculated considering the three above-

mentioned cases as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑅𝑅𝑖

𝐹𝐵𝐺 − 𝑅𝑅𝑖
𝐵𝐻|

𝑖=𝑛

𝑖=1

 (4.3) 

 

Results showed the system capability of working during a prolonged acquisition (i.e., 

40 min) in a real everyday working scenario. The high mechanical coupling between the 

wearable and the users’ chest is verified by the high capability of the proposed system 

to replicate the trend in time of the reference instrument. Indeed, apnea stages and 

maximal inspirations are clearly visible on the signals collected by both the wearable and 

the BH as shown in Figure 4.11, where three windows of the signal related to one of the 

two volunteers are reported, both for the FSs and the BH. For instance, window 2 (Figure 

4.11 (a) and (b)), window 27 (Figure 4.11 (c) and (d)) and window 40 (Figure 4.11 (e) and 

(f)) are reported for BH (magenta waveform), FS1 (black waveform), FS2 (red waveform) 

and FStot (blue waveform).  
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Figure 4.11. Three windows of signals related to volunteer 2. Window 2 of BH (A) and FSs (B); 
window 27 of BH (C) and FSs (D); window 40 of BH (E) and FSs (F); In (A) and (B) a regular 
respiration pattern is shown, in (c) and (D) some maximal inspirations and in (E) and (F) regular 
pattern intervalled by an apnea stage are reported.  

The presence of some apnea stages (please refer to Figure 4.11 (E) and (F)) justifies 

values of RR lower than 8 bpm reported in Figure 4.12 in which the values of mean RR 

window-by-window for FS1 (black bars), FS2 (red bars), FStot (blue bars) and BH (magenta 

bars) are shown for volunteer 1 and 2.  

Lastly, the discrepancy between the two measuring systems by using a single-and a 

multi-sensor configuration approach is listed in terms of MAE in Table 4.2. 

 

Table 4.2. MAE values retrieved for the single- and multi-sensor configuration. 
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Figure 4.12. The bar plot of volunteer 1 (on the top) and volunteer 2 (in the bottom). The RR value 
averaged over each window are shown for FS1, FS2, FStot and BH in back, red, blue and magenta 
bars, respectively.  

 

1.1.3.2. Assessment in clinical setting  

In this section, the assessment of the presented FBG-based wearable system in 

clinical setting is presented. In particular, hemiplegic volunteers were enrolled in the 

study. The choice of this experimental population was made because breathing diseases 

are extremely common in hemiplegic patients as respiratory muscle impairment 

provokes altered RR, which is the more altered the more extensive the disability [202]. 

Also, in the most severe subjects, paradoxical motion of the chest wall paretic side, 

results in breathing discoordination and asynchronous respiratory movements between 

torso compartments [203]–[206]. As a consequence, being able to monitor RR and 

assess the presence of respiratory asynchronies could be of paramount importance to 

define hemiplegics’ health status. 
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In the following sections, an assessment in RR retrieving and a preliminary 

investigation on the system’s capability to detect respiratory asynchronies between 

torso compartments is reported.  

 

A) Experimental setup and protocol 

Seven post-stroke hemiplegic patients being treated at the Physical and 

Rehabilitation Unit of Fondazione Policlinico Universitario Campus Bio-Medico were 

recruited from the research volunteer database. The informed consent form was read 

and signed by all the participants. All patients fulfilled the inclusion criteria, i.e., an 

established post-stroke hemiplegia diagnosis and absence of cognitive limitations 

preventing comprehension of the experimental protocol. The features of the population 

that took part in the study are reported in Table 4.3, together with the related Fugl–

Meyer Assessment Upper Extremity score [207] to quantify the upper body disability 

extent. 

Table 4.3. Features of the enrolled hemiplegic volunteers. 

 
A representation of the experimental setup is given in Figure 4.13 (a). Each 

participant was asked to wear a tight shirt and sit on a stool. Then, the operator helped 

the subject to wear the wearable system as depicted in Subsection 1.1.3.1.1. 

Considering the torso divided into the four macro-areas depicted in Figure 4.13 (b) (i.e., 

right and left thorax—TR and TL, respectively—and right and left abdomen— AR and AL, 

respectively), an FS was placed in correspondence to each area. 40 photoreflective 

hemispherical markers with a diameter of 12 mm were applied to the patient’s torso, 

20 on the front and 20 on the back, as depicted in Figure 4.13 (c). The used marker 

protocol is an enhancement of the one presented by Ferrigno et al. [208], exploiting 32 

markers for thoraco-abdominal kinematic detection and compartmental respiratory 

volume evaluation. A stereophotogrammetric MoCap system was exploited as a 

reference device for chest wall kinematics and respiratory activity. The system (BTS 

DSmart, produced by BTS Bio-Engineering S.r.l., Milan, Italy) consists of eight cameras, 

installed at approximately 2 m from the stool, four forward and four rearward, as shown 

in Figure 4.13 (a). The trajectories of the markers were collected with a sampling rate of 
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60 Hz by means of the tracker software provided by BTS (BTS, Bioengineering S.r.l., 

Milan, Italy). An optical interrogation unit (si255, developed by Micron Optics Inc., 

Atlanta, GA, USA, wavelength range of 1460–1620 nm) was employed to interrogate the 

FBGs contained in the FSs. The interrogation unit supplies the sensors with broadband 

polarized light and collects the ∆λB values at a 1 kHz sampling rate.  

 

 
Figure 4.13. In (a) the experimental set-up, composed of a stool, the eight cameras of the motion 
capture system, the reflective markers, the wearable system, and the optical interrogation unit, 
is depicted. In (c), the four macro-areas (right thorax—TR, left thorax—TL, right abdomen—AR, 
and left abdomen—AL) into which the torso is subdivided are displayed. In (d), the positioning of 
the 40 reflective markers on the subject’s torso is shown. 

The volunteer was instructed on the experimental protocol, which consisted of two 

trials:  

1)  Trial 1: 5 s of apnea followed by 40 s of eupnea, maintaining the upright sitting 

position with the hands resting on thighs;  

2) Trial 2: 5 s of apnea followed by 30 s of tachypnea (to the best of each subject’s 

ability), maintaining the upright sitting position, hands resting on thighs. The 

design of the presented protocol was conceived to assess the ability of the 

wearable system to monitor the respiratory activity of the hemiplegic patients in 

two ordinary breathing conditions (i.e., eupnea and tachypnea).  

The experimental protocol was designed to meet the patients’ capacities and 

preserve their health status. The study protocol was approved by the Ethics Committee 
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of Università Campus Bio-Medico di Roma (protocol code ST-UCBM 27.2(18).20 OSS), in 

conformity with the percepts of the Declaration of Helsinki. 

 

B) Data analysis and results 
 

i) Assessment of the Wearable System in Respiratory Rate Estimation 

Data obtained by the four FSs of the wearable system and MoCap were processed 

in the MATLAB environment (MathWorks Inc., Natick, MA, USA). Markers’ data were 

analyzed to retrieve the total respiratory volume (VTOT) and the respiratory volumes 

related to the four torso areas (i.e., VTR, VTL, VAR, and VAL). In particular, the chest wall 

volume was derived by the 3D marker coordinates by using the geometric model 

reported in [209]. Also, signals retrieved by the FSs placed in TR, TL, AR, and AL will be 

hereafter named as FSTR, FSTL, FSAR, and FSAL, respectively.  

FSTR, FSTL, FSAR, and FSAL, and VTOT, VTR, VTL, VAR, and VAL were synchronized by means 

of the first maximum peak occurring after the 5 s apnea. To eliminate information 

content not exclusively related to the respiratory activity, a first-order Butterworth 

passband filter was applied with a cutoff frequency of 0.01–1 Hz to eupnea signals (i.e., 

Trial 1) and 0.01–2 Hz to the tachypnea signals (i.e., Trial 2).  An example of the data 

retrieved for a volunteer is given in Figure 4.14. 

Both for the MoCap and the wearable system, the signals related to the thoracic, 

abdominal, plegic, non-plegic, and all four torso areas were obtained as follows: 

i. Thoracic compartment signal: sum of the signals related to the TR and TL (i.e., 

FSTR + FSTL for the wearable system and VTR + VTL for the MoCap);  

ii. Abdominal compartment signal: sum of the signals related to the AR and AL (i.e., 

FSAL + FSAR for the wearable system and VAR + VAL for the MoCap);  

iii. Plegic compartment signal: sum of the thoracic and abdominal signals related to 

the affected side of each patient;  

iv. Non-plegic compartment signal: sum of the thoracic and abdominal signals 

related to the non-affected side of each patient;  

v. Summed signal: sum of all four torso areas’ signals (i.e., FSTR + FSTL + FSAB + FSAL 

for the wearable system and VTOT for the MoCap). 
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Figure 4.14. Example of the respiratory signals retrieved by the MoCap (upper graphs) and 
wearable system (bottom graphs) during 30 s of eupnea and tachypnea trials (left and right 
columns, respectively) performed by a patient. In blue, orange, yellow, and purple are shown the 
signals related to the TR, TL, AR, and AL compartments, respectively (i.e., VTR, VTL, VAR, and VAL for 
the MoCap and FSTR, FSTL, FSAR, and FSAL for the wearable system). 

For each of the five signals obtained for every volunteer in eupnea and tachypnea, 

RR was estimated via a breath-by-breath approach. A single breathing act is the portion 

of signal enclosed between two consecutive minima. The i-th respiratory period (𝑇𝑟𝑖) 

related to the i-th breath was retrieved as the time elapsed between two consecutive 

maximum peaks (expressed in s), both for the wearable system and the MoCap 

𝑇𝑟𝑖
𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒and 𝑇𝑟𝑖

𝑀𝑜𝐶𝑎𝑝, respectively). Thus, the related i-th RR values were obtained 

(𝑅𝑅𝑟𝑖
𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒and 𝑅𝑅𝑟𝑖

𝑀𝑜𝐶𝑎𝑝) as the reciprocal of the respiratory periods multiplied by 60 

(as expressed in breaths per minute - bpm).  

To quantify the accordance between the wearable system and the reference device 

in RR evaluation, Bland–Altman analysis [210] was carried out, providing the mean of 

differences (MOD) and the limits of agreement (LOAs) expressed as MOD ± 1.96 SD 

(where SD is the standard deviation). The Bland–Altman graphs obtained for the four 

compartments (i.e., thoracic, abdominal, plegic, and non-plegic) and summed signals 

related to the eupnea (Trials 1) and tachypnea (Trial 2) are shown in Figures 4.15 and 
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4.16, respectively. MOD values and the values of the span between the LOAs (i.e., ΔLOA 

calculated as 2· 1.96 SD) are reported for each graph.  

 

Figure 4.15. Bland–Altman plots showing the bias between 𝑅𝑅𝑟𝑖
𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒and 𝑅𝑅𝑟𝑖

𝑀𝑜𝐶𝑎𝑝
 

calculated from the thoracic, abdominal, plegic, and non-plegic compartments’ data and the 
summed signals retrieved during the eupnea trials (Trials 1). The MOD and ΔLOA are reported 
on each graph. In addition, MOD is represented with black solid lines, while ΔLOA is the span 
comprised between the two black. 
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Figure 4.16. Bland–Altman plots showing the bias between 𝑅𝑅𝑟𝑖

𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒and 𝑅𝑅𝑟𝑖
𝑀𝑜𝐶𝑎𝑝

 calculated 

from the thoracic, abdominal, plegic, and non-plegic compartments’ data and the summed 
signals retrieved during the tachypnea trials (Trials 2). The MOD and ΔLOA are reported on each 
graph. In addition, MOD is represented with black solid lines, while ΔLOA is the span comprised 
between the two black. 

MOD values are almost comparable in all compartments and summed signals in 

eupnea, while they present a higher value in the abdominal compartment in tachypnea. 

In both eupnea and tachypnea, ΔLOAs are always lower for the summed signals. 
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The mean absolute percentage error (MAPE) was also calculated to determine the 

error committed by the wearable system in evaluating RR as 

𝑀𝐴𝑃𝐸𝑅𝑅 =
1

𝑛
∑

|𝑅𝑅𝑖
𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒 − 𝑅𝑅𝑖

𝑀𝑜𝐶𝑎𝑝|

𝑅𝑅𝑖
𝑀𝑜𝐶𝑎𝑝 ∙ 100

𝑛

𝑖=1

 (4.4) 

where  𝑅𝑅𝑟𝑖
𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒and 𝑅𝑅𝑟𝑖

𝑀𝑜𝐶𝑎𝑝are the RR calculated for the i-th breathing act from the 

wearable system and MoCap data, respectively, and n is the number of respiratory acts 

identified in each signal. The MAPERR values related to all five analyzed signals are 

reported in Table 4.4 for every volunteer in eupnea (Trial 1) and tachypnea (Trial 2), and 

for all the volunteers together (considering the vectors in which the RR values of all 

subjects are concatenated). 

 

Table 4.4. MAPERR [%] values reported for every volunteer in eupnea (Trial 1) and tachypnea (Trial 

2). 

 
In eupnea (Trial 1), the maximum MAPE among all the volunteers is reported for the 

non-plegic compartment (i.e., 2.08%), with MAPE values for individual subjects ranging 

from 0.37% (volunteer 4, non-plegic compartment) to 6.09% (volunteer 7, plegic 

compartment). In tachypnea (Trial 2) a general slight increase in the MAPE values is 

observed and the maximum value among all the volunteers is obtained for the 

abdominal compartment (i.e., 5.61%). Peak values of 18.55% (volunteer 2, plegic 

compartment) and 14.36% (volunteer 4, abdominal compartment) were achieved in two 

individuals due to the poor quality of the retrieved breathing signals. Moreover, the best 

performance was given by the summed signal in both the eupnea and tachypnoea trials, 

presenting values of 1.22% and 2.06% for MAPE calculated on all the volunteers, 

respectively. Consequently, considering that the lowest MAPE overall and the ∆LOA 
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values retrieved from the Bland–Altman analysis were always obtained for the summed 

signals, it can be assumed that among the five proposed, the summed signals are the 

most suitable for RR estimation.  

 

ii) Explorative Investigation on Respiratory Asynchronies between 

Compartments 

Breathing discoordination between compartments due to rib cage muscle weakness 

can cause a phase shift between the related respiratory signals— that is, the more 

pronounced it is, the more severe the asynchrony [203]–[206]. The phase shift is 

commonly quantified by means of the phase angle (Φ) retrieved via the loop technique 

using Lissajous figures [211]–[213]. 

An explorative investigation via the loop technique was performed to assess the 

capability of the wearable system to detect the presence of phase shifts. The analysis 

was carried out comparing the respiratory signals of the thoracic and abdominal 

compartments, and plegic and non plegic-compartments, retrieved for different 

volunteers in the tachypnea trials. Referring to the comparison between the thoracic 

and abdominal compartments, the two best signals representing six consecutive and 

homogeneous respiratory acts were chosen among all the volunteers and were 

identified for volunteers 3 and 5. The signals were then plotted in time. In Figure 4.17 

(a) (referring to volunteer 5), it is possible to observe that the signals are out-of-phase 

as the thoracic anticipates the abdominal one, while in Figure 4.17 (c) (referring to 

volunteer 3), the two signals are in-phase. The related Lissajous figures were obtained 

by plotting the two respiratory signals against each other (i.e., thoracic signal on the y-

axis and abdominal signal on the x-axis). For each loop (which corresponds to a single 

respiratory act), the 𝛷𝑖 was calculated as follows [211]: 

𝛷𝑖 = sin−1 (
𝑚𝑖

𝑠𝑖
) (4.5) 

where 𝑚𝑖 is the maximum distance of the i-th loop projection on the x-axis, while 𝑠𝑖 is 

the distance of the loop projection on the x-axis at 50% of the thoracic signal. Φ was 

retrieved for each volunteer as the average value of all 𝛷𝑖. 

Values of Φ = 11.2° (see Figure 4.18 (b)) and Φ = 2.7° (see Figure 4.17 (d)) were 

obtained for the first and second volunteers, respectively.  
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Figure 4.17. Phase shift analysis between thoracic and abdominal compartments. Plots of 
thoracic and abdominal compartments’ signals in time for two different subjects are shown in 
(a,c). In (a), a phase shift is shown, while in (c), no significant shifts are visible. Lissajous figures 
of the out-of-phase (b) and in-phase (d) signals are reported, together with the related phase 
angle value.  

The same analysis was performed for the plegic and non-plegic compartments, 

choosing the signals retrieved for volunteers 3 and 4. In Figure 4.18 (a) (referring to 

volunteer 3), out-of-phase signals are shown (i.e., the plegic precedes the non-plegic 

signal), while in Figure 4.18 (c) (referring to volunteer 4), in-phase signals are 

represented. Once again, Φ was calculated, obtaining Φ = 11.6° (see Figure 4.18 (b)) and 

Φ = 2.3° (see Figure 4.18 (d)). 
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Figure 4.18. Phase shift analysis between plegic and nonplegic compartments. Plots of plegic and 
non-plegic compartments’ signals in time for two different subjects are shown in (a,c). In (a), a 
phase shift is shown, while in (c), no significant shifts are visible. Lissajous figures of the out-of-
phase (b) and in-phase (d) signals are reported, together with the related phase angle value. 

 

1.1.4. Discussions 

A wearable system composed of two elastic bands instrumented with four 

dumbbell-shaped flexible sensors based on FBG technology intended to be worn around 

the torso (at chest and abdomen level) was developed for RR monitoring via chest-wall 

displacements.  

In terms of characteristics of the flexible sensors, the linear response to ε, with an 

𝑆𝜀 of 0.08 nm·mε-1, suggests a good bonding between the polymer matrix and the fiber 

optic. The low value of 𝑆𝜀 than the one of a bare FBG are related to the silicone-

dampened effect in transmitting tension applied on the matrix surface into grating ε. 

Regarding the sensor response to ΔT, an 𝑆𝑇 value slightly lower than the nominal one of 

a bare FBG (i.e., 0.008 nm·C-1 vs. 0.010 nm·C-1). The influence of T during RR monitoring 

can be considered negligible as the dynamic of the phenomenon for three reasons: i) 
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the environments in which the experiments were carried out were temperature-

controlled, so substantial temperature fluctuations occurred; ii) the sensing elements 

were attached to elastic bands fixed to the clothed subject, thus never in direct contact 

with the subject's skin, and iii) under these conditions, if ever a temperature change 

occurred, it would have a very slow dynamics compared to the dynamics of the 

respiratory act, so it would be eliminated via digital filtering. The %ℎ𝑒𝑟𝑟 values obtained 

from the dynamic response of the flexible sensor to applied repetitive ε at velocities 

mimicking RR values (i.e., 12 bpm, 24 bmp, and 36 bpm) are in all cases ≤ 15.9%. The 

%ℎ𝑒𝑟𝑟 values, albeit non negligible, are acceptable if compared to what present in the 

literature and considering the method applied to retrieve RR. Indeed, since RR is 

evaluated by assessing the time interval between one signal peak and the consecutive 

one, %ℎ𝑒𝑟𝑟 does not affect consistently the RR measurement. As consequence, the 

suitability of the proposed sensors for monitoring RR in eupnea, tachypnea and 

bradypnea respiratory conditions is guaranteed.  

In the literature, some studies proposed FBGs housed into flexible matrices, but only 

a few works proposed the sensing element metrological characterization in terms of its 

static and dynamic responses. In [141]–[143], [146], [147] WDs consisting in elastic 

bands equipped with rectangular-shaped FBG flexible sensors for cardiorespiratory 

monitoring were proposed. Results showed values of 𝑆𝜀  and 𝑆𝑇 comparable with the 

ones assessed for the dumbbell-shaped flexible sensor. Higher %ℎ𝑒𝑟𝑟 values in [146], 

suggest a higher energy dissipation in the rectangular-shaped flexible sensor than in the 

dumbbell-shaped one. This proves that the dumbbell shape allows a better adhesion of 

the sensing part to the elastic band, a well-anchorage of the sensors through the wider 

matrix ends, a well-compliance to the chest wall deformation and the optimization of 

the tensile strength concentration in the narrow portion of the flexible matrix.  

The presented wearable system was assessed in occupational (by simulating both 

static and active working activities) and clinical scenarios, always showing good 

agreement with the reference instruments. The wearable was firstly assessed on ten 

healthy volunteers by simulating typical working conditions obtaining a maximum %E of 

5% for a mean RR of 20 bpm (which correspond to about 1 bpm). In [147] a similar 

system was proposed and tested on archers for respiratory and cardiac monitoring. The 

performance of the flexible rectangular-shaped sensors in [147] is slightly higher than 

the ones of the wearable system proposed in this study (in the worst case, %E <1.97 % 

vs. 5%) but the scenario of interest is different as this precision sport requires stable 

chest maintenance and slow breathing. In contrast, the developed system was tested 

during more challenging working activities where breathing-unrelated movements 

occur and may affect its performances.  

Regarding the wearable assessment in the static working scenario, results showed 

that the system was able to measure RR with lower error (maximum MAE = 0.52 bpm in 

eupnea, which is about 2.5% of %E) than the previous case. This was to be expected 
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given the less challenging conditions, but it is worth emphasizing that this result was 

achieved using only two of the four FSs. Also, although tested on only two subjects, this 

result is competitive with respect to other proposed systems. For instance, in [119], an 

FBG sensor has been embedded into a cushion positioned between the back of the 

person and an office chair to monitor the respiratory activity while sitting at a desk. The 

proposed device was compared to a reference instrument obtaining a maximum %E of 

12%. Lastly, the device was assessed in a highly challenging scenario, i.e., on hemiplegic 

volunteers, always showing good results, such as MAPE errors for the summed signals 

of 2.06% and 1.22% in tachypnea and eupnea breathing, respectively, that are in line 

with what reported in the literature for RR evaluation. Errors detected in tachypnea are 

generally higher compared to those retrieved for eupnea, as tachypnea is a challenging 

respiratory condition for hemiplegic subjects, who may have used trunk compensatory 

movements to sustain the breathing effort, thus increasing the committed error. 

Moreover, the different severities of disability reported by the patients (evidenced by 

the different Fugl-Meyer indices) can explain the interindividual variability in the errors 

observed. However, the shown errors were always <6%, which can be comparable to 

those present in the literature. 

Compared to the most popular and established technologies for respiratory 

monitoring in clinical settings which are represented by MoCap and flowmeters, the 

developed WD provides multiple advantages in terms of wearability, encumbrance, 

costs, and comfort. Considering in particular the last target population that the 

assessment focused on, the device presented a marked improvement in terms of fit and 

practicality also compared to smart T-shirts [126], [132]–[134]. Indeed, T-shirts can be 

difficult to wear among individuals with limited limb motility, such as people affected by 

hemiplegia. Additional concerns may occur as a single size could not be fit to all the 

anthropometries. Moreover, the particular cleaning process required to sanitize the 

garment without damaging the embedded sensors may represent an additional limit in 

T-shirts’ usability. On the contrary, the proposed system, allows for easier dressing of 

the subject, while the modular anchorage system guarantees good fitting to any 

physicality. In addition, since the FSs are removable, the elastic bands can be cleaned 

following ordinary washing routines. Focusing on elastic bands, several devices designed 

to be worn around the chest and embedding a single sensor have been presented [137], 

[142], [146], [147]. Compared to these solutions, the presented system allows data 

acquisition in four areas of the torso, which is of prominent importance given the 

examined population. In fact, as is widely reported in the literature [203]–[206], 

hemiplegic subjects may develop paradoxical motion of the respiratory muscles, often 

resulting in breathing discoordination between compartments. As testified by the 

results obtained by the explorative investigation of breathing discoordination between 

compartments, such device could be a useful instrument to better understand the 

respiratory biomechanics of people affected by hemiplegia.  
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1.2. Wearable device instrumented with an FBG functionalized in 

agarose layer 

This system comes as a wearable accessorize whose sensing part (composed by an 

FBG integrated into an agarose substrate) is intended to be positioned at the nostrils. 

This system can be used in working settings (as valid alternative to the system described 

in the previous section), but it is particularly suitable to be exploited during MRI exams, 

thanks to the absence of metallic parts and intrinsic electromagnetic compatibility of 

the FBG sensor. Moreover, its open design permits patients not to amplify feeling of 

claustrophobia and discomfort that a confined environment such as an MRI machine 

might cause.  

In this section, parts of the work [214] which the PhD candidate has co-authored 

have been freely extracted. 

1.2.1. Design and manufacturing process 

The proposed WD is a measurement system for RR evaluation trough the ΔRH of the 

nasal airflow. To accomplish this task, the FBG was functionalized by using a hygroscopic 

material (i.e., 1 wt% agar) whose volume changes in accordance with the content of 

water vapor of the surrounding air. The design of the proposed WD was driven by 

requirements of comfortability, unobtrusively, and MR-compatibility. It consists of two 

parts: Block A which is the sensitive part, and Block B which is the supporting one (see 

Figure 4.19 (a)). The Block A should be placed below the nostrils and the PVB tube of 

Block B over the head and tightened by an adjustable piece at the back (see Figure 4.19 

(b)). The Block A was fabricated as follows:  

1) a commercial FBG sensor (λB of 1533 nm, grating length of 10 mm, At Grating 

Technologies) was encapsulated into a custom silicone brick (50 mm x 10 mm x 

2 mm) made of Dragon SkinTM 20 (Smooth-On, USA), except for the grating 

(bare volumeof 15 mm x 3 mm x 1.5 mm). The silicone rubber was cured for four 

h at room temperature, as suggested by the technical bulletin;  

2) 1 wt% solution of agar (commercialized by Sigma-Aldrich) was prepared by 

dissolving agar powder in distilled water at T ∼ 85 ◦C. Then, the 1 wt% agar 

solution was deposited on the grating and the drying process lasted 24 hours, at 

room temperature. 

Regarding the Block B, two 3D-printed sliding covers of Polylactic acid (PLA) were 

used to connect the block A to a flexible polyvinylchloride (PVC) tube by a heat-shrink 

sheath made of Polyethylene (PE). 
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Figure 4.19. (a) The MR-compatible wearable device. The Block A shows the FBG (1), the agar-
based matrix (2), the Dragon-Skin brick (3) and the PLA-based case (4). Block B shows the sliding 
covers (5), the heat-shrink sheath (6), and the flexible tube (7). (b) A photograph of the device 
worn by a user. 

1.2.2. Metrological characterization 

The sensitivity of the system to ΔRH (which is 𝑆𝑅𝐻) and its step response were 

investigated.  

1.2.2.1. Response to relative humidity variation  

The static response of the system to ΔRH was investigated by positioning the Block 

A inside a custom-made climatic chamber. The RH in the chamber changed very slow in 

time so that sensor response can be considered as static. A capacitive RH sensor (HIH 

4602A, Honeywell International Inc, USA, repeatability ± 0.5%) was used as reference 

instrument for the RH while a temperature probe (EL-USB-2-LCD. Temp & RH Data 

Logger, Easylog) for registering ΔT (and confirm the negligibility of ΔT during the test). 

The FBG output was collected by an optical sensing instrument (si255 based on 

HYPERION platform, Micron Optics, USA) at 100 Hz, the output of the RH reference 

system by data acquisition board (NI DAQ USB-6009, NI Instruments) at 100 Hz, and the 

ΔT values by the mentioned device at 1 Hz. The RH values inside the chamber ranged 

from RH∼10% to RH∼75%: the air was humidified by forcing the airflow inside the 

humidification chamber of a heated humidifier (MR850, Fisher & Paykel Healthcare) and 

dehumidified bypassing the humidifier and delivering dry airflow at 1 L·min−1 by a mass 

flow controller (EL-Flow, Bronkhorst High-Tech) directly within the climatic chamber. 

The collected data (i.e., the FBG output and the reference RH sensor output) were 

synchronized over time and retrieved to obtain the ΔλB vs. ΔRH curve. The best-fitting 

line was calculated, and the 𝑆𝑅𝐻 value estimated as its slope (i.e., 0.016 nm·%-1). Figure 
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4.20 (a) and (b) shows the trends of ΔRH and ΔλB vs. time, respectively, during the whole 

experiment that lasted approximately 15 min. Figure 4.20 (c) shows the response of the 

system (ΔλB vs. ΔRH) obtained after the synchronization of the two curves reported in 

4.20 (a) and (b). 

 
Figure 4.20. In (a) and (b) the ΔRH and ΔλB trends in time, respectively. In (c) the ΔλB vs. ΔRH 
curve with the best fitting line.  

1.2.2.2. Step response  

The same setup described in the previous subsection was used to investigate the step 

response of the system, and to estimate the response time; only the humidifier was 

removed. The step-change was applied by forcing dry airflow inside the climatic 

chamber and when RH value was < 10%, the chamber was quickly opened, and the 

sensor suddenly exposed to room conditions (RH∼50 % and T∼24 ◦C). 

The output of both the proposed system (i.e., ΔλB) and the reference sensor (ΔRH) 

vs. time are shown in Fig. 4.21 (a). Then, an exponential fitting was executed, taking into 

account that an FBG functionalized by a hygroscopic matrix can be modeled using as an 

infinitely long rod made of two bonded materials (i.e., the polymer coating and the fiber 

silica). The mass transfer inside the matrix, which coats the grating, can be modeled 

assuming the matrix made of two layers (i.e., the surface and the inner layers) with two 

different response times (i.e., τf and τs, where τf < τs) [215]. The step response of a 

functionalized FBG can thus be described as below by means of two exponential terms:  
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𝛥𝜆𝐵
𝑛𝑜𝑟𝑚 = 1 − (𝑤𝑓 ∙ 𝑒

−
𝑡
𝜏𝑓 + 𝑤𝑡 ∙ 𝑒−

𝑡
𝜏𝑠) (4.6) 

with 𝛥𝜆𝐵
𝑛𝑜𝑟𝑚 the normalized ΔλB, 𝑤𝑓 and 𝑤𝑡 the weights of the surface and the inner 

layers. The exponential fitting reported in Equation 4.6 using 𝑤𝑡 = 𝑤𝑓 = 0.5 was applied 

to the data of the proposed system to calculate the response time (see Figure 4.21 (b)). 

From this analysis τf and τs values (i.e., 44.4 s and 111.7 s, respectively) were obtained. 

To assess the response time of the system, a different approach was exploited based on 

the use of the error fraction of the system’s output [216]. Using this approach, the value 

of the response time (τ63) is 72.4 s. 

 
Figure 4.21. The response to the step changes. (a) ΔRH (blue line) and ΔλB (magenta line) over 
time. (b) the best fitting exponential model of the normalized ΔλB signal. 

1.2.3. Experimental assessment 

A pilot study was performed on six healthy volunteers to assess the feasibility of the 

WD for RR monitoring. 

A) Experimental setup and protocol 

An 8-cameras motion capture system (D-Smart, BTS Bioengineering S.p.A., Milan, 

Italy) was used to record reference respiratory waveforms. Six volunteers (3 males and 

3 females, age 25-31 years, body mass 48-85 kg, and height 163-182 cm) were enrolled 

in the study. On the torso of each participant, 32 IR-photo-reflective spherical markers 

(with a diameter of 15 mm) were positioned according to the protocol reported in [209]. 

The MoCap records the trajectories of markers to indirectly estimate RR starting from 

the chest wall volume [217]. The sampling frequency was 60 Hz. Each participant was 

invited to sit and wear the custom WD. While wearing the device, each participant 

performed a single trial which consists of three main phases: i) 10 s of apnea followed 

by 30 s of slow breathing (sb); ii) 10 s of apnea followed by 30 s of normal breathing (nb) 

and iii) 10 s of apnea followed by 30 s of fast breathing (fb). During the protocol 

execution, a metronome was used to control the sb, nb, and fb. 
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The output of the FBG-based sensing element was recorded by an optical 

interrogator (si255 based on Hyperion platform, Micron Optics, USA) at 100 Hz. Figure 

4.22 (top and bottom) shows the outputs collected on a volunteer using the WD and the 

MoCap system, respectively. After 10 s of apnea (reported using a black line in Figure 

4.22), the phases of sb (green line), nb (blue line), and fb (red line) lasting 30 s are also 

clearly discriminated by both the proposed system and the reference one. Between each 

phase there are 10 s of apnea which can be identified by an interval of time where the 

systems’ output is almost constant (shown in black line). 

 
Figure 4.22. Results collected during the experiments on one of the volunteers: in the top image, 
output of the wearable system (λB) and in the bottom image output of the MoCap system (VChest). 
The green line is related to the sb stage, the blue one to nb stage, and the red one to the fb stage. 
In black, the apnea stages. 

B) Data analysis and results 

For each volunteer, the collected data were analyzed in MATLAB environment. 

Firstly, the data collected by both the WD and the reference one was split into three 

signals according to the breathing stages performed by each volunteer. A 3rd order 

Butterworth low pass filter was applied with 2 Hz of cut-off frequency for signals 

collected during sb and nb, and 5 Hz of cut-off frequency for the one related to fb. All 

the signals were then normalized between 0 and 1 and a custom algorithm, described 

in detail in [218] was used to perform the peak detection on the normalized signal. Since 

each maximum peak corresponds to the end of each inspiration, the time elapsed 

between consecutive peaks was calculated and considered equal to th-respiratory 

period, TR. The breath-by-breath RR was estimated as 60/TR (expressed in breaths per 

minute, bpm). 

The agreement between the breath-by-breath RR values estimated by the WD and 

the ones by the reference system was evaluated considering all the three breathing 



116 
 

stages (nb, sb, and fb). Mean percentage error (MPE) and Bland-Altman analysis were 

performed. The MPE was calculated as follows and the values were reported in Table 

4.5: 

𝑀𝑃𝐸% =
1

𝑛
∑

𝑅𝑅𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒 − 𝑅𝑅𝑀𝑜𝐶𝑎𝑝

𝑅𝑅𝑀𝑜𝐶𝑎𝑝
∙ 100 (4.7) 

 

Table 4.5. MPE values. 

 

Regarding the Bland Altman analysis, the LOAs and MOD were calculated,  according 

to [210]. In Figure 4.23, the Bland-Altman plots for each breathing conditions are 

reported, together with the MODs and ΔLOAs values.  

 
Figure 4.23. Bland-Altman plots related to sb breathing, nb breathing, and fb. Each color 
represents one volunteer. The continuous black line is the MOD while the dashed lines 
delimitated the LOAs interval. Also, the corresponding MODs and ΔLOAs values are reported. 
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1.2.4. Discussions 

The unique design and the mechanical simplicity make the proposed wearable 

comfortable and unobtrusive for the user. Moreover, the use of polymer-based 

materials for the coating, the use of one FBG, and the absence of metallic parts make 

the device both biocompatible and MR-compatible. Results of metrological 

characterization showed an 𝑆𝑅𝐻 value of 0.016 nm·% -1 and a τ63 value of 72.4 s. Results 

of the assessment test showed high performances in detecting RR.  

Regarding wearable systems for RR monitoring based on FBG, only a few systems 

working on respiratory airflow have been reported. In [152], [153] a probe consisting of 

a metallic needle holding a FBG functionalized with agar reported a 𝑆𝑅𝐻 of 0.01 nm·% -1 

in the RH range from 25 % to 60 % and 0.006 nm·% -1 in the RH range from 60% to 95%, 

and a τ63 of 90 s. Also, a percentage error < 2.07% [152] was observed and 2% of maximal 

MPE value for the assessment during mechanical ventilation at imposer frequency (i.e., 

24 bpm) [153]. The solution proposed increases 𝑆𝑅𝐻 and improves τ63 with respect to 

[152], [153], also with better performances in RR estimation (maximum MPE 0.27% vs. 

2.07%). Moreover, compared to the FBG-based sensing probe inserted into a surgical 

mask presented in [162], [163], the design of the proposed wearable enhance the 

acceptability of the user as results less invasive. In fact, facial masks may lead to 

intolerance, claustrophobia, and facial discomfort especially during long term 

monitoring. In [158] a system consisting of an FBG incapsulated into a nasal cannula 

reported during laboratory tests MPE < 5%, MOD values ranging from 0.048 bpm to 

0.212 bpm, and LOAs maximum span of 4.617 bpm. Comparted with this, the presented 

wearable system showed better performance in the RR monitoring during nb, confirmed 

by both MPE values (≤0.27%) and Bland-Altman analysis (MOD values of -0.02 bpm and 

LOAs span of 0.66 bpm), with the added advantage of being less invasive as it does not 

require insertion into the nostrils.  
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2. FBG-based smart wearable solutions for trunk movements 

detection  

FBGs are highly strain-sensitive with intrinsic fragility, so they have been mostly used 

for the detection of shallow motions (i.e., respiratory- and cardiac- related 

displacements) or limited joints excursion. In this paragraph, for the first time, three 

configurations of WDs integrating FBG sensing technology devoted to the detection of 

wide-range back movements are shown. All the proposed solutions involve embedding 

FBG sensors within polymer matrices to ensure robustness and durability of the sensing 

elements. 

Focus is given to the evolution of the soft flexible sensors’ design, as it led to the 

integration of the FBGs into silicone substrates of different shapes to maximize their 

performance and make the sensors resistant even when exposed to significant 

deformations. Also, the design process to make these wearables accepted to be used in 

several occupational and clinical contexts is described. In addition, the feasibility 

assessment of each wearable on a target experimental population related, once again, 

to both work and clinical settings is reported.  

 

2.1. Smart T-shirt instrumented with two soft flexible patches 

In this section, a preliminary analysis is described to verify the feasibility of two soft 

flexible sensors based on FBG technology applied on a commercial T-shirt to retrieve the 

wide movements of the back. In particular, the assessment of the smart T-shirt in 

detecting flexion and extension (F/E) dorsal back movements was carried out.  

In this section, parts of the work [219] which the PhD candidate has co-authored 

have been freely extracted. 

2.1.1. Design and manufacturing process 

The proposed smart T-shirt, as shown in Figure 4.24 (a), is a tight elastic T-shirt 

equipped with two custom flexible patches, each containing a saleable FBG sensor (λB 

values of 1545nm and 1541 nm, grating lengths of 10 mm, and reflectivity of 90% 

AtGrating Technologies, China). The aforementioned patches are made of silicone 

rubber (i.e., Dragon Skin 20, Smooth On, Inc. USA) and rectangular- shaped with 

dimensions of 90 mm x 24 mm x 1 mm. These polymeric matrices incapsulate the 

gratings improving their flexibility and robustness. 
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Figure 4.24. The sensing elements and the wearable system. (a) Geometrical features and 
dimensions of the rectangular-shaped silicone patches embedding the FBGs; (b) The two patches 
fixed upon the elastic t-shirt. 

 

The manufacturing process of the flexible patches consists of the main steps 

reported below: 

1) Two rectangular-shaped plastic molds, whose dimensions are 90 mm x 24 mm x 

1 mm, were created with Onshape® design software and realized by the 3D 

printing process [30] (‘Ultimaker 2+’, Ultimaker B.V., Utrecht, The Netherlands); 

2) The FBG were placed at the midsection of the custom-made plastic molds. The 

extremities of the optical fiber were then passed inside the lateral grooves and 

delicately fixed with the help of some adhesive tape in order to keep the fiber 

adequately tight; 

3) Dragon SkinTM20 silicone rubber parts A and B were mixed 1A:1B by volume 

ratio (as indicated in the technical bulletin). Then, an amount of 10% in volume 

of liquid thinner was added to reduce the viscosity of the compound. The mixture 

was well stirred in order to allow the complete blending of all the components; 

4) The compound was put into a vacuum chamber and let degas for few minutes in 

order to obtain an opalescent fluid with no presence of gas bubbles; 

5) The degassed mixture was slowly poured into the molds until their full filling; 

6) The mixture was let polymerize for a curing time of four hours at room 

temperature; 

7) Once solidified, the flexible rectangular-shaped (i.e., 90 mm x 24 mm x 1 mm) 

flexible patches were extracted from the molds. The excess of polymeric material 

was removed by mean of a cutter and the edges were refined.  

A representation of the fabrication process is given in Figure 4.25. 
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Figure 4.25. Main steps of the manufacturing process of the two flexible patches embedding an 
FBG sensor. 

2.1.2. Metrological characterization 

As the flexible patches are placed on the T-shirt in correspondence of the back, they 

undergo deformation during trunk movements of flexion and extension. As 

consequence, the 𝑆𝜀 of the FBGs-based patch was evaluated and described in the 

following section.   

2.1.2.1. Response to strain 

The response of the sensing element to strain was assessed by fixing the silicone 

patch between the tongs of the machine at room temperature. Strains starting from 0% 

up to 2% in length (i.e., the maximum strain - ε%max) were applied at a load speed of 

3mm· min-1 to simulate quasi-static tensile conditions. This trial was performed four 

times to assess its repeatability. The FBG output was recorded by an optical interrogator 

(si425, Micro Optics Inc. USA) at the sampling frequency of 250 Hz. The strain and force 

values applied to the silicone patches by the traction machine were collected at the 

sampling frequency of 10 Hz. 

The collected data were analyzed in MATLAB environment. The trends of both ε and 

ΔλB over time are shown In Figure 4.26 (a) and (b), respectively. The calibration curve 

(ΔλB vs. ε) was obtained as the best fitting line considering the average value of ΔλB 

calculated across the four tests vs. ε. The related uncertainty was estimated by 

multiplying the standard uncertainty with a coverage factor (k=3.1824) obtained 

considering a t-student distribution with three degrees of freedom and a confidence 

level of 95%. Results showed a 𝑆𝜀 value of about 0.10 nm·mε-1 (see Figure 4.26 (c)). The 
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agreement between the proposed linear model and the experimental data was 

confirmed by the high values of the obtained correlation coefficient (i.e., R2> 0.99). 

 
Figure 4.26. (a) Trend in time of ε, (b) Trend in time of ΔλB and (c) the best fitting line of the 
calibration curve obtained considering the average value of ΔλB vs. ε (blue line) and the 
uncertainty (purple shadow). 

2.1.3. Experimental assessment  

The assessment of the smart T-shirt was carried out on six healthy volunteers to 

verify its capability to detect F/E movements of the back.  

A) Experimental setup and protocol 

Six volunteers (three males and three females), whose anthropometric features are 

173.67 cm ± 2.61 cm height, 69 kg ± 5.65 kg body mass and 96.34 cm ± 3.27 cm chest 

circumference, were enrolled in the study. Each volunteer wore the T-shirt, and the two 

flexible patches were fixed in the central zone of the dorsal part of the back (between 

the thoracic vertebrae T5 and T9) with a skin-friendly polyacrylate tape (i.e., 100% 

polyester, Curafix® H, Lohmann & Rauscher, Switzerland). One patch was positioned 

above the spine while the second one at about 1cm to the right of the vertebral column. 

Both the patches were adherent to the t-shirt textile and compliant with the dorsal 

curvature. A MIMU system (SensorTile STEVAL STLKT01V1) was also fixed upon the shirt 

to acquire reference position data related to F/E movements in the sagittal body plane, 

at the sampling frequency of 100 Hz. An optical spectrum interrogator (si255, Micro 

Optics Inc. USA) was used to simultaneously collect the output of the two FBG-based 

patches at the sampling frequency of 1 kHz. 
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Each subject was asked to perform two trials of four consecutive dorsal flexions and 

four consecutive extensions. A 15 s-lasting stasis was performed between each trial. A 

representation of the protocol is shown in Figure 4.27. Afterwards, the positions of the 

two patches were inverted and each volunteer was asked to perform the same protocol 

again. An overall of 16 repetitions was carried out by every volunteer. 

 
Figure 4.27. Representation of the experimental trial (upper image) and flexion and extension 
movements performed by the volunteers (bottom image).  

B) Data analysis and results 

The collected data were analyzed in MATLAB environment. For each trial, the signals 

output of both the FBGs and the MIMU system were synchronized, normalized, and 

plotted over time. The output changes related to flexions and extensions for each 

volunteer were distinguished and identified with orange and green rectangles, 

respectively (see Figure 2.28). A good match between the signal trends in time estimated 

by the FBGs and the reference instrument was found. 
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Figure 4.28. Example of an experimental dataset collected for a male (on the left) and a female 
(on the right) volunteer. In the first column the outputs of the two FBGs (reported in ΔλB n S and 
ΔλB n D, for the one positioned on the spine and the one on the dorsal right area, respectively) and 
the MIMU (expressed as qi) related to the first trial are shown. In the second column the outputs 
related to the second trial are shown. In the orange and green rectangles, flexions and extensions 
are highlighted respectively. 

2.1.4. Discussions 

In the literature, only few studies investigated the use of fiber optic-based wearables 

for detecting back dorsal F/E movements [220]–[222]. In all these works, no FBG-based 

smart textiles have been devised to detect dorsal F/E. In this study, a first attempt was 

made to investigate if such technology, strengthened by integration into polymeric 

matrices, would be a suitable option to detect such a wide range of motion.  

Taking inspiration from what already present in the literature for the monitoring of 

different joint movements [189]–[192], [194], a polymeric matrix with rectangular shape 

( dimensions of 90 mm x 24 mm x 1 mm) was chosen to integrate the FBG. Two flexible 

patches were obtained, with linear response to strain (as testified by the R2 < 0.99) and 

good strain sensitivity (i.e., 𝑆𝜀=0.10 nm ·mε-1). The high value of 𝑆𝜀 suggests a tight 

adhesion of the gratings into the silicone substrate that ensures a good transmission of 

the strain applied on the silicone surface to the sensing elements.  

The sensorized patches were fixed above a commercial T-shirt on specific points of 

the dorsal area (i.e., over the spine and 1 cm on the right of the spine) making the 

proposed system easy to wear, comfortable, compliant with the natural spine 

curvatures and adaptable to any type of body-shape (prior use of a suitable T-shirt size) 

if compared to the solution proposed in [220]–[222]. Results of tests performed on the 

healthy volunteers showed that all the FBGs trends in time agree with the trend of the 

reference, with no data loss or patch breakage caused by excessive stress. This proven 
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that the insertion of FBGs within flexible matrices is a winning strategy to adopt to 

monitor even wide-range movements such as back F/E. This awareness guided the 

design and development of the WDs described in the following sections. 

 

 

2.2.  Elastic wearable system equipped with a rectangular-shaped 

soft flexible sensing element  

Building on the knowledge gained in the preliminary assessment reported in Section 

2.1, a novel wearable system was developed which could fulfill the following aims: i) to 

be easily worn by the user, also upon ordinary clothes; ii) to strengthen the sensing 

element. Consequently, as elastic structure to be anchored to the user’s garments was 

realized. The sensing element was retained in the rectangular shape but, compared to 

the two patches, was reduced in size and thickened to stiffen a bit more the FBG sensing 

part. In addition, the soft sensor is intended to be applied to the wearable structure 

instead of being directly attached to the T-shirt, in order to dissipate a part of the 

mechanical strain provoked by F/E motions. This system is meant to distinguish flexion-

extension back movements to assess the right sitting posture in sedentary videoterminal 

workers.  

In this section, parts of the works [223], [224] which the PhD candidate has co-

authored have been freely extracted. 

2.2.1. Design and manufacturing process 

The proposed WD consists of two parts: a flexible FBG-based sensitive element and 

an elastic wearable structure. An image of the wearable system is shown in Figure 4.29 

(upper image). 

The elastic wearable structure is a wearable support composed by two elastic bands 

stitched orthogonally together by hand. The first band was designed to be worn on the 

worker’s right shoulder and solidly anchored at the subject’s garments by means of two 

clips. The second band works like an elastic belt that, once secured with some Velcro® 

stripes around the subject’s waist, ensures the adherence of the system to the back. The 

system is adjustable in length, so that it can be worn by subjects with di different 

anthropometric characteristics.  

The flexible sensing element was produced by encapsulating a commercial optical 

fiber embedding an FBG (grating length of 10 mm, λB of 1556.97 nm and reflectivity of 

90%; AtGrating Technologies, China) into a silicone substrate (Dragon SkinTM20, 

Smooth-On, Inc., Macungie, PA, USA) whose dimensions are 55 mm x 20 mm x 2 mm. 

The production method is the same as described in the previous Section 2.2.1. The 
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silicone rubber constitutes a highly flexible and stretchable support base that improves 

the FBG in robustness avoiding breakages. The high flexibility of the sensor is exhibited 

in Figure 4.29 (bottom image) where the twisting, bending, folding and stretching 

capabilities of the element are shown.  

The flexible sensing element is fixed upon the back part of the structure (where the 

two elastic bands cross) with a double-sided adhesive tape for fabrics to be compliant 

with the physiological lumbar curvature.  

 
Figure 4.29. The device worn by a volunteer with a magnification on the flexible sensing elements 
presenting is features is shown in the upper image. In the bottom images, the flexible element in 
twisting, bending, folding and stretching configurations.  

2.2.2. Metrological characterization 

The flexible sensing element undergoes elongation/compression when F/E 

movements occur. Indeed, the response of the sensing element to strain was 

investigated and reported in the subsection below.  

2.2.2.1. Response to strain 

A set up constituted by a fiber optic interrogator (Micron Optics si255, Micron Optics 

Inc., Atlanta, GA, USA) and a tensile testing machine (Instron 3365A, Instron, Norwood, 

MA, USA) was used to estimate the response to strain of the flexible sensor. A tensile 

test was performed on the flexible sensor at room temperature and quasi-static 

conditions (i.e., low load speed). The flexible element was lengthened at 2 mm·min-1 of 
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load speed, by 2% with respect to its initial length. The output data given by the tensile 

machine (i.e., ε, time, applied force and elongation) were collected by a personal 

computer at a sampling frequency of 10 Hz, whereas the FBG output data were collected 

by the fiber optic interrogator at a sampling frequency of 100 Hz. The whole process was 

executed 10 times in order to evaluate the repeatability of the response. All the data 

were exported and analyzed in MATLAB (MathWorks® Inc., Natick, MA, USA) 

environment. The calibration curve (represented with its expanded uncertainty in Figure 

4.30 (a)) was calculated as the best fitting line considering the average value of ΔλB 

obtained across the ten trials over ε (Figure 4.30 (b)). Considering a t-student 

distribution with nine degrees of freedom and 95% of confidence level, it was possible 

to evaluate the expanded uncertainty as the product of the standard uncertainty and 

the coverage factor k (i.e., 2.262). The high repeatability of the system was assessed and 

confirmed by the slight value of the expanded uncertainty. Furthermore, the 𝑆𝜀 = 0.20 

nm·mε-1, was calculated as the slope of the calibration curve. The correlation coefficient 

(R2) was then evaluated. Its high value (i.e., >0.99) confirms that the behavior of the 

experimental data agrees properly with the linear model. 

 
Figure 4.30. Response to strain of the sensing element. (a) Trend of the calibration curve (blue 
curve) and its uncertainty (green shadow). (b) ΔλB vs. ε obtained across the ten trials.  

 

2.2.3. Experimental assessment 

Experimental trials were carried out on a group of volunteers to investigate the 

ability of the proposed WD to monitor the low back F/E movements. 
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A) Experimental setup and protocol 

Four healthy volunteers (two males and two females) with no history of back 

disorders were enrolled. The main population characteristics, expressed as mean ± 

standard deviation, are: age of 28.4 ± 0.5 y.o., height of 175.2 cm ± 4.4 cm, body mass 

67 kg ± 11.7 kg, and chest circumference 94.4 cm ± 9.5 cm. Each subject wore the elastic 

structure over a tight T-shirt and was invited to sit on a stool placed at the center of the 

four-camera MoCap recording area (about 3 m3 of calibrated volume) and maintain a 

straight posture. In line with the protocol proposed in [225] by Chockalingam et al., 11 

photo-reflective passive markers with a diameter of 18 mm were positioned on specific 

body landmarks (i.e., C7, T1, T4, T7, T10, L1, L3, L4, L5, right and left shoulder) by means 

of a bi-adhesive tape (see Figure 4.32 (a)). The FBG-based flexible sensor was then fixed 

with bi-adhesive tape for textiles upon the elastic wearable structure, in correspondence 

with the lumbar area between the subject’s L1 and L5 lumbar vertebrae, as shown in 

Figure 4.31 (a). 

 
Figure 4.31. Experimental set up. (a). Back view showing the posterior part of the wearable 
device and the positioning of the flexible sensor (red rectangle) and the photo-reflective markers; 
(b). Frontal view showing the anterior part of the wearable device, the MoCap cameras, the 
optical interrogator and the laptop. 

 

The volunteer was instructed to follow the protocol that consisted in executing four 

consecutive back flexions followed by four consecutive extensions, for two time and for 

an overall of 16 F/E movements per trial. Each volunteer repeated the protocol twice; a 

total amount of 8 trials was collected. During the trials, the outputs of both the wearable 
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system and the MoCap system were acquired. An optical spectrum interrogator (si255, 

Micron Optics Inc., Atlanta, GA, USA) was used to collect the FBG outputs at a sampling 

rate of 100 Hz, while the positions in time of the photo-reflective markers were collected 

by the MoCap at the sampling frequency of 60 Hz and processed with a dedicated 

software (i.e., OEP-Smart, BTS Bioengineering Corp., Milan, Italy) to obtain the 

trajectories of the F/E movements. The entire experimental set-up is shown in Figure 

4.31 (b). 

 

B) Data analysis and results 

Per each trial, from markers’ trajectories the distance between markers L1 and L3 

(dL3-L1, see Figure 4.32) was calculated as in the following formula: 

dL3−L1 = √((xL3 − xL1)2 + (yL3 − yL1)2) (4.8) 

where xL3 and xL1 are the x-axis coordinates of L3 and L1, respectively and yL3 and yL1 the 

y-axis coordinates. The Δd L3-L1 was then calculated as 

ΔdL3−L1 = dL3−L1 − dL3−L1|t=0 (4.9) 

This value allowed to quantify the relative distance between L1 and L3 (expressed in 

cm) during F/E movements. 

Considering one trial, the first maximum peaks recognized both on the ΔλB and on 

the Δd L3-L1 signals were used to synchronize the WD and the MoCap. Then, the ΔλB and 

Δd L3-L1 data recorded during the first flexion movement were used to calibrate the WD 

output for reconstructing the L1-L3 displacements from ΔλB (to obtain ΔdΔλ). 

Since the linear relationship between the ε and the ΔλB (see Figure 4.30), a least-

squares linear regression was carried out to accomplish this task, considering the Δd L3-

L1 as predictor variables and ΔλB as response variables as in Equation (4.10), 

y = α+ βx + ζ (4.10) 

where α is the y-intercept (fixed at 0), β the slope (or regression coefficient), and ζ the 

error term. To quantify the goodness of regression, the coefficient of determination (R2) 

was calculated. The obtained calibration coefficient β was then applied to the whole 

signal ΔλB to obtain ΔdΔλB signal as in the following equation: 

ΔdΔλB = β ΔλB (4.11) 

To quantify the difference between the distance Δd L3-L1 and the reconstructed 

distance ΔdΔλB the MAE (MAEΔd) coefficient was calculated as in the following equation: 
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MAEΔd = 
∑ |Δd∆λB

− ΔdL3−L1|
N
i = 1

N
 

(4.12) 

Additionally, the lumbar angle (θ) was calculated considering the trajectories of L1, 

L3 and L4 as shown in Figure 4.32. In particular, θ was obtained as the angle among two 

vectors (L1L3⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and L3L4⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) at each instant: 

θ =  cos−1 (
L1L3⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ L3L4⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

‖L1L3⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ ∙ ‖L3L4⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
) (4.13) 

 

 
Figure 4.32. The distance 𝑑𝐿3−𝐿1 (left image) and the lumbar angle θ (right image) retrieved from 
markers’ trajectories. 

In Figure 4.33 the trends in time of the wearable output (ΔλB), the distance between 

L1 and L3 (Δd L3-L1), and the lumbar angle (θ) evaluated for each trial are reported. It is 

possible to observe that the FBG and the reference system outputs show great 

agreement. Eight flexions (i.e., the signal peaks) and extensions (i.e., the signal valleys) 

can be counted, with a total amount of 16 F/E movements for each trial, as expected. 

The widest ∆λB excursion that occurs during the trials is about 2 nm. Table 4.6 

summarizes the β regression and the R2 coefficients related to the regression 

procedures.  
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Table 4.6. Calibration coefficient β used to reconstruct ΔdΔλB from ΔλB, R2 coefficients resulting 

from the linear regression between Δd L3-L1 and ΔλB and MAEΔd values used to quantify the 
difference between the distance 𝛥𝑑𝐿3−𝐿1 and the reconstructed distance Δd ΔλB. 

 

As shown in the table, the β differs trial by trial from 0.32 cm·nm−1 to 2.78 cm·nm−1; all 

the R2 values denote moderate to good quality of regression. Also, Table 4.6 reports the 

range of Δd L3-L1 calculated from data recorded by the MoCap together with the MAEΔd. 

The maximum value of MAEΔd was 0.33 cm (about 16% on the Δd L3-L1 amplitude of 2.02 

cm). 
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Figure 4.33. The wearable output (ΔλB), the distance between L1 and L3 (Δ𝑑𝐿3−𝐿1) and the 
lumbar angle (θ) trends obtained per each trial. (a): Trial 1; (b): Trial 2; (c): Trial 3; (d): Trial 4; 
(e): Trial 5; (f): Trial 6; (g): Trial 7; (h): Trial 8. 
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2.2.4. Discussions  

The presented device is composed by a custom-made comfortable elastic structure 

and a flexible sensing element made of a commercial FBG housed into a rectangular-

shaped silicone matrix. The flexible element response to strain was assessed showing 

𝑆𝜀=0.20 nm· mε-1 (which is comparable to the 𝑆𝜀of the soft sensing elements devoted to 

joint motion detection present in the literature [189], [191], [192], [194]). Then, the 

feasibility assessment of the WD in measuring F/E in the sagittal body plane was 

experimentally executed on a small population of volunteers, in presence of the MoCap. 

Good accordance between FBG and MoCap trends were retrieved, and F/E movements 

are clearly distinguishable. MAEΔd were calculated and quite wide ranges of values were 

observed (i.e., ranging from 0.07 cm to 0.33 cm), which can be attributable to the sliding 

of the photoreflective markers and the wearable from their initial placement while 

performing the experimental routines. In fact, although arrangements were made to 

maintain as much as possible the initial positioning of the setup (e.g., the shirt was tight 

and fixed by the elastic structure of the wearable, while the wearable was firmly hooked 

to the user's pants) and the range of motion of the performed movements was not wide, 

nevertheless, an inherent error caused by the slippage of the setup from the initial 

position cannot be excluded. Also, the intra and inter subject variability of the sensor 

positioning could cause the low value of R2 obtained for the 4th volunteer (i.e., 0.66) the 

wide dispersion of the β values (i.e., from 0.32 cm· nm-1 to 2.78 cm ·nm-1). However, a 

calibration process to be performed at the beginning of each trial would help minimize 

these undesired effects.  

In the literature, no wearables exploiting FBG technology for back movements 

monitoring are presented. However, some WDs incorporating other technologies [226], 

[227] have been proposed, but proven to be excessively cumbersome, especially for 

long-term use in the scenario of interest. On the contrary, the lightness and 

compactness of the proposed system permit its usage for the entire working day. Also, 

smart T-shirts have been proposed [220], but the availability of only few sizes  limits 

their usability on a wide range of population with different anthropometric 

characteristics and gender. In contrast, thanks to the adjustable elastic wearable 

structure, the presented device can be regulated to fit any anthropometry. Moreover, it 

can be worn over any garment which is particularly useful in work environments where 

a particular dress code is required. 

However, an improvement in terms of a better and firmer integration of the sensing 

element upon the wearable is foreseen in order to minimize the errors committed in 

displacements evaluations. Also, new methodologies to ensure a better anchorage of 

the elastic structure and firm sensor positioning will be evaluated.  
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2.3. Wearable system composed of multiple soft flexible sensing 

elements for large-area movements detection 

To minimize the errors caused by the slipping of the wearable system described in 

Section 2.2, the approach to directly apply the sensing elements to the users’ skin was 

chosen. In addition, the number of the sensing elements was increased to provide 

monitoring of the entire back area and not just a single point. As consequence, in this 

section a flexible WD consisting of seven modular soft sensing elements to be applied 

along the entire back is presented. As attached to the skin, this time, the soft polymer 

matrix in which the FBG is embedded presents an advanced shape to better distribute 

strain. This device was designed to detect compensatory trunk movements (CTMs) that 

patients affected by hemiplegia might perform while executing rehabilitation tasks.  

In this section, parts of the work [127] which the PhD candidate has co-authored 

have been freely extracted. 

2.3.1. Design and manufacturing process 

The wearable system is a 1m-length multi-point sensing device designed to be placed 

along the back spine. The device consists of a commercial fiber optic array with seven 

multiplexed gratings (λB values ranging from 1512 nm to 1559 nm, gratings length of 10 

mm, and reflectivity of 90%, AtGrating Technologies) 100 mm interspaced from each 

other with an FC/APC optical connector at the fiber end. Each FBG is enclosed into a soft 

silicon matrix (Dragon SkinTM30, Smooth-On, Inc., Macungie, PA, USA) to comply with 

the physiological back curvature. As a result, seven identical soft sensing elements (SSEs) 

were developed, named SSE1, SSE2, SSE3, SSE4, SSE5, SSE6 and SSE7, from the farthest 

to the nearest to the optical connector (see Figure 4.34 (a)).  

Each SSE (whose rendering and features are reported in Figure 4.34 (b)) comes as a 

structure formed by two superimposed polyhedra with rectangular bases and rounded 

corners. The lower polyhedron (30 mm x 20 mm x 3 mm) contains an FBG placed at 2 

mm from the bottom in its central section. This portion provides a wide adherence area 

to ensure reasonable compliance with the skin as is intended to be bonded to the sub-

jects’ back through biocompatible double-sided tape. A smaller polyhedron (20 mm x 10 

mm x 2 mm) presenting three parallel grooves (0.4 mm deep) on its surface is placed 

above the FBG and centered to the lower polyhedron. Such extrusion both strengthens 

the sensor by preventing fiber damages caused by excessive traction in the central area 

and avoids undue deformations by distributing the surface tensile stress by means of 

the grooves. The fiber portion between two consecutive SSEs is held in small flexible 

plastic tubes (8 tubes in total). The small tubes improve the robustness of the portions 

of optical fiber that are not encapsulated into the silicone matrices. Moreover, these 

portions allow the sensors arrangement at specific anatomical landmarks, thus 

respecting inter-subject anthropometric variability.  
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Figure 4.34. The wearable system. (a) A picture of the wearable system (on the left), together 
with a close-up view of one of the seven identical sensing elements (on the right); (b) Rendering 
and features of the sensing elements shown in lateral, top and bottom views. 
 

The steps followed to manufacture the wearable system are represented in Figure 

4.35 and detailed below:  

1) Seven identical plastic molds created with a design software (OnShape®, PTC, 

Boston, MA, USA) were 3D printed by Ultimaker 2+ (Ultimaker B.V., Utrecht, The 

Netherlands). The molds were positioned in succession and 100 mm apart, then 

fixed to the working surface with double-sided tape; 

2) eight small plastic tubes were inserted along the fiber optic (between the FBGs 

and at the extremities) to strengthen the exposed portions of the fiber. The fiber 

optic was inserted into the molds, passing through the lateral grooves and being 

careful to place each FBG at the midsection of the corresponding mold. The 

extremities of the fiber were then slightly pulled and secured with some adhesive 

tape to keep the FBGs properly tight. Two strips of kinesio tape 2 mm wide 

(ALPIDEX, BB Sport GmbH & Co KG., Töging am Inn, Germany) were placed 

parallel to the fiber optic and fixed into the dedicate housings of each mold, in 

order to toughen the system; 

3) part A and part B of a bi-component silicone rubber (Dragon SkinTM 30, Smooth-

On, Inc., Macungie, PA, USA) were blended with a volume ratio of 1A:1B (as 

recommended in the technical bulletin [29]) together with 10% in volume of 
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liquid thinner (Silicone ThinnerTM, Smooth-On Inc., Macungie, PA, USA). The 

mixture was let degassing into a vacuum chamber for few minutes until the 

complete removal of air bubbles; 

4) the mixture was poured into each mold and let curing at room temperature for 

24 hours. Once cured, the sensing elements were gently pulled out from the 

molds. Additional kinesio tape was used to cover the portions of the optical fiber 

which were not encapsulated into the polymeric substrates. 

 

Figure 4.35. Diagram showing the manufacturing process of wearable system. 
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2.3.2. Metrological characterization 

In the present application, the proposed wearable system is intended to be used as 

a strain sensor for detecting the back movements of the enrolled subjects. Hence, a 

metrological characterization was carried to estimate the 𝑆𝜀 of each SSE. Although the 

experiments were carried out at constant room temperature, once the flexible matrices 

have been attached to the skin, slightly ΔT may occur at the skin-matrix interface. 

Therefore, the SSEs responses to ΔT were also investigated. 

2.3.2.1. Response to strain 

The response to ε of the SSEs was evaluated by using a tensile testing machine 

(Instron 3365A, Instron, Norwood, MA, USA, repeatability ± 0.15%) at quasi-static 

conditions (i.e., 2 mm·min-1 of elongation speed) and room temperature. Each SSE was 

positioned between the machine clampers and fixed to the edges of the polymeric 

substrate (see Figure 4.36 (a)). The SSE was strained nine times (to ensure event 

repeatability) from 0% to 0.5% of ε with respect to its initial length to cover the ε range 

that could be experienced by the sensor in response back movements. Values of ε were 

collected at a sampling frequency of 10 Hz, while the FBGs outputs were recorded by an 

optical interrogator (si255 Hyperion Platform, Micron Optics Inc., Atlanta, GA, USA) at 

100 Hz.  

Data processing was executed in MATLAB environment (MathWorks® Inc., Natick, 

MA, USA). For each SSE, the mean value of ΔλB and the expanded uncertainty were 

calculated across the nine tests. The expanded uncertainty was obtained as the standard 

uncertainty multiplied by the coverage factor (k = 2.30), considering a t-student 

distribution with eight degrees of freedom and a confidence level of 95%. The calibration 

curve was estimated as the best fitting line of the average ΔλB over ε and 𝑆𝜀  as the slope 

of the best fitting line. The high values of correlation coefficients (R2 > 0.99 for all the 

SSEs’ calibration curves) ensured agreement between the experimental data and the 

linear model. Figure 4.36 (b) shows the calibration curve one of a single SSE (i.e., SSE2), 

while the 𝑆𝜀 values of all the SSEs are listed in Table 4.7. The different 𝑆𝜀 numerical 

values are attributable to the fabrication process which is manually executed. In fact, 

although the manufacturing was carried out with the utmost carefulness, it cannot be 

excluded that slight differences in the tensioning of the fiber during its positioning into 

molds and variations in the bonding strength at the fiber-polymer matrix interface 

during the curing might be occurred in each SSE. 

 



137 
 

 
Figure 4.36. Response to strain of the SSEs. (a) The testing machine and a zoom of the sensing 
element placed between the two clampers. (b) The calibration curve ΔλB vs. mε of SSE2 given as 
an example. The mean experimental ΔλB signal is shown in blue line, the uncertainty in the 
shadowed green area, and the linear model in the dotted purple line.  

2.3.2.2. Response to temperature influence 

The influence of T on SSEs output was evaluated by placing the wearable system 

within a laboratory oven (PN120 Carbolite®), as shown in Figure 4.37 (a), and exposed 

to T changes from 26 °C to 50 °C to extensively covering the working range of SSE. 

Reference values of T were collected by a thermistor (EL-USB-TP-LCD, EasyLog, Lascar 

Technology) and the output of SSEs by the FBG interrogator (FS22, HBM FiberSensing). 

A sampling frequency of 1 Hz was set for both the devices. All the ΔλB values range from 

~0 nm up to 0.43 nm when exposed to T ranging between 26 °C to 49 °C. To extract the 

calibration curve (see Figure 4.37 (b)), the ΔλB of each SSE was plotted against ΔT (blue 

line) and the best fitting line was computed (dotted orange line).  

 
Figure 4.37. Response to temperature of the SSEs. (a) The laboratory oven and a zoom of the 
wearable system placed between inside the oven. (b) The calibration curve ΔλB vs. ΔT of SSE2 
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given as an example. The experimental ΔλB signal is shown in blue line while the linear model in 
the dotted purple line. 

The 𝑆𝑇 value of each SSE was obtained as the slope of the best fitting line and 

listed in Table 4.7. 

Table 4.7. Values of the. Sε and ST obtained for the seven SSEs 

 
Results showed 𝑆𝑇 values similar to a bare FBG (i.e., 0.01 nm·°C-1) and a negligible 

influence of T on the SSEs output during the experimental phase. Therefore, no changes 

in the thermal expansion of the polymer matrices occur. Indeed, in each trial (described 

in the following sections), typical every-day life tasks are replicated. The whole test 

sequence lasts about 20 min per patient. Therefore, the thermal stability at the matrix-

body interface due to the body thermoregulation, as well as the smooth environmental 

ΔT which may occur in the scenario of interest, led to a negligible T influence on the SSE 

output. 

2.3.3. Experimental assessment 

The wearable system was a preliminary assessed on healthy subjects to verify its 

capability in detecting CTMs. Then, experimental trials were conducted on hemiplegic 

patients in a real clinical rehabilitation scenario. All subjects have read and signed 

informed consent. The study protocol was approved by the Ethics Committee of 

Università Campus Bio-Medico di Roma (protocol code ST-UCBM 27.2(18).20 OSS) and 

in accordance with the guidelines of the Declaration of Helsinki. 

2.3.3.1. Experimental trial on healthy volunteers 

 

A) Experimental setup and protocol 

An explorative test was performed on 10 healthy volunteers (whose features are: 

five males and five females, all right-handed, age 25.2 ± 3.57 y.o., height 170.2 cm ± 9.59 

cm, and body mass 63.4 kg ± 10.69 kg).  

Participants were invited to sit on a stool, bare-chested or (in the case of female 

subjects) wearing a track top. The wearable system was applied on the back of each 

subject with hypoallergenic biocompatible tape on the user-facing side. SSE5 was placed 
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on the T12 vertebra, which identifies the point of inversion of the thoracic and lumbar 

curves, thus subdividing the back into upper and lower portions. SSE1 and SSE7 were 

then placed on the C7 and L3 vertebrae, respectively. Then, SSE2, SSE3 and SSE4 were 

equidistantly placed between SSE1 and SSE5, while SSE6 was fixed between SSE5 and 

SSE7. All sensors were then secured to the skin with an extra piece of Kinesio tape that 

is designed to stay in place all day, also during sweating. A stereophotogrammetric 

MoCap (BTS D-Smart, by BTS Bio-Engineering S.r.l., Milan, Italy) was used to quantitively 

measure the tridimensional movements of the upper part of the participants’ body. Four 

cameras were installed behind the seated subject at ~2 m, and four in front of the 

volunteer. Fourteen spherical markers (12 mm in diameter) stuck attached with 

hypoallergenic tape were used and placed upon each SSE (M1, M2, M3, M4, M5, M6, 

and M7), on the right and left acromions (RA and LA, respectively), elbows (RE and LE, 

respectively) and wrists (RW and LW, respectively), and on the moving object (OBJ). The 

positioning of SSEs and markers is depicted in Figure 4.38. 

 
Figure 4.38. Soft sensing elements (yellow box texts) and markers (green box texts) positioning 
on a volunteer. 

Also, in Figure 4.39 (a) and (b), the experimental setup is represented. 

Participants were instructed on the experimental protocol, which consisted in sitting 

at a table while wearing the wearable system and moving an object (i.e., wooden 

polyhedron 10 x 15 x 5 cm) across the table’s surface. The following three tasks (see 

Figure 4.39 (c)), which are representative of typical everyday life actions, were 

performed: 
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1) Forward Movements (FM): move the object back and forth by executing a 

flexion-extension movement of the arm; 

2) Lateral Movements (LM): move the object right and left, keeping the arm 

outstretched; 

3) Circular Movements (CM): move the object performing circular motions. 

For each of the three tasks, all participants performed two rounds (i.e., Round 1 and 

Round 2), each consisting of 10 repetitions using the dominant arm. In Rounds 1, the 

volunteers executed the repetitions by avoiding the trunk recruitment, while in Rounds 

2, the subjects performed the same repetitions by eliciting CTMs which typically occur 

in the presence of hemiplegia. More specifically, in Rounds 2 each volunteer was invited 

to self-maintain a stable upper limb pose while performing the task to promote trunk 

involvement (in line with [228]). 

During the protocol execution, wearable system’s data were collected by means of 

an optical interrogator (si255, Micron Optics Inc., Atlanta, GA, USA) at 1 kHz of sampling 

rate, while the 3D markers’ trajectories were recorded with BTS Tracker software (by 

BTS Bioengineering S.r.l., Milan, Italy) at 60 Hz of sampling rate. 

 
Figure 4.39. Experimental setup and protocol. (a) Upper view showing the positioning of the eight 
cameras and the reference axes. (b) The experimental set-up showing the subject’s positioning, 
the MoCap system, the wearable system, and the spectrum interrogator. (c) Illustration of the 
three tasks per-formed during the protocol. 
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B) Data analysis and results 

Experimental data were processed in MATLAB environment (MathWorks® Inc., 

Natick, MA, USA). MoCap was used as a reference instrument to determine the 

magnitude of the trunk involvement and, in turn, the presence of CTMs. Raw trajectories 

of all the markers in all the planes (sagittal plane x-y, transversal plane y-z, and frontal 

plane x-z) were recorded. In each trial, the marker positioned on the object was used to 

subdivide the recorded trace into ten signals related to the performed movements. The 

movement of the object is a periodic signal. The minimum points represent the instants 

in which the object is at the minimum distance from user, while the maximum points 

those in which the object is at the maximum distance from the user. A complete 

movement was considered as the signal between two consecutive minima points. As a 

consequence, 10 movements per each trial were identified and the seven markers’ 

trajectories on x, y, z axes were segmented into 10 windows. For each window, the 

relative marker displacement amplitude was calculated as the difference between the 

max value and the min value of the displacement. Hence, ten values were obtained per 

each marker and per each axis considering each trial. The median value over the ten 

movements was calculated to obtain the median relative displacement (R) of all the 

markers along x (Rx), y (Ry), and z (Rz) directions separately. The Rx, Ry, Rz are 

considered index of trunk displacement along the three axes: the higher the value of R, 

the higher the trunk involvement. 

Figure 4.40 (left column) shows the box plots obtained grouping all the R data 

gathered by different subjects. In each box plot, the median and the interquartile range 

(IQR) quantify the magnitude and inter-subject variability of the trunk involvement. As 

expected, Rx, Ry, and Rz values corresponding to each spinal marker are always greater 

in Rounds 2 (presence of CTMs) than in Rounds 1 (without CTMs). In all the tasks, the 

median values of R registered from the seven markers are approximately one order of 

magnitude greater than those in Round 1 in all the axis. Moreover, it is worth noting that 

during the FM and LM tasks, larger Rx and Rz values occurred, respectively. The lowest 

values are related to Ry in all tasks. registered from the seven markers are approximately 

one order of magnitude greater than those in Round 1 in all tasks.  

From the output of each SSE, the ε trends in time were retrieved for all the SSEs as 

ε = 𝛥𝜆𝐵/𝑆𝜀. In Figure 4.41 (a), an example of the output obtained by one of the seven 

SSEs is reported. To quantify the ε experienced by each SSE during trunk displacements, 

for every subject we evaluated the standard deviation (SD) over the ten repetitions of 

each task. Then, for each SSE and task, we calculated the mean value of the SDs across 

the 10 healthy volunteers. In Figure 4.41 (b), the mean SDs of SSEs (from 1 to 7) are 

reported for the three tasks considering both Rounds 1 and 2. In all the trials, each SSE 

showed higher SD values in Rounds 2 than in Rounds 1, confirming the presence of 

CTMs. 
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Figure 4.40. Relative displacements of the 7 MoCap markers (#M) placed on the spline along x 
(Rx), y (Ry) and z (Rz) axes during the three tasks (forward movements in (a) and (d), lateral 
movements in (b) and (e) and circular movements in (c) and (f)) performed by the healthy 
volunteers (left column) and hemiplegic patients (right column) in presence (Round 1) and 
absence (Round 2) of CTMs. Data are expressed as median, IQRs and outliers. 

HEALTHY VOLUNTEERS       HEMIPLEGIC PATIENTS 
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Figure 4.41. Example of the ε trends in time retrieved by SSE 2 during the execution of CM task 
performed by a healthy volunteer (a) and a hemiplegic patient (c) in Round 1 and Round 2. Mean 
SD values calculated for the 7 SSEs (# SSE) during the three tasks performed by the healthy 
volunteers (b) and hemiplegic patients (d) in Round 1 and Round 2. 
 

2.3.3.2. Experimental trial on hemiplegic patients 

Having preliminarily verified the system capability to detect CTMs on healthy 

volunteers, an assessment was performed on post-stroke hemiplegic patients. 

A) Experimental setup and protocol 

Participants were recruited from a research volunteer database produced by the 

Physical and Rehabilitation Unit of Fondazione Policlinico Universitario Campus Bio-

Medico. A number of eight hemiplegic patients (whose features are shown in Table 4.8) 

has been enrolled. Inclusion criteria were: i) acquired diagnosis of stroke, ii) absence of 

cognitive deficits and iii) score of the Fugl-Meyer Assessment Upper Extremity Scale of 

Motor Impairment (i.e., the most used rating scale to measure post-stroke disability 

HEALTHY VOLUNTEERS            HEMIPLEGIC PATIENTS 
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extent [207]) ≥ 10 [229]. This value was identified as the minimum value to guarantee 

residual upper limb functionality to perform the required tasks.  

Hemiplegic patients were instructed to perform the same experimental protocol 

executed by the healthy volunteers, but this time using the unaffected arm in Rounds 1 

and the hemiplegic arm in Rounds 2. 

Table 4.8. Features of the hemiplegic patients. 

 

B) Data analysis and results 

The Rx, Ry, and Rz medians and the IQRs values obtained by the MoCap data are 

shown in Figure 4.40 (right column). As for the healthy volunteers, the Rx, Ry, and Rz 

values corresponding to each marker (from M1 to M7) during the three tasks are always 

higher in Rounds 2 (i.e., affected arm and presence of CTMs) than in Rounds 1 (i.e., 

unaffected arm and absence of CTMs). As before, it is possible to state that the lowest 

values are related to Ry in all the tasks. Instead, during the execution of FM and LM 

tasks, larger Rx and Rz values occurred, respectively. 

Regarding the wearable system, ε trends in time were obtained for all SSEs (in Figure 

4.41 (c) an example is given). In Figure 4.41 (d), the SDs calculated for all the SSEs are 

reported for the three tasks grouped in Rounds 1 and 2. Each SSEs showed higher mean 

SDs in Rounds 2 than in Rounds 1 considering all the three tasks, except for the values 

obtained from SSE4 during the performance of FM and LM tasks. In fact, SSE4 presented 

mean SD values of 0.264 and 0.178 in Rounds 1 of FM and LM, respectively, and of 0.227 

and 0.165 in Rounds 2 for FM and LM, respectively. 

2.3.4. Discussions  

The presented system is a novel WD composed of seven FBG-based SSEs which 

enable reliable and multi-point monitoring of trunk movements for CTMs detection in 

post-stroke upper limbs patients.  

The manufacturing of the WD and the SSEs’ response to ε and ΔT were described, 

showing 𝑆𝜀 values (i.e., ranging from 0.04 nm·mε-1 to 0.21 nm·mε-1) comparable to those 

retrieved in the literature for soft flexible sensors [189][194][192][191]  and 𝑆𝑇 value 

close to that of a bare FBG. A demonstration of the SSEs’ high sensitivity to ε is given by 
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the capability of the wearable system to perceive even the smallest trunk deformations 

during the exercises performed by hemiplegic patients. The feasibility of the proposed 

device to detect CTMs was firstly proven on ten healthy volunteers in the presence and 

absence of trunk recruitment, and then on eight hemiplegic patients using the affected 

and unaffected arms. In accordance with the MoCap, the wearable system 

demonstrated its ability in detecting CTMs. 

To date, several WDs have been proposed for monitoring joint movements [189]–

[192], [194]. These solutions mostly come as belts or knee bands which are equipped 

with a single FBG-based soft sensor, that led to a lack in spatial resolution in the 

movement’s reconstruction. On the contrary, compared to these devices, the multi-

sensor configuration exploited in this wearable enables measurements at different spine 

levels enabling the monitoring of a large area such as the back. Moreover, the 

positioning of multiple, freely placeable SSEs allows the system to adapt to different 

anthropometries. Also, the SSEs redundancy which ensures continuous monitoring even 

in the event of failure of a sensing element. Furthermore, the application of the SSEs 

directly on the back makes the device unobtrusive, not limiting the patients’ normal 

motility. In fact, elastic bands and belts can create feelings of constriction and 

discomfort in disabled patients, limiting their range of movements.  

Lastly, to the best of our knowledge, the presented wearable is the first one based 

on multiple soft sensors embedding FBG technology and distributed along the whole 

spine whose purpose is to evaluate the trunk recruitment during post-stroke 

rehabilitation processes.  
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3. FBG-based smart wearable solutions for respiratory rate and 

posture monitoring 

In this paragraph, the application of two FBG-based systems for the simultaneous 

monitoring of posture and respiratory activity is described for the first time. More 

precisely, two WDs already presented in the previous sections were assessed to define 

their capability to estimate RR and, at the same time, evaluate neck and trunk postures.  

Results of these tests are reported in the sections below.  

The use of such systems in these terms was designed for the assessment of the 

presence of psychological (by means of RR detection) and muscular stress (by means of 

neck and trunk posture detection) in an occupational scenario, in order to prevent the 

onset of psychological discomforts and musculoskeletal diseases. 

 

 

3.1. Soft flexible patches  

The soft flexible patches presented in Section 2.1 are here applied in two sites of the 

neck area in order to assess their feasibility in retrieving both RR and neck F/E and axial 

rotation movements (ARm).  

In this section, parts of the work [230] which the PhD candidate has co-authored 

have been freely extracted. 

 

3.1.1. Experimental assessment 

 

A) Experimental setup and protocol 

To detect F/E movements, one flexible patch (hereafter named FBG1) was 

positioned in correspondence of the cervical spine segment C1–C7, along the 

longitudinal direction starting from C7. For the ARm monitoring, the second patch 

(hereafter named FBG2) was positioned on the right side of the neck, horizontally with 

respect to FBG1 starting from the center of C6, C7 (Figure 4.43 (a)). A polyacrylate 

bandage (100% polyester, Curafix® H, Lohmann & Rauscher, Padova, Italy) was used to 

allow a better adhesion and compliance to the skin. The positions were chosen to 

optimize the strain distribution along the FBG longitudinal direction. The F/E movements 

cause longitudinal strain on FBG1: its output increases during flexion, while decreases 

during extension (Figure 4.42 (b)). The ARm are mostly detected by the FBG2: its output 

increases during left rotations, while a decrease is experienced during the right rotations 

(Figure 4.42 (c)). Breathing monitoring is allowed by the neck muscles activity and 

cervicothoracic junction movements that strain both the FBGs. This phenomenon results 

in ΔλB pseudo-periodic oscillations, which allows estimating RR [231]. 



147 
 

 
Figure 4.42. (a) Sensors’ positionings on the neck of the user; (b) schematic representation of the 
FBG1 response to flexion-extension (F/E); (c) schematic representation of the FBG2 response to 
axial rotation (AR) movements.  
 

The system was assessed on five healthy subjects (three males and two females) 

whose features are the following: age of 29.6 y.o. ± 5.35 y.o., height of 173.2 cm ± 6.82 

cm, body mass of 80.4 kg ± 24.1 kg, neck circumference of 39.4 cm ± 4.8 cm. 

Participants were asked to sit maintaining their feet on the floor, both hands on the 

knees, with hips and knees flexed at 90° (Figure 4.43 (a)). A MoCap system (Smart-D, 

BTS Bioengineering Corp., Milan, Italy) was used as a gold standard to assess the 

capability of the multi-parametric wearable system to discriminate F/E and ARm. Four 

spherical, infrared photo-reflective markers (15.2 mm in diameter) were placed on each 

subject as shown in Figure 4.44 (a) and (b). In particular, the first marker is placed on the 

forehead (marker P1 in 4.44 (a) and (b)), the second marker on the C7 spinous process 

(marker P2 in Figures 4.44 (a) and (b)), and the last two markers were placed in 

correspondence of the acromioclavicular joints (P3’ and P3’’ in 4.44 (b)). Eight cameras 

collected the trajectories of the markers at a sampling rate of 60 Hz. An FBG interrogator 

(si255 based on HYPERION platform; Micron Optics Inc., Atlanta, GA, USA) was used to 

record the FBGs output, at a sampling rate of 1 kHz. 
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Figure 4.43. (a) Experimental set-up to assess the feasibility of the proposed system for 
monitoring neck movement; (b) experimental protocol for monitoring FE and AR movements; (c) 
Experimental set-up to assess the feasibility of the proposed system for respiratory frequency 
monitoring; (d) experimental protocol for RR monitoring. 
 

After markers and FBG positioning, the protocol was explained to each subject. 

Participants started with the head and the neck in a neutral position and looking 

forward. Firstly, the participants were asked to perform F/E and ARm, simultaneously 

recorded by the wearable and MoCap systems. Each participant performed:  

1) five F/E repetitions, followed by 30 s in the neutral position, and then five F/E 

repetition (Figure 4.44 (b), upper image);  

2) five AR repetitions to the right, followed by 30 s in the neutral position, and then 

by five AR repetition to the left (Figure 4.44 (b), bottom image).  

 

An additional trial was executed to assess the ability of the multi-parametric 

wearable system to monitor breathing activity. During this trial, a commercial flowmeter 

(SpiroQuant P, EnviteC, Alter Hozhafen, Wismar, Germany) connected to a differential 

pressure sensor (163PC01D75, Honeywell, Minneapolis, MN, USA) was used as a 

reference system (Figure 4.43 (c)). The output of the differential pressure sensor was 

collected through a DAQ (NI USB-6009, National Instrument, Rockville, MD, USA) and a 

custom Virtual Instrument developed in LabVIEW® environment, at the sampling 

frequency of 250 Hz. Participants were asked to ventilate into a mouthpiece while 

performing two breathing patterns: ten breaths of self-controlled quite breathing and 
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ten breaths of self-controlled tachypnea; a 10 s stage of apnea was performed between 

the two breathing patterns (Figure 4.44 (d)). 

 

B) Data analysis and results 

 

i) Assessment of the wearable system in neck movements estimation 

The number of F/E and ARm repetition was calculated from the raw data collected 

by the MoCap and the wearable system. The 3D coordinates of the markers recorded by 

the MoCap system were used to carry out the reference signals by following the steps: 

(i) the F/E angle (αFE) was estimated in the sagittal plane (i.e., y–z) as the angle between 

the vectors 𝑃2𝑃1⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑢⃗  (same direction of the y-axis), as shown in Figure 4.44 (a); (ii) 

the ARm angle (θAR) was estimated in the transverse plane (i.e., x–z,) as the angle 

between the vectors 𝑃2𝑃3′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑣  (the same trend may be obtained by considering the 

vectors 𝑃2𝑃3′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑣 ), as shown in Figure 4.44 (b). The θAR decreases during the right 

rotation (clockwise) and increases during the left rotation (counterclockwise).  

Regarding the wearable system, the analysis of the neck movements’ detection was 

performed as follows: (i) the changes of FBG1 output were used to evaluate F/E 

movements since the chin lowered down toward the chest causes a longitudinal 

deformation of FBG1; (ii) the changes of FBG2 output were considered to evaluate ARm, 

as the right and left rotations of the head around its vertical line (y-axis in Figure 4.44 

(a)) causes a longitudinal deformation of FBG2. Trends of signals collected by the MoCap 

system are shown in Figure 4.44 (c) and (d), and the ones collected by the wearable 

system are shown in Figure 4.44 (e) and (f). 

To assess the capability of the proposed system to detect neck movements on 

different planes, the collected data were processed. Firstly, the outputs of both the 

wearable and the MoCap systems were normalized in amplitude and plotted over time 

to evaluate trend similarity between signals. Then, the F/E and ARm repetitions were 

detected by using a custom peak detection algorithm in MATLAB environment. F/E 

movements were identified by considering the maximum peaks of both MoCap and 

FBG1 signals: when αFE increases during the neck flexion (signal provided by the MoCap) 

FBG1 is strained with a consequent increase of λB (Figure 4.44 (c) and (e)). Right ARm 

were detected by considering the minimum peaks of both MoCap and FBG2 signals: 

when θAR decreases during the right ARm (signal provided by the MoCap) FBG2 is 

compressed with a consequent decrement of λB. In contrast, left ARm were detected by 

considering the maximum peaks of both MoCap and FBG2 signals because when θAR 

increases during the left ARm (signal provided by the MoCap) FBG2 is strained with a 

consequent increment of λB (Figure 4.44 (d) and (f)).  
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Figure 4.44. (a) The αFE and (b) the θAR angles formed in the sagittal and transverse plane; (c) 
reference output changes over time during F/E and (d) ARm repetitions; (e) FBGs outputs changes 
over time during F/E and (f) ARm repetitions. 

Results showed that the proposed wearable system was able to follow both F/E and 

ARm and detect the repetitions. The synchronized signals of both the FBGs and MoCap 

were plotted superimposed and shown in Figure 4.45. In particular, the wearable system 

showed good performance in detecting F/E and left ARm repetitions. In fact, it is possible 

to observe how the maxima of the peaks of the blue (i.e., MoCap) and black (i.e., FBG1) 

signals framed by the pink rectangles match. Also, 𝛥𝜆𝐵
𝐹𝐵𝐺2 patterns matched the MoCap 

ones during the left ARm repetitions (green boxes). On the contrary, 𝛥𝜆𝐵
𝐹𝐵𝐺2 pattern 

during the right ARm did not always match the reference signal (light blue box), as 
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evidenced by the fact that for some volunteers the signals are not overlapping and the 

peaks do not coincide (e.g., Volunteer 1). 

 
Figure 4.45. The output changes of both the wearable (black line) and the Motion Capture 
(MoCap) system (blue line) collected during F/E and AR repetitions. 
 

ii) Assessment of the wearable system in respiratory rate estimation 

The assessment of the proposed wearable system for the RR monitoring was 

performed by using the flowmeter as a reference instrument.  The outputs of the 

wearable system and the flowmeter were normalized in amplitude and split into quiet 

breathing-related signals and tachypnea-related ones (i.e., FBG1qb, FBG2qb, FLOWqb, 

FBG1tc, FBG2tc, and FLOWtc), as shown in Figure 4.46 (a). The signals of both FBG1qb and 

FBG1tc were inverted since the FBG1 was compressed during the and tensioned during 

the expiration (this step was not implemented on the FBG2 output since its trend in time 

matches that of the reference system). A 3rd order Butterworth low pass filter was then 

applied on signals collected during quiet breathing (cut-off frequency of 0.5 Hz) and 

during tachypnea (cut-off frequency of 3 Hz). A PSD analysis was performed on the 

filtered signals and the maximum frequency (f0) of both the reference and the wearable 

systems signals were evaluated (Figure 4.46 (b)). A peak detection was performed by 
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using findpeaks in MATLAB environment: the input parameter related to minimum 

peaks distance was set starting from the value of f0 (Figure 4.46 (b)).  

 
Figure 4.46. (a) Signals collected by the flowmeter (blue trend) and by the FBGs (black trend) 
during both quiet breathing (light blue box) and tachypnea (red box). (b) An example of signals 
processing performed for the RR estimation from data recorded by the flowmeter and the 
wearable systems, during quiet breathing. The power spectral density (PSD) spectra over 
frequency [Hz] and the peak detection over time [s] are shown for both the reference system and 
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the proposed wearable system based on two flexible sensors (FBG1 and FBG2). The 𝑆𝑛
𝑓

(t) signals 
are filtered and normalized. 

 

The respiratory periods of each breath (i.e., 𝑇𝑅
𝑖 ) were computed as the time elapsed 

between two consecutive maximum peaks of the signal provided by FBG1, FBG2, and 

the flowmeter. The 𝑅𝑅𝑖 values during both quiet breathing and tachypnea were 

estimated as 60/𝑇𝑅
𝑖  and expressed as breaths per minute (bpm). 

The assessment of the wearable system in the RR estimation during both quiet and 

tachypnea breathing was performed using three parameters:  

i) percentage error:  

𝑒𝑝[%] =
𝑅𝑅𝐹𝐵𝐺̅̅ ̅̅ ̅̅ ̅̅ −  𝑅𝑅𝑓𝑙𝑜𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑅𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅
∙ 100 (4.14) 

where 𝑅𝑅̅̅ ̅̅  is the mean value of RR;  

ii) absolute percentage errors for a breath-by-breath analysis: 

|𝑒𝑝
𝑖 |[%] =

|𝑅𝑅𝑖 𝐹𝐵𝐺 − 𝑅𝑅𝑖 𝑓𝑙𝑜𝑤|

𝑅𝑅𝑖 𝑓𝑙𝑜𝑤
∙ 100 (4.15) 

where 𝑅𝑅𝑖 𝐹𝐵𝐺 and 𝑅𝑅𝑖 𝑓𝑙𝑜𝑤are the values of the i-th RR estimated either by FBG1 

or FBG2 and by the flowmeter; 

iii) mean absolute percentage errors (i.e., MAPE) for a breath-by-breath 

analysis: 

𝑀𝐴𝑃𝐸𝑅𝑅[%] =
1

𝑛
∑

|𝑅𝑅𝑖 𝐹𝐵𝐺 − 𝑅𝑅𝑖 𝑓𝑙𝑜𝑤|

𝑅𝑅𝑖 𝑓𝑙𝑜𝑤
∙ 100

𝑛

𝑖=1

 (4.16) 

All signals involved in the peak detection of the breathing analysis are shown in 

Figure 4.47. The peak detection allowed estimating RR in all volunteers but one (for 

FBG1 output changes of Volunteer 1 during both quiet breathing and tachypnea).  
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Figure 4.47. (A) signals collected by the flowmeter (blue line) and the FBGs (black lines) for each 
volunteer during quiet breathing and (B) during tachypnea. All the signals are synchronized, 
filtered, and normalized. The detected peaks are highlighted by using red markers. 
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The 𝑒𝑝, the MAPE and the |𝑒𝑝| values are listed in Table 4.9 and Table 4.10. The eFBG1 

are always ≤1.53% and <0.71% whereas the eFBG2 ≤ 6.09% and ≤1.90%, during quiet 

breathing and tachypnea, respectively. The MAPEFBG1 errors are always ≤12.87% and 

≤5.86%, and MAPEFBG2 always ≤15.36% and ≤4.90%, during quiet breathing and 

tachypnea, respectively. Data from FBG1 for Volunteer 1 were discarded.  

Table 4.9. Mean RR values and percentage errors (eP). 
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Table 4.10. Breath-by-breath absolute percentage errors, |ep|, and mean absolute percentage 
error (MAPE) values. 
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3.1.2. Discussions  

This study aims to verify the functioning of two smart patches previously presented 

in Section 2, Subsection 2.1 of this chapter in monitoring neck movements and RR at the 

same time.  

The patches, here referred as FBG1 and FBG2, showed good performance in 

following both F/E and left ARm and detect the repetitions, while some limitations 

resulted in the right ARm detection. These findings could be explained considering 

different working conditions of FBG2 during ARm repetitions: the grating is tensioned 

during left ARm and compressed during right ARm. Therefore, the FBG2 compression 

during right ARm causes a partially adherence of this sensor to the neck surface. Also, 

the high sensitivity of the custom made flexible FBGs allows the monitoring of RR from 

the neck. Good accuracy was observed in terms of mean and breath-by-breath values in 

all trials but one (i.e., Volunteer 1) in which FBG1 failed, probably due to a poor sensor 

adherence to the user’s skin. However, maximum MAPE values of 15.36% and 5.86% 

were retrieved during quiet and tachypnea breathing, respectively.  

In the literature, there is no study in which a WD can simultaneously monitor neck 

posture and RR. Referring to neck movements’ detection, wearable systems mainly 

based on electric sensors (e.g., inertial sensors [232], accelerometers [233], and 

piezoresistive sensors [234]) are proposed. However, some of them need a pre-

calibration process [232], permit the detection of F/E movements only [233], or are 

cumbersome [234]. In contrast, the simple application of the two smart patches at two 

neck areas allows a non-invasive detection of the two joint movements (i.e., F/E and 

ARm), without the need for pre-calibration. Instead, for what concerns RR detection, 

there is a large number of FBG-based wearables, which mainly consist in elastic belts 

equipped with flexible sensors to be applied at the thorax [140], [144], or smart T-shirts 

[126], [132]. As already pointed out, the usage of predefined garments may be hardly 

acceptable, especially in those working context where employees need to assume a 

defined dress code. In this case the choice of applying the two patches in the neck area 

was motivated by the desire to propose a discrete system, with enhanced wearability 

and comfortability. 

This is the first time that an FBG-based wearable system able to monitor neck 

movements and RR at the same time has been reported, which significantly expands the 

system’s application possibilities. In this study, the contributions of respiratory activity 

and neck movement are analyzed separately, but future efforts could also focus on 

studying the cross-correlation between RR and neck movements on the sensors outputs 

in order to exploit the presented setup during the daily activities in workplaces. 

However, this should be considered as a first attempt toward the realization of a WD 

based on FBG sensing technology for posture and RR monitoring.  
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3.2.  Wearable system composed of multiple soft flexible sensing 

elements for large-area detection 

The multi-sensor wearable system presented in Section 2.3 is here exploited for both 

RR detection and sitting posture recognition of the three most common sitting postures 

– SPs (i.e., kyphotic, upright and lordotic posture).  

In this section, parts of the work [235] which the PhD candidate has co-authored 

have been freely extracted. 
 

3.2.1. Experimental assessment 

 

A) Experimental setup and protocol 

The experimental set-up (represented in Figure 4.48 (a)) is composed of the 

following elements: 

1) The multi-sensor wearable system;  

2) Stool, chair, and table: a stool between a chair and a table was used for seating 

the subject. The chair and table, positioned in front and behind the stool, 

respectively, supported the subject in performing the postures required by the 

protocol; 

3) Optical interrogator and PC: an optical interrogator (si255, Micron Optics Inc., 

USA) was used to record the wearable system’s outputs with a sampling 

frequency of 100 Hz. The data were real-time displayed on the PC monitor; 

4) Reference device: the commercial instrument Zephyr BioHarness 3.0 (BH) 

(supplied by Medtronic, USA) was employed as a reference device to assess the 

respiratory activity and torso positioning regarding trunk tilt during the protocol 

execution. The breathing signal and torso inclination angle were collected with 

25 Hz and 1 Hz sampling frequencies, respectively. The BH is a thoracic elastic 

belt embedding a strain gauge that is receptive to the chest wall displacements 

caused by the breathing activity and an electronic module including 

accelerometers for inclination assessment. 

Ten volunteers (three males and seven females, whose anthropometric features are 

given as mean ± SD: age 27.1±2.6 y.o., body mass 60.7±8.3 kg, and height 168.7±7.0 cm) 

were enrolled in this study. Each volunteer was invited to sit on the stool, either bare-

chested (males) or wearing a top (females). The wearable system was applied on the 

subject’s back as shown in Figure 4.48 (b) and detailed in Subsection 2.3.3.1. (A). The BH 

was then worn at chest level.  

The volunteer was instructed on the protocol. The subject was asked to breathe 

normally for 10 min in three different postures (see Figure 4.48 (c)): i) upright sitting 

(i.e., forming an angle of approximately 90° between legs and trunk, hands resting on 
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thighs), ii) kyphotic sitting (i.e., leaning forward and resting the forearms on the back of 

the chair) and iii) lordotic sitting (i.e., leaning backward, resting the elbows on the table). 

At the beginning and end of each of the three sitting postures, the subject performed 

10 s of full-lung apnea to synchronize the instruments and easily split the respiratory 

signals acquired in the different postures. 

 
Figure 4.48. Representation of the experimental set-up (a) with an in-depth on the wearable 
system and reference device positioning (b), and illustration showing the experimental protocol 
(c). 

 

B) Data analysis and results 

The data were analyzed in MATLAB environment (MathWorks® Inc., USA) to 

discriminate the SPs and estimate the RR. The raw SSEs’ signals collected for all the 

volunteers during the execution of the experiment were pre-processed by subtracting 

the mean of the first 10 λB values of each SSE in correspondence of the upright posture 
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(here considered as reference posture), so obtaining ΔλB signals. This step compensated 

for the variable pre-strain conditions to which the SSEs may have been subjected during 

application on different volunteers. In Figure 4.49, the ΔλB trend in time of one of the 

seven SSEs is reported as an example, together with the BH outputs, which are given as 

an angle variation in the sagittal plane for the torso position information (BHP) and as a 

normalized voltage variation for the breathing waveform (BHR). 

 
Figure 4.49. Example of the signals obtained for a volunteer by one of the seven SSEs (ΔλB) and 
BH (BHR showing the respiratory pattern and BHP the inclination assumed by the torso in the 
three sitting postures). All signals were partitioned into the three postures by applying the 
following shaded coloring: light blue, orange and green for upright, kyphotic and lordotic 
postures, respectively. A more intense color grading was used to highlight the initial and final 
apneas (reported in SSE and BHR signals) that enclose the respiratory signal in each of the three 
postures. 

The seven SSEs’ outputs (hereafter named ΔλB SSEs), the BHP, and the BHR signals 

obtained by each volunteer were then split into three traces related to the three 

performed SPs (i.e., upright, kyphotic, and lordotic) by cutting the signals comprised 

between the starting and final apneas. Then, for each posture, the seven ΔλB SSEs and 

BHR were synchronized by identifying the first minimum point after the initial apnea as 

the beginning point for each trace. BHP was up-sampled at 25 Hz and synchronized with 

the respiratory signals consistently with the BHR starting points. To summarize, for each 

volunteer, nine signals were retrieved for the upright, kyphotic, and lordotic SPs, 

respectively, subdivided into seven ΔλB SSEs trends, one BHR, and one BHP signals. The 

executed data analysis is reported below in different SP recognition and RR estimation 

subsections. 
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i) Assessment of the wearable system in sitting posture recognition 

To assess the wearable system's ability to recognize the upright, kyphotic, and 

lordotic SPs assumed by the volunteers, a Naïve Bayes classifier [236] was implemented 

by exploiting the seven SSEs and BHP signals. It is a simple but efficient classification 

method that permits to categorize a cluster of data by attributing class labels. Naïve 

Bayesian classification assumes features to be independent, although good results have 

been obtained even for dataset in which such requirement was violated [237], [238]. 

This classifier has been largely used for posture and gesture recognition tasks [239]–

[242] as allows easy algorithm development and rapid processing of large datasets. 

The raw ΔλB SSEs values collected for all the volunteers in the three SPs manually 

labeled as upright, kyphotic, or lordotic, considering BHP as the reference for the 

posture identification: 0° for upright posture, positive angles for the kyphotic posture, 

and negative angles for lordotic posture (see Figure 4.49, bottom plot). The entire 

dataset consisted of a matrix 1760000x8 containing the ΔλB SSEs belonging to the 10 

volunteers in columns ranging from 1 to 7, and the corresponding labels in column 8. 

Each volunteer presented an equal number of values for each of the three SP classes. 

The classifier was trained and validated on the data of seven subjects (i.e., 70% of the 

dataset) using a 7-fold cross validation method (i.e., leave-one-out approach [243]) 

which consisted, for each iteration, of training the algorithm on the data of six subjects 

and validating it on the excluded ones. The classifier obtained was then tested on the 

on the remaining three subjects’ data (i.e., 30% dataset). The classification 

performances for training and testing were evaluated in terms of accuracy percentage 

(A%), which is defined as in Equation 4.18 for multi-class problems [244], [245] 

A% = 
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝐶𝑖
𝑁
𝑖=1

 ·100 (4.17) 

where N is the number of classes (i.e., 3), TPi and Ci are the numbers of true predictions 

and the total number of observations made for the i-th class, respectively. Also, for each 

class and both in the training and testing phases, the true positive rate (TPR) and false 

negative rate (FNR) were evaluated as indexes of sensibility and specificity, respectively. 

An average accuracy of 96.9% was obtained for the training phase, while a value of 

97.6% was achieved for the test phase. Moreover, the values of TPR and FNR are 

reported in Table 4.11 for the upright, kyphotic, and lordotic SPs. In all the SPs, high 

percentages of TPR were obtained, ranging between 93.5% and 100%.  

  



162 
 

Table 4.11. TPR and FNR calculated for the three postures in the training and test phases. 

 

ii) Assessment of the wearable system in respiratory rate estimation 

To estimate RR in the three SPs, the seven ΔλB SSEs and BHR signals related to each posture 

were analyzed. Signals were detrended, and a 1st order Butterworth pass-band filter 

(0.05 Hz and 1 Hz of cut-off frequencies) was implemented to minimize the frequency 

content not related to the respiratory activity. 

The analysis in the frequency domain was performed to investigate the PSD of all 

the SSEs and BH signals. To preliminary assess which of the seven SSEs would be the 

most informative to retrieve RR, a first Welch’s overlapped segment averaging estimator 

was applied on the 10 min ΔλB SSEs trends with a window length equal to the length of 

the analyzed signals. For each volunteer and posture, the SSE corresponding to the 

maximum value of the power spectrum was chosen among the seven as the best 

representative of respiratory pattern. Then, a second Welch’s overlapped segment 

averaging estimator was applied to the chosen ΔλB SSE and the BHR with a hamming 

window of 45 s length, 50% overlap value between windows, and update time of 5 s. 

The RR (expressed in breaths per minute - bpm) was calculated for each window as 𝑅𝑅𝑖= 

60·𝑓𝑅𝑖 where 𝑓𝑅𝑖 is the frequency (given in Hz) corresponding to the maximal value of 

the PSD spectrum of the i-th window, which embodies the signal’s periodicity. An 

amount of 112 values of RR were computed both by the SSE and BH signals for each 

subject and SP. The RR mean (𝑅𝑅𝑎𝑣𝑟
𝑆𝑆𝐸and 𝑅𝑅𝑎𝑣𝑟

𝐵𝐻 ) and standard deviation (SD) values were 

retrieved. 

To quantitatively assess the capability of the wearable system to estimate RR, a 

comparison with the reference system was carried out by calculating the mean absolute 

percentage error among all the volunteers and in the upright, kyphotic, and lordotic SPs. 

The MAPE was obtained as indicated in Equation 4.19: 

MAPE = 
1

𝑛
∑

|𝑅𝑅𝑖
𝑆𝑆𝐸−𝑅𝑅𝑖

𝐵𝐻|

𝑅𝑅𝑖
𝐵𝐻  · 100𝑛

𝑖=1  (4.18) 

where 𝑅𝑅𝑖
𝑆𝑆𝐸 and 𝑅𝑅𝑖

𝐵𝐻 were the RR calculated in the i-th window from the SSE and the 

reference system signals, respectively, and n was the number of windows (i.e., 112). 

Moreover, the linear regression was executed to evaluate the correlation between the 
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𝑅𝑅𝑖
𝑆𝑆𝐸 and 𝑅𝑅𝑖

𝐵𝐻 of all the subjects in each posture. The R2 coefficient and the linear 

regression slope β (obtained for y=α+βx when α=0) were evaluated. Also, the Bland-

Altman analysis was performed to obtain the mean of differences (MOD) and the related 

limits of agreements (LOAs) values [210]. 

In Figure 4.50 (A), (B) and (C), the 𝑅𝑅𝑖
𝑆𝑆𝐸 and 𝑅𝑅𝑖

𝐵𝐻 and SD values calculated for 

every volunteer in upright, kyphotic and lordotic postures, respectively, show good 

agreement between the wearable system and the reference instrument. A difference of 

0.71 bpm was observed (i.e., volunteer 6 in lordotic posture), which is equivalent to the 

PSD plot resolution. Also, in Table 4.12, the average MAPE values on all the volunteers 

are reported for the three postures, showing the greater value in lordosis (i.e., 3.83%).  

In Figure 4.50 (D), (E) and (F), the correlation plots are shown for the three postures 

and the R2 and β values are reported in Table 4.12. β values range between 0.98 and 1 

for the three postures. R2 values are close to 1 in upright and kyphotic sitting showing 

good agreement with the linear fit, while the lordotic-related value is way lower (i.e., 

0.66). Furthermore, in Table 4.12 the MOD and the LOAs obtained through the Bland-

Altman analysis (see the plots in Figure 4.50 (G), (H), and (I) are presented for each 

posture. MODs are comparable along the three postures and close to zero. LOAs are < 1 

in upright and kyphosis, while in lordosis are slightly higher (i.e., 0.98 bpm and 0.76 bpm 

vs. 3.63 bpm, respectively). 

 
Table 4.12. MAPE, MOD, LOAS, R2 and β calculated for the three postures. 
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Figure 4.50. Analysis performed to compare the performance of the wearable system and the 

reference device in RR estimation. In (A), (B) and (C) barplots showing for each volunteer 𝑅𝑅𝑎𝑣𝑟
𝑆𝑆𝐸 

and 𝑅𝑅𝑎𝑣𝑟
𝐵𝐻  with the related SDs in upright, kyphotic and lordotic postures, respectively. The 

correlation plots displaying 𝑅𝑅𝑆𝑆𝐸  vs. 𝑅𝑅𝐵𝐻 in upright (D), kyphotic (E) and lordotic (F) postures. 
Bland-Altman plots showing the bias between 𝑅𝑅𝑆𝑆𝐸  vs. 𝑅𝑅𝐵𝐻values expressed as MOD (black 
solid line) ± LOAs (black dotted lines) for upright (G), kyphosis (H) and lordosis (I). 
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iii) Pilot test on additional subjects performing different depths and frequencies 

of breathing 

To test the ability of the implemented method to generalize, the algorithm was then 

applied to the data retrieved from three new subjects (all females, age 26.3±20.5 y.o., 

body mass 55.0±3.6 kg, and height 166.0±4.3 cm) wearing the wearable system (as 

detailed in Section 3.2.3, Subsection A, 100 Hz of sampling rate) and performing 

breathing tests assuming the three SPs under more challenging conditions. In particular, 

the experimental protocol was divided into two trials which were designed as follows: i) 

the subject was asked to breath at different frequencies by following the inspiratory and 

expiratory rhythm provided by a metronome. The trial consisted of 60 s of eupnea (i.e., 

set at 15 bpm [109]), 60 s of tachypnea (i.e., set at 30 bpm [109]) and 60 s of bradypnea 

breathing (i.e., set at 6 bpm [109]) interspersed with 5 s of apnea each. The exercise was 

repeated assuming each of the three SPs (i.e., upright, kyphotic and lordotic) (see Figure 

4.51 (a)); ii) the subject was asked to perform 5 s of apnea, 60 s of deep breathing (i.e., 

at the maximal lung capacity) followed by 5 s of apnea and 60 s of shallow breathing 

(i.e., drawing a reduced amount of air in the lungs). No indications on the breathing rates 

were given at this stage. Respiratory data were collected at 10 Hz of sampling rate by a 

digital spirometer (MIR Spirolab III, MIR, Rome, Italy). The average tidal volumes were 

found to be 2.24 L, 1.49 L and 1.90 L in upright, kyphotic and lordotic posture, 

respectively, for the deep breathing, and 0.68 L, 0.68 L and 0.71 L for the shallow 

breathing. Once again, the test was repeated for each of the three SPs (see Figure 4.51 

(b)). 

 
Figure 4.51. Representation of the experimental set-up and protocol carried out on three external 
subjects in different breathing conditions. 
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Raw data of each subject collected by the seven SSE were plot and the ΔλB value was 

achieved by subtracting the mean of the first 10 λB values in upright SP, as already 

detailed in Section 3.2.3, Subsection B. The model previously trained was tested on the 

dataset consisting of 270045 values for each SSEs (i.e., 90015 values for each volunteer), 

equally divided for the three class labels. An average accuracy of 97.5% was retrieved, 

while the TPR and FNR percentages are reported in Table 4.13. 

ΔλB signals of each SSEs in the three SPs of trial i) were split into the three 60 s traces 

corresponding to eupnea, tachypnea and bradypnea by identifying the signals 

comprised between two following apneas. The ΔλB SSEs of trial ii) were synchronized by 

means of the first minimum after the first apnea with the correspondent spirometer 

signals. Then the traces corresponding to the deep and shallow breathing were 

identified for each SPs. The RR were calculated for the wearable system for each 

breathing condition (i.e., eupnea, tachypnea, bradypnea, deep and shallow breathing) 

and posture by applying the method detailed in Section 3.2.3, Subsection B. MAPE 

values were evaluated by comparing the RR values retrieved by the wearable system 

and the ones imposed by the metronome (i.e., for the eupnea, tachypnea and 

bradypnea breathing) and obtained by the spirometer (i.e., for deep and shallow 

breathing). In Table 4.13 MAPE values are reported, showing an overall error < than 

3.6%. 

Table 4.13. TPR, FNR and MAPE calculated for the three postures in eupnea, tachypnea, 
bradypnea, deep and shallow breathing. 

 

3.2.2. Discussions 

In this section, the capability of a previously developed wearable system for 

rehabilitation monitoring purposes (refer to Paragraph 2, Section 2.3) to estimate sitting 

postures and assess RR was proven on 13 healthy volunteers performing breathing tasks 

assuming upright, kyphotic and lordotic sitting stances.  

To assess the wearable system’s ability to distinguish the upright, kyphotic and 

lordotic postures, a Naïve Bayes classifier was implemented, which, although basic, can 

prove very efficient. Satisfactory results have been obtained, as 96.9% and 97.6% of 
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accuracy was retrieved in the training and test phases conducted on seven and three 

subjects, respectively, while A= 97.5% was obtained by testing the developed model on 

three additional subjects performing different breathing tasks, so proving the model 

ability to adapt to new data. TPR percentages values were always > 92.5% in all the 

postures and 100% was always reported for the kyphotic class, due to the condition of 

greater strain of the SSEs during kyphosis which results in higher ΔλB dispersion and 

making this class more recognizable.  

Concerning the RR estimation, the performance of the proposed system was 

evaluated by comparing the measurements obtained with those of the BH. Such 

reference system was, in this case, preferred to the more canonical MoCap for reasons 

of convenience and ease of use. However, it is believed that this choice did not 

substantially influence the evaluation. In fact, BH’s performance may decrease for 

applications in dynamic scenarios (e.g., during sports activity), but the presented 

experiments were conducted under static conditions. In addition, 𝑅𝑅𝑖
𝐵𝐻 values were not 

obtained directly from the BH but were calculated by applying the same procedure 

explained in the subparagraph 3.2.1.B to the retrieved raw signals. The goodness of this 

process is also evidenced by the agreement between the wearable system and the 

reference one. In fact, no substantial differences were retrieved between 𝑅𝑅𝑎𝑣𝑟
𝑆𝑆𝐸  and 

𝑅𝑅𝑎𝑣𝑟
𝐵𝐻 . Moreover, the linear regression slope is > 0.98 for the three postures, while R2 

values are 0.98 in upright and kyphotic posture, while is 0.66 in lordotic one. Also, all 

MOD values are close to zero, with a maximum LOAs value of 3.63 bpm retrieved in 

lordosis. In the worst-case scenario, the MAPE was 3.83% (i.e., lordotic posture), while 

the kyphotic position obtained the lower value (i.e., 0.74 %). From a general point of 

view, the wearable system exhibits slightly better results in the kyphotic and upright 

positions, despite its performance remaining competitive even in lordosis. A potential 

explanation may be that the accentuated back arch experienced in lordosis causes the 

skin to wrinkle, resulting in a loss of adhesion of the SSEs. The good results achieved by 

applying the algorithm to the data retrieved by the three additional subjects proven the 

validity of the method in estimating RR, even in more challenging breathing conditions 

(maximum MAPE value < 3.6%).  

As already underlined, no FBG-based wearables have already been proposed for the 

simultaneous monitoring of posture and RR.  

Regarding posture assessment, several studies describing cushions and chairs 

embedding FBGs [180], [181] or, more in general, pressure or force sensors [246], [247] 

and exploiting different algorithms for sitting posture detection are reported. 

Nevertheless, the employment of cushions may affect the normal sitting physiology of 

the user, while the sensors’ integration process into seats and backrests may result in 

substantial changes in the ergonomics of chairs, which could no longer conform to the 

characteristics required by the guidelines. Instead, the proposed wearable system 

represents a viable solution to these problems since it does not affect the sitting 

posture. Besides, this WD permits continuous monitoring, in contrast with smart 
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cushions and chairs whose performance is affected by loss of contact with the user. In 

contrast, wearables dedicated to RR monitoring are largely widespread, and mainly 

consist in chest straps [140], [144], smart T-shirts [133], [134] and corsets [137]. 

Compared to other wearables, the presented device showed some advantages. For 

example, it permits discrete application underneath ordinary clothes. This could 

represent a significant advantage as the use of given garments might not be pleasant to 

workers who need to adopt specific dress codes or, more in general, which would not 

limit their choice in dressing. Moreover, wearability-related issues are overcome thanks 

to the SSEs’ modularity which makes the system adaptable to any body shape. Besides, 

smart textiles embedding sensing technologies could present concerns regarding the 

washing method to be adopted, while no sanitizing is required for our wearable system 

as the double-sided adhesive tape used to attach the SSEs is disposable. 
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Chapter 5 – Conclusion 
 

1. Achievements of the thesis work 

With the gradual increase in technological innovation that has led the occupational 

and healthcare sectors to a 4.0 level, wearable devices have played increasingly 

prominent roles in everyday life, as they allow continuous and non-intrusive monitoring 

of the individual's all-round health status [248]. 

In the past twenty years, there has been relevant exploitation of FBG sensors in the 

development of smart wearables [76], [249], [250]. These sensors’ features (such as 

small dimensions, flexibility, high sensitivity to strain and immunity to electromagnetic 

radiations) have enabled the manufacture of smart systems (in the form of textiles, soft 

flexible devices and 3D printed elements) which are highly performant, lightweight, 

compliant with the human body shape, and compatible with the presence of 

electromagnetic fields. These characteristics make such devices suitable for 

occupational and clinical scenarios.  

Building on this trend, this research work aimed to design and develop novel FBG-

based wearable systems suitable for monitoring respiratory parameters and trunk 

motion activity in occupational and clinical environments, respectively. 

This work lays its basis on the recognition of the different requirements that each 

device had to meet in terms of efficiency, wearability, usability, and acceptability.  

The design study aims to answer to these requirements by proposing a system that 

is highly efficient in the required task, and, at the same time, that is resistant to daily 

usage. In addition, the user's characteristics, such as anthropometric features, daily 

habits or disabilities, must be taken into account to ensure the correct fit and to offer a 

solution that is easy to use and suitable for the environment in which the system is to 

be used.  

At this juncture, starting from the literature, several strategies were identified that 

best allowed for the realization of a high-performing wearable which could overcome 

the limitations of the solutions that have been proposed in research up to that point. 

On the respiratory side, the development of the wearables for RR detection which 

were presented in this work has proceeded along two separate paths, exploiting two 

different FBGs’ configurations.  

The first proposal consisted of two elastic bands to be worn around the torso and 

equipped with a total of four dumbbell-shaped soft flexible sensors dedicated to the 

detection of respiratory-related chest-wall movements. The strengths of this solution lie 

in the optimized shape of the sensors (conveying the strain on the central sensitive 

portion of the flexible sensors) and the adoption of a multi-sensor approach, which 

permits data to be collected at different sites of the torso instead of just one (as in the 
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canonical approaches). The redundancy of information has proved to be crucial because 

i) allows the detection of RR even in case that a sensor fails or in presence of artefacts 

(e.g., motion artefacts) and ii) enables the monitoring of respiratory patterns even in 

subjects affected by diseases in which the breathing activity is impaired.  

The second solution came as an accessory whose sensitive part (i.e., an FBG 

functionalized in agar film) is intended to be placed under the nostrils to record the ΔRH 

of the inspiratory/expiratory airflows. The advantages brought by this system are i) open 

and non-invasive design (as opposed to masks or nasal cannulas) that avoids feelings of 

facial constriction and discomfort, and ii) small footprint, which also allows its usage in 

confined spaces such as MRI environments.  

Turning instead to the trunk monitoring of movement and posture, unlike in the case 

of breathing, the literature lacked the presence of efficient wearable solutions based on 

FBG sensors. Therefore, the main difficulty encountered in this field was to answer the 

question of whether this technology (already widely used to detect small movements of 

various kinds) was indeed suitable for identifying large ranges of movement such as 

those related to the trunk. And, if so, which sensor configuration could have maximized 

the performance of the wearable without damaging the sensing parts. 

Always bearing in mind that it was necessary to encapsulate the FBGs in soft, flexible 

silicone matrices to strengthen the fiber, several configurations have been explored. A 

first basic proof of concept was made by equipping a commercial T-shirt with flexible 

sensors placed on the back. This trial proven the feasibility of using FBG technology in 

monitoring back movements, but also emphasized the need to strengthen the sensitive 

elements. Thus, a wearable elastic structure with a single sensor element was 

fabricated, showing high wearability and ease-of-use. Lastly, a further step forward was 

made by producing a multi-sensor system for the entire back area monitoring. Moving 

from one solution to another makes the evolutionary trend of the shape of the sensing 

elements visible. In fact, ever smaller and thicker sensitive elements were fabricated to 

protect the embedded FBGs. 

Also in this case, the adoption of a multi-sensor approach was of prominent 

relevance as it provided the opportunity to investigate a previously unexplored field, 

that is the simultaneously monitoring of both the respiratory path and trunk motion 

activity by means of FBG-based wearable systems. In particular, significant innovation 

has been brought by the use of the multi-sensor system which, together with RR 

monitoring, enabled the recognition of the three most common sitting postures via 

Naïve-Bayes classification.  

In conclusion, in this thesis work, several wearable solutions were proposed for 

respiratory and trunk posture monitoring, overcoming some limitations of existing 

systems in respiratory field, and introducing brand new devices for the back motion 

monitoring.  
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The systems’ development process always took into account the aim and the 

requirements that a wearable must meet but, most importantly, it helped to produce a 

tool tailored to the end user’s needs. For this reason, different devices have been 

proposed for the same objective. In fact, although both effective, in different contexts 

one solution might be preferred over another. Therefore, it is possible to state that there 

is no perfect wearable system suitable for all applications but, given a defined goal and 

boundary conditions, a single wearable can be developed to be the optimal solution in 

relation to that context.  

 

The results showed that all the solutions presented can provide useful support in 

representing an overall picture of the users' health status. More in particular, referring 

to the clinical context, such devices could support clinicians in the management of the 

hemiplegic patients in two main modalities:  

i) Objective assessment of the patient's level of disability: to date, the 

assessment of the disability status is performed by the clinicians through the 

subjective evaluation of the patient's ability to perform specific tasks (i.e., 

assignment of the Fugl-Mejer index). The use of the described WDs could 

provide information on the respiratory and motor activity as a corollary, in 

order to execute conscious evaluations supported by objective data. In 

addition, a comparison of these data over time could provide interesting 

feedbacks on the evolution of the patient's health status and thus on the 

progress of the rehabilitation path; 

 

ii) Objective evaluation of the correct execution of rehabilitation exercises: 

constant feedback while performing rehabilitation tasks could make the 

patient more aware and motivate him/her to perform the exercises correctly. 

WDs can also support the clinicians in assessing the correctness of the 

execution and defining personalized strategies to improve motor recovery.  

Moreover, in the occupational scenario, the use of such systems could make the 

difference in two respects: 

i) Awareness on the sitting position assumed: being aware of the acquired 

posture can help sedentary workers maintain proper sitting thus preventing 

musculoskeletal disorders, for the benefit of both the worker and the 

employer; 

 

ii) Awareness on the state of psychological stress: altered RR values under 

conditions of physical rest are indicative of stress-related psychological 

diseases. Awareness on the condition of mental load can stimulate the 

worker and the employer to take steps for stress management.  
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2. Limitations  

The main limitation in the use of such devices would be the encumbrance of the fiber 

optic interrogation unit. In fact, while in static contexts (such as in videoterminal working 

scenarios or during MRI examinations) this does not represent a major drawback, the 

size of fiber optic interrogators may limit the usability of the wearable devices in more 

active applicative contexts. However, constant technological advancement is leading to 

the production of portable interrogators of reduced sizes that do not need cable 

connection since they are powered by re-chargeable batteries and allow remote data 

transmission [251]–[253]. 

A second limit is represented by the high cost of the optical interrogation units. 

Prices depend on the device performance (mainly measured in terms of accuracy, 

resolution, sampling rate, number of channels and acquisition bandwidth). Of course, 

higher-performance devices will have higher prices, starting from a minimum of 

thousand euros, up to tens of thousands of euros.  Such costs could be a major limitation 

for the use of FBG-based wearables. In fact, an expensive initial purchase of a large 

number of interrogators may not be sustainable, especially by small companies or small 

hospitals. However, constant technological innovation increases competition in the 

market, leading to a constant lowering of prices.  

 

3. Recommendation for future works  

Based on these conclusions, the aspect of the research that lends itself to greater 

investigation might be the use of the wearable systems in combination with classifiers. 

In fact, the large amount of high-quality data collected by FBG-based sensors can be 

used for database creation in the service of classifiers and machine learning. This 

approach could provide new insights into the classification of new sitting postures or 

can help recognizing conditions of abnormal breathing. 

Starting from the basic classification algorithm applied in [235], practitioners may 

investigate new methodologies to enhance the quality of the classification (for example 

by applying the principal component analysis [254]–[256] or different normalization 

techniques [257], [258]). 

Further efforts could be devoted to the development of a GUI that displays the user's 

posture and breathing activity in real time. This might be particularly useful as it would 

help identify the range of back curvature outside of which sitting posture is considered 

incorrect or detect compensatory movements performed during rehabilitation sessions. 

In addition, it could help in real-time recognition of respiratory stress situations that 

patients might experience due to overly intense rehabilitation sessions. 
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