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Abstract

In the last 70 years, the evolution of technological and surgical techniques
in the field of the upper limb prosthetic have leaded even more advanced solu-
tions to address the future research towards the development of prostheses that
are functional and able to mimic the lost upper limb behavior, replicating the
performance of the human arm. To this purpose, nowadays, the surface elec-
tromyography (sEMG) signals represent a promising approach for decoding the
motor intention of amputees with different amputation level. Several approaches
based on proportional amplitude methods or simple thresholds on sEMG signals
have been proposed, in literature, to control a single degree of freedom (DoF)
at time, without the possibility of increasing the number of controllable multiple
DoFs in a natural manner. To address this relevant issue, Pattern Recognition
(PR) strategies have been proposed to reach a more natural and intuitive con-
trol of myoelectric prostheses, compared to the conventional myoelectric control
methods. In detail, the major potentiality of the PR methods has been to add
multiple DoFs by keeping low the number of electrodes and allowing the discrimi-
nation of different muscular patterns for each class of motion. However, the use of
PR algorithms to simultaneously decode both gestures and forces has never been
studied deeply.

Also the simultaneous control of a poliarticulated prostheses with several DoFs,
related to the elbow, wrist, and hand joints, has to be yet investigated deeply to
ensure greater dexterity than the conventional control strategies. This is consid-
ered a needed capability to restore upper limb functionality, especially for tran-
shumeral and shoulder disarticulation amputees who have undergone Targeted
Muscle Reinnervation (TMR) surgery. This surgical technique has been consid-
ered innovative and relevant for improving, together with PR strategies, prosthetic
control by adding the number of controllable muscular sites. Indeed, the ultimate
goal of the TMR is to obtain reinnervated areas that act as biological amplifiers
of the motor control.

In this scenario, the potentiality of future clinical application of TMR and PR
control strategies in the control of multifunctional prostheses was investigated to
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add value to the current knowledge in the field of upper-limb prosthetics. In de-
tail, this thesis aims at providing promising PR-based strategies for (i) controlling
simultaneously, with a hierarchical classification strategy, the hand/wrist gestures
and exerted forces during grasping tasks; (ii) discriminating, with a parallel clas-
sification strategy, 27 motion classes related to the elbow, hand, and wrist joints.
In detail, the parallel classification strategy uses three joint classifiers, one for
each DoF. If only one of the three joints is involved in the desired movement, the
parallel PR strategy will output a 1 DoF motion class; if instead, two or three
joints are activated in a complex motion tasks, the parallel classification strategy
will output a 2 or 3 DoFs motion class.

To reach the first objective, a hierarchical classification strategy was developed
and validated on 31 healthy subjects and 15 transradial amputees, with the aim to
discriminate seven hand/wrist gestures, as well as the desired three force levels to
exert during grasping tasks. In detail, the results from healthy showed an average
F1Score about equals to 96 % for the hand/wrist gestures and equals to 98 %
for the force classifiers, with both the Non Linear Logistic Regression (NLR) and
Linear Discriminant Analysis (LDA) classifiers.

To evaluate the robustness of the hierarchical PR system, both offline and in
real-time, a prosthetic system composed of a hand (RoboLimb) and a wrist module
(WristRotator) was employed by trans-radial amputees when they manage simul-
taneously the desired hand/wrist gestures and the three force levels. In detail, the
results from transradial amputees reached an average F1Score values equals to 90
% for the hand/wrist gestures and equals to 96 % up to 98 % for the force clas-
sifiers, when considering the Logistic Regression (LR), NLR and LDA classifiers.
Also considering the real-time performance metrics, the Mann-Whitney test (U-
test) with Bonferroni correction points out no statistically significant difference
between the three algorithms.

To the second purpose, a parallel classification strategy was developed and
validated on 15 healthy subjects, to provide the simultaneous classification of 27
discrete and combined motion classes, by keeping the number of electrodes to a
bare minimum and the classification error rates under 10 %. In detail, the discrete
1 DoF motion classes involved only one joint, while the combined 2 or 3 DoFs
movements, provided the simultaneous activation of two or all the three joints. In
detail, the mean F1Score values were above 90 % for all the joint classifiers, with
both the LR and LDA algorithms. About the real-time results, the performance
of the LR algorithm were statistically better than that obtained with the LDA,
despite this last was considered the benchmark classifier for real-time employment.
Then, also an analysis of the preliminary offline and real-time results, obtained
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from a TMR subject, was carried out. In this case, the classification performance
of the TMR patient reached lower mean F1Score values than that on healthy
subjects, and they were about equals to 86 % for LR and LDA classifiers. From
this preliminary results, there wasn’t a statistical significance difference between
the performance obtained with the LR and LDA algorithms.

In conclusion, this thesis aims to provide useful insights into the choice of the
suitable classification strategies to discriminate simultaneously hand/wrist ges-
tures and grasping forces and to classify complex tasks involving multiple joints.
The outcomes of these objectives reveal that the use of non linear classification
algorithm, as NLR, is as much suitable as the benchmark LDA classifier for imple-
menting a hierarchical sEMG-based PR system, able both to decode hand/wrist
gestures and to associate different performed force levels to grasping actions. This
result is also more appreciable if we consider that we have tested this PR strategy
in clinical practice, by employing a robotic hand and wrist module. Regarding the
second purpose, the obtained results strongly encourage further investigation of
the parallel classification strategy’s performance for others TMR patients. In this
way, an even more level of robustness and reliability of the proposed PR system
can be reached to control simultaneously and in a natural way different joints of
a complex multi-DoFs prosthetic device.
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Alla mia famiglia,

Oramai fra di noi solo un passo
Io vorrei, non vorrei ma se vuoi

Come può uno scoglio
Arginare il mare

Anche se non voglio
Torno già a volare

Lucio Battisti
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1
Introduction

Upper limb amputation is a traumatic event that affects the quality of life by fully

reducing the multifunctional hand capability during the activities of daily living

(ADLs)1. Especially the hand function is the result of the evolution of the cor-

tical mechanisms and sensory cortices in human beings2: the development of the

neural pathways responsible for motor control and the importance of also sensory
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neuronal networks responsible for the sensory feedback have made the restoration

of arm and hand function even more challenging. In this scenario, the evolution

of technological and surgical techniques has made the restoring of the upper limb

function possible3. However, the aim of obtaining an even more intuitive control

of multiple joints using advanced prosthetic systems remains one of the princi-

pal challenges in the prosthetic field. Since 19484, the most common approach

for translating the user’s intention into arm and hand movements was based on

surface electromyography (sEMG) signals. Over the years, it was employed for

controlling, in a non invasive way, even more complex multifunctional prosthetic

system with several degrees of freedom (DoFs)5.

In literature, several solutions have been proposed to control from one DoF to

multiple DoFs6,7. The conventional techniques8 are based on the on/off strategy,

typically used to control one DoF by setting a threshold based on the EMG

amplitude of two residual antagonist muscles; the proportional control strategy

which allowed to apply to the motor values of the voltage proportional to the

contraction intensity of EMG signals. These conventional techniques are often

associated with different methods for selecting the joint to be controlled, as the the

co-contraction and the simultaneous method. However, the first method has the

principal limit of controlling only one joint at a time. While the second allows the

movement of more than one joint at the same time, but the number of controllable

DoFs depends on the number of independent EMG control sites1. Moreover, these

control methods, despite being extremely robust, require considerable cognitive

effort and are less intuitive and unnatural than more complex techniques based

2
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on machine learning algorithms.

To overcome these limits, the Pattern Recognition (PR) strategies have been pro-

posed to reach a more natural and intuitive control of myoelectric prostheses, com-

pared to the conventional myoelectric control methods9. Indeed, the PR strategies

have the advantage to not require independent muscle sites, but to consider muscu-

lar activation patterns of different muscle sites to classify several motion classes1.

Different classification algorithms have been proposed in literature, including Eu-

clidean Distance, Non Linear Logistic Regression, k-Nearest Neighbors (kNN),

Hidden Markov Model (HMM), Artificial Neural Network (ANN), Support Vec-

tor Machine (SVM), Linear Discriminant Analysis (LDA)10. However, different

arm positions11, electrode shift12, signal nonstationarity13 and force variation7

can affect the PR accuracy and robustness. In addition, physiological factors as

motor unit (MU) recruitment, MU firing rate and contraction type (e.g. isomet-

ric, isotonic, concentric or eccentric) make difficult the extraction of sEMG-force

relationship due to non-linear factors14,15,16.

Although the presence of these confounding factors, the PR techniques have

a key role in increasing the amputee’s ability to control the prosthesis, in a more

natural way, by increasing the number of controllable DoFs, by keeping low the

number of employed electrodes17. However, the progresses made in this field based

on EMG-PR approach are not yet enough to avoid the abandonment of the pros-

thetic device. In detail, many users imputed the major cause of the abandonment

to the lack of robustness and unnaturalness of the control techniques18.

In particular, requirements of prosthesis users are that control strategies must
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be simple, direct, and user-friendly19.

The aforementioned limits are highlighted when it is necessary to control more

degrees of freedom, as in the case of transhumeral amputations or shoulder dis-

articulation amputees.To overcome these issues, an invasive surgical intervention,

as the Targeted Muscle Reinnervation (TMR), developed by Dr. Todd Kuiken

and his team at the Rehabilitation Institute of Chicago20, have reached major

advancement in the field of upper-limb prosthetics, to control a multiple DoF

prosthesis with a high level of dexterity. In detail, after TMR surgery, the resid-

ual nerves of the amputated limb are reinnervated to new target muscles that

allow users to control the prosthesis more intuitively. In this way, the ADL can

be performed in a more simply way, thanks to the neural information restored on

the reinnervated muscle. The patient’s intention can be translated into motions,

through the amplified EMG signals of these targeted reinnervated muscles, used

to control the prosthetic device.

However, it is worth noticing that the optimal control system depended also

on the amputation level: bilateral shoulder disarticulation (BSD), shoulder disar-

ticulation (SD), transhumeral (TH); transradial (TR). For each amputation level,

the most appropriate control strategies that make myoelectric prostheses control

easy, reliable, efficient, and therefore for lowering the users’ cognitive burden, has

yet to be assessed21.

This thesis has the twofold purpose of developing and validating novel PR-

based control strategies to (i) allow users, as the TR amputees, to control simul-

taneously both hand/wrist gestures and force levels by obtaining an intuitive and
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fluid multi-DoFs prosthetic control; (ii) to control simultaneously different pros-

thetic modules of hand, wrist and elbow, especially for amputee with BSD, SD,

and TH. For the first purpose, the performance of the hierarchical classification

approach that allowed to classify simultaneously the hand/wrist gestures and force

levels, during grasping tasks, was evaluated, firstly on 31 healthy subjects and,

then, on 15 transradial amputees. A statistical comparison, based on Wilcoxon

Signed-Rank test, was applied among different supervised machine learning tech-

niques, based on the Non-Linear Logistic Regression (NLR) and (LDA) classifiers.

This serves to evaluate which classification algorithm is the most suitable for

the hierarchical classification approach, when both hand/wrist gestures and three

force levels were discriminated simultaneously. Then, this study was extended

and adapted to allow 15 transradial amputees to manage simultaneously desired

hand/wrist gestures and three force levels, with a prosthetic system composed of

a hand (RoboLimb) and wrist module (WristRotator). In detail, the hierarchical

classification system, based on a Finite State Machine, was validated by intro-

ducing both the offline and real-time performance. To improve the robustness of

the introduced PR strategy, also the Logistic Regression algorithm (LR), besides

the NLR, and the LDA algorithms, were compared in terms of performance with

an without the features extraction (FE) step, by carrying out statistical analysis

based on the Mann-Whitney test (U-test) with Bonferroni correction. For the

second purpose, a novel PR-based parallel classification strategy was developed

to recognize both discrete and combined elbow, wrist, and hand motions. This

PR strategy was implemented by using two PR algorithms (LR and LDA) and
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both the offline and real-time performance metrics were evaluated on 15 healthy

subjects and a statistical comparison among algorithms was made to assess the

best solution for classifying simultaneously up to 3 DoFs motion classes. In detail,

each DoF is related to the motion of each considered joint (as the elbow, wrist,

and hand). If only one joint was involved in the desired movement, the parallel

PR strategy classified a discrete 1 DoF motion. Instead, complex motions pro-

vided the simultaneous activation of 2 or 3 DoFs, according to the number of the

joints employed in the motion tasks. The 27 discrete and complex elbow, hand

and wrist motions were classified by keeping the number of electrodes to a bare

minimum (six sEMG sensors) and the classification error rates under 10 %.

This thesis is structured as follows:

• In Chapter 2 an overview of PR approaches, developed for upper-limb pros-

thesis control, is reported, by focusing on the main strategies for gesture

and force decoding and for the multi-DoFs prosthetic control.

• Chapter 3 reports the hierarchical classification PR-based approach vali-

dated on 31 healthy subjects and 15 transradial amputees with the aim to

discriminate the desired hand/wrist gestures, as well as the desired force

levels to exert during grasping tasks.

• In Chapter 4, we present the parallel classification system validated on 15

healthy subjects for the simultaneous multi-DoFs control of elbow, wrist,

and hand joints. The system discriminates 26 motion classes and no-motion

class. Then, also the preliminary results obtained on one TMR patient were
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analyzed.

• In chapter 5, conclusion and future works are drawn.
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2
Overview on PR-based control strategies

In this chapter, a literature analysis of PR approaches developed for upper-limb

prosthesis control is reported. The main strategies for gesture and force decoding

and for the multi-DoFs control of several prosthesis joints are pointed out.

8
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2.1 Introduction

Amputation of the upper limb causes a huge decrease in dexterity, with a signif-

icant reduction in patients’ quality of life. People who have had an upper-limb

amputation need a prosthesis that replaces the lost arm functionality. It is very

difficult to find epidemiology data on amputations of the upper limb. Over the

world, the population of amputees was estimated as 10 million, 30% of whom are

upper limb amputees22. Focusing on European countries, in Italy, there were 2720

upper-limb amputations in 2018, equal to 18% of total amputations23; in 2003,

in the UK, there were 5767 new amputations, 5% was upper limb amputees24.

Between 2004 and 2013, only in the adult hand emergency clinic of the Nancy

University Hospital (France), 2247 patients suffered an upper limb amputation

(partial and pediatric amputation excluded) that was traumatic in 76.32% of

cases25. Also in the USA, approximately 340,000 people have suffered the loss of

a limb and every year there are 10,000 new upper limb amputations, as reported

by the National Center for Health Statistics26. The relevance of the upper limb

loss has pushed international research to seek new prosthetic solutions1.

Prosthesis technology ranges from passive or cosmetic typologies on one end

to active or functional types on the other (Figure 2.1).

Cosmetic prostheses are used to restore only the aesthetic aspect27, while ac-

tive ones are used to restore, as far as possible, the functionality of the lost arm.

Active prostheses can be further classified into body powered, that exploit ca-

bles to control the device with the more proximal joints, and externally powered

9
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Figure 2.1: A Block diagram describing the types of Upper Limb Prostheses and control ap-
proaches.

(electric or pneumatic)28, which allow the movement of the motors of the joints

making up the prosthesis29. Externally powered prostheses require a control sys-

tem in order to associate an input signal (generated by a sensor and/or a button)

to an output action. One of the most used control systems is the myoelectric

one, which exploits the electromyographic (EMG) signals of a specific muscle to

provide discrete movement and of an antagonist muscle group to make comple-

mentary movements. EMG signals have been used to control prostheses since

19484 and, over the years, various control strategies have been identified: among

these, the control strategies that directly associate a movement of the prosthetic

limb to an EMG input signal are usually referred to as Direct Myoelectric Control

or simply Direct Control (DC). The conventional techniques, to control from one

Degree of Freedom (DoF) to multiple DoFs8, are: the on/off strategy, typically

10
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used to control one DoF and allowing to perform two opposite movements based

on the exceeding of a preset threshold by the EMG amplitude of two residual

antagonist muscles; the proportional control strategy which considers, instead,

the voltage applied to the motor proportional to the contraction level/intensity

of EMG signals7.

Such control strategies are generally associated with a method for selecting the

joint to be controlled. The first one is the co-contraction method, which allows

the patient to change from one joint to another by simultaneously contracting the

muscles used to control the joint; however, the principal limit of this technique is

that it is possible to control only one joint at a time. The second is the simultane-

ous method that is used to control multi-DoF prostheses, handling more than one

joint at the same time. However, in this case, the number of controllable DoFs

depends on the number of independent EMG control sites1.

Thus, several control strategies were proposed in the literature for making myo-

electric prostheses control easy, reliable, efficient, and therefore for lowering the

users’ cognitive burden. However, the optimal control system that allows users

to control forces and gestures and multiple DoF prosthesis with dexterity, and

by using intuitive interfaces between the user and the device, has not yet been

developed21. In the following Sections (Sect. 1.2 and 1.3), the principal PR tech-

niques that allowed to control, in a natural way, myoelectric prostheses will be

presented.
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2.2 State of art of PR approach to decode gestures and forces

The use of surface electromyography (sEMG) allows the non-invasive extraction

of pattern information useful to control active prosthetic hands. In the last 70

years, several solutions have been proposed to extract gestures information from

sEMG1,6; the most simple were based on on-off30, on Agonist/Antagonist31 and

Proportional Control32.

Pattern recognition methods enabled performance improvements to reach an

intuitive and coordinated control9. Moreover, these techniques allowed the in-

creasing of the number of controllable Degree of Freedoms (DoFs)1. However,

the use of PR techniques based on EMG signals that allowed amputees to restore

simultaneously the hand/wrist gestures and force levels during grasping tasks, has

not been studied deeply. Moreover, including also natural sensory feedback that

allowing the prosthetic user to understand the force felt by the prosthetic hand

remains challenging. The lack of prostheses to include sensory feedback informa-

tion, make users unable to feel the prosthetic device connected to their hand and

it is one of the main reasons for the high percentage of prosthesis abandonment

(>30%)33. Thus, especially during grasping tasks that considered the interaction

with objects, the muscle contraction forces have to be modulated to control the

grasp force at different target force levels.

In literature, two main approaches, based on mathematical models and ma-

chine learning techniques, have been proposed to find a relationship between mus-

cular activation and force. Regarding the mathematical models, the force estima-
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tion, based on surface electromyographic measurements, was determined through

a sEMG-force mathematical relationship, by applying Nonlinear Wiener Hammer-

stein (NLWH) and Spectral Analysis Frequency Dependent Resolution (SPAFDR)

models34. In Buchanan et al.35, a computational neuro musculoskeletal model of

the human arm was presented with the aim to estimate muscle forces, joint mo-

ments and joint kinematics from neural signals. Moreover, “crosstalk risk factors”

(CRF), as the dependency of the relationship between the sEMG signals, muscle

length and isometric contraction force, had to be quantified to understand the

effectiveness of the muscular co-ordination in generating force16. Instead, about

the machine learning techniques, the following studies have tried to address the

problem of force estimation. In Srinivasan et al.36, a method for estimating forces

from surface electromyography (sEMG) signals was proposed by using an Artificial

Neural Network (ANN). Wu et al.37 presented a force estimation method employ-

ing a Regression Neural Network (GRNN) trained with sEMG and force signals.

In the most recent study38, force signals were divided in different grades from 0 N

to 16 N, expressed as percentage of the Maximum Voluntary Contraction (MVC).

They used SVM to establish nonlinear regression relationship between sEMG and

force. Lv et al.39 used Linear Discriminant Analysis (LDA) to classify five finger

gestures at two different levels of force (i.e. 10% MVC and 50% MVC), by using

EMG and accelerometer signals. Li et al.9 proposed a method based on deep neu-

ral network to derive sEMG-force regression model for force prediction at eight

different force levels. In order to investigate the performance of PR system in

presence of variations in force, a LDA classifier with Time-Domain (TD) features
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extraction was evaluated7, by using data of 10 classes performed at 20% and 80%

of the strongest and reproducible contraction, except for the tenth class of no

motion. The LDA classifier performed an error rate equals to 17% when trained

and tested using data of 11 healthy subjects at all force levels. The error increased

at 31−44% when trained at one force level and tested with all force levels. Sub-

sequently, the effect of contraction strength on pattern recognition based control

was presented in Scheme et al.40 by using a LDA classifier trained with dynamic

ramp data of 10 healthy subjects, the classification error significantly improved

(11.16±0.54%).

Different strategies have been developed by combining the above techniques to

make the control most fluid and intuitive for the user. Two proportional control

algorithms were used to obtain a robust and proportional velocity commands

that could improve the usability of PR (pattern recognition) based control41. In

Fougner et al.42, a novel pattern recognition system with mutex on-off control

or proportional control of a commercial prosthetic hand and wrist was presented.

In Young et al.43, three classification strategies were introduced and compared in

order to provide simultaneous DoFs control. The first classification approach used

a single linear discriminant analysis (LDA) classifier to discriminate both discrete

and combined motions. All the discrete and combined gestures were considered

as separated classes. The second proposed approach was based on a hierarchical

classification strategy and consisted of a hierarchy of LDA classifiers. The highest

classifier in the hierarchy determined a motion class for a single DoF by using

both discrete and combined motion data. The output of this classifier determined
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which classifier of the second level could be used for discriminating the motion

class of a second DoF. Finally, the parallel classification strategy employed one

LDA classifier for each DoF and the decision of the single classifier is independently

defined. The parallel classification strategy was presented also to either allow the

simultaneous control of three-digits of a monkey44 or to control the elbow and

hand/wrist movement of an active myoelectric transhumeral prosthesis45.

A parallel classification strategy46 was introduced for investigating the effect

of force variation on sEMG-PR, by employing three parallel classifiers trained with

data acquired at low, medium, and high force levels, respectively. The results were

obtained on three able-bodied subjects by using four Trigno Wireless System for

recording the no-movement (NM) and the following four motion classes, at three

force levels: hand open (HO), hand close (HC), wrist extension (WE), and wrist

flexion (WF), and the no-movement (NM). The force levels were set as follows: the

high, medium and low force level was defined as 80 %, 50 % and 20 % of the MVC,

respectively. For PR strategy, the mean value of MAV was compared with the

predefined thresholds to select the target classifier related to each force level; then

the selected classifier output the classification result. They demonstrated that the

use of the LDA algorithm with TD features (MAV, WL, ZC, and SSC) increased

the classification accuracy at different force levels with an average classification

rate of 98.8%, with respect to the current method (91.9%).

In Castellini et al.47, three trans-radial amputees were asked to perform six

grasp postures, and also the force levels were recorded according to three modali-

ties: teacher imitation that consisted of asking amputee to imitate with his stump

15

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



the teacher’s postures (healthy subject). The amputee had to reproduce the grasp

with maximum strength, while the teacher mark the postures/grips by gripping

the force sensor; regarding the bilateral action, the amputee had to grip the force

sensor with his healthy hand and do the same thing with the phantom limb;

the mirror-box is similar to the bilateral action but the mirror-box was added.

The regression method, based on ε-SVR technique, was used to force estimation

and the root mean-square error (RMSE), normalised with respect to the range of

the force signal, was introduced as the performance index. The SVM classifiers

approximated the force levels with an error of 7 %.

No hierarchical strategy has ever been proposed to simultaneously identify

desired gestures and forces.

Regarding the possibility of embedding the force feedback within the prosthe-

sis, for obtaining a closed-loop prosthesis control, the following studies have been

investigated.

Generally, the vibrotactile stimulation is the most common choice to provide

the force feedback48,49. In Chatterjee et al.50, an haptic feedback system was

employed to modulate, with a vibrotactile stimulus, the grasping force at three

different force levels. In Meek et al.51, a motor-driven pusher was able to measure

the force against the skin by using a transducer placed on the final part of the

pusher. However, few studies demonstrated how sensory information can be ex-

ploited to finely control a prosthetic hand. For instance, in Zollo et al.52, electrical

stimuli were employed to translate both force and slippage signals. In this way,

the amputees were able to directly control the grasp stability and slippage infor-
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mation and to modulate the force level. Regarding the prosthesis control based

on pattern recognition (PR) systems, it was demonstrated that force variations53

can affect their performances, in terms of accuracy and robustness. There is little

evidence about how grasping force variations affected the performance of gesture

recognition when the force level changed. One reason for the degradation of the

overall classification accuracy, is that the signal patterns associated to muscular

contractions depended on force variations54. In literature, the following stud-

ies have faced how force level changes affect signals and recognition on healthy

subjects.

In Scheme et al.53, the effects of force level variation on the performance of PR-

based EMG control were taken into account. Eleven healthy subjects performed

nine motion classes related to hand and wrist joints: hand open, key grip, chuck

grip, power grip, pinch grip, wrist flexion, wrist extension, wrist pronation, wrist

supination. In detail, they were asked to vary the force level from 20% to 80% of

the strongest contraction, felt as comfortable. The Linear Discriminant Analysis

(LDA) classifier with time-domain (TD) features was trained at each force level

and then tested with all force levels. The error rates were equals to 17 % when

trained and tested the classifier at all force levels and increased at 31−44 % when

trained at one force level and tested with all force levels.

In Jiang et al.55, the grasping force significantly affected the accuracy of the

classification system based on a LDA classifier trained at a single force level and

tested on eight different levels of force. Nine healthy subjects performed 16 grasp

types: for each grasp, they were asked to perform the baseline force and eight
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different levels of forces normalized according to the baseline forces ( i.e., 0, 0.25,

0.5, 0.75, 1, 1.5, 2, 3 times baseline force). The LDA classifier was trained with the

the baseline level force grasps.Then, for the testing session, the predefined eight

levels of force for each of the 16 grasps were taken into account. The accuracy of

classification of the testing sessions increases from 71 % at 0 force level to about

86% at level 0.5, and then decreased after level 3. Thus, these results demonstrated

that the 0.5 level of the natural force is the minimum grasping force that guarantee

acceptable recognition performance without a significant degradation ( i.e. with

accuracy over 85 %).

In Samuel et al.54, an LDA classifier was trained using the features extracted

from the data for each force level and, then, was tested by using the features

from data related to the remaining force levels. In details, three different force

levels defined as follows were performed by five able-bodied subjects: low force

level (20% of the maximum voluntary contraction (MVC)), medium force level

(about 50% of the MVC), and high force level (around 80% of the MVC). The

time-domain feature set that is invariant to force variation (invTDF), Huggins

feature set (TD4), Fourth order autoregressive coefficient (AR4th), and a recently

proposed two dimensional TD feature set denoted as NOV56 was used with the

LDA classifier to discriminate seven different classes: hand close (HC), hand open

(HO), wrist extension (WE), wrist flexion (WF), wrist pronation (WP), wrist

supination (WS) and no movement (NM). The classification error rate was much

higher when training with data from the low or the high force level, due to the

difficulty of naturally producing stable contractions. Instead, the medium force

18

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



level obtained the least classification error when four different feature extraction

methods were employed.

Regarding the impact of force level variations on the performance of the PR

control strategies when enrolling trans-radial amputees, the following studies were

reported.

In Al-Timemy et al.57, the effect of changing the force levels on the PR system’s

performance was investigated on two trans-radial amputees. The performance of

the LDA classifier with TD features was compared with respect to Auto Regres-

sion (AR) coefficients and Root Mean Square (RMS) features set. Six trials were

recorded for the low force level for each gesture. The performance of the proposed

classifier was tested according to different strategies: the first considered the clas-

sifier was trained and tested with a single force level; for the second strategy, the

classifier was trained with single force level and tested with the unseen 2 force

levels; finally, the classifier was trained with all 3 force levels and tested with a

single force level at a time. The performance of the LDA classifier was better with

TD features and when training it with all force levels while degraded up to 60%

when the force level varied.

Also in another study58, the same author reported that force level variations

negatively affected the performance of PR system and caused the increase of the

classification error rates. However, an increasing of 6− 8% in the classification

performance can be reached by applying Time-Dependent Power Spectrum De-

scriptors (TD-PSD) features extraction to four classifiers ( i.e. LDA, Random

Forest (RF), Naive Bayes (NB), k-Nearest Neighbor (kNN)) and training with all
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forces across nine trans-radial amputees.

In59, three different classifiers as the LDA, the Na¨ıve Bayes, and the multi-

class SVM were tested to classify the six following hand gestures: spherical grip,

index flexion, hook grip, thumb flexion, fine pinch, and tripod grip. In detail,

nine different trans-radial amputees were asked to perform each gesture with three

different force levels (low, medium, and high) and then two classification strategies

were analyzed: the classification of only 6 motion classes without considering force

levels; the classification of both the gesture and force level for an amount of 18

classes. The testing accuracies for the LDA, Na¨ıve Bayes, and the multi-class

SVM classifiers, when considering 6 and 18 classes, were equals to 96.18% and

93.11 %, 78.65% and 76.86 % and 88.76% and 86.53 %, respectively.

In literature, also deep learning methods were investigated as possible solutions

to solve the problem of force estimation when considering surface electromyogra-

phy signals60. For instance in Shaoyang Hua et al.61 the recurrent neural network

(RNN) was employed to extract the temporal information and model the relation

between sEMG signals and output forces. Another study of Shaoyang Hua et al.

proposed the multi-task learning (MTL) method to learn multiple related tasks

simultaneously for recognizing gestures and force levels synchronously. In par-

ticular, they extracted the frequency domain information with the convolutional

neural network (CNN) and demonstrated that it is more suitable for gesture recog-

nition with variable force levels. In Jabbari et al.62, a Long Short-Term Mem-

ory (LSTM-based) neural network with the fusion of Time Domain Descriptors

(fTDD) was employed to discriminate six grip gestures at three different force
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levels (low, medium, and high): 1-Thumb flexion, 2-Index flexion, 3-Fine pinch,

4-Tripod grip, 5-Hook grip, and 6-Spherical grip (power). The results obtained

from nine trans-radial amputees showed that the LSTM with fTDD feature set

reached the best average classification errors values, equals to 6.4 ± 3.3%, 8.6

± 3.0 % and 9.2 ± 5.6 % for the low, medium and high force level testing, re-

spectively. Thus, this proposed neural network can obtain high accuracy, with

the classification errors that are contained within the errors presented in usable

systems (< 10 %,53).

In this scenario, a new potential strategy will be introduced in Cap. 3 for

mitigating the effect of different exerted forces within a given movement class. In-

deed, the proposed method allowed to extract from EMG signals all the valuable

information regarding not only muscle contractions related to hand/wrist motions

but also the changes of muscle activation patterns depending on the influence of

different force levels. To this purpose, a FSM has been introduced for the man-

agement of three classifiers (the “hand/wrist gestures classifier”, the “Spherical

force classifier”, the “Tip force classifier”), that worked simultaneously in the hi-

erarchical classification approach to discriminate both hand/wrist gestures and

force levels, during grasping tasks. This control strategy avoids to face a more

seven multi-class problem using a single classifier and make the system controlla-

bility less complex by activating the force classifiers only when the “hand/wrist

gestures classifier” returns an output class belonging to a closure hand gesture.

The results of this approach have been presented by considering both 31 healthy

subjects (section 2.3.3, Cap.2) and 15 transradial amputees (section 2.4.2, Cap.2)
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and it has been introduced to improve the performance of the currently adopted

prosthesis EMG control architectures when both desired gestures and force levels

had managed in a more natural way. The ultimate goal will be to produce an

intuitive controlled hand prosthesis integrating force regulation.

2.3 State of art on PR approaches to classify multi-DoFs motion classes

Over the years, the myoelectric control systems have been extensively used to

make the prosthetic device able to restore the most movements in daily living

activities63.

In this field, the PR algorithms have become always more interesting to pre-

dict complex electromyography patterns involving more than 2 Degrees of Free-

dom (DoFs) movements64. The surface electromyographic signals (sEMG) are

widely considered the best non-invasive representation of muscular activity65 and

a natural interface to control in a non-invasive way the prosthetic devices7.

Generally, the PR strategies applied to the prosthetic control associated the

several inputs based on sEMG signals of different movements to several outputs,

as limb motions related to specific myoelectric patterns66.

These PR algorithms consist of a first step based on feature extraction, in

time and frequency domain67, to enhance information about EMG contraction in

selected time windows. Then, in the sequential control technique, a single clas-

sifier is trained based on linear or non-linear decision boundaries; instead, in the

simultaneous control technique, multiple classifiers are trained to control multiple

joints simultaneously or a single classifier is trained by considering discrete and
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combined movements as separate classes, as shown in Figure 2.2.

Figure 2.2: Pattern Recognition approach: the EMG signals are the input to the controller
unit. Firstly the pre-processing step is done; then, in the features extraction step, the time
and frequency domain features are used as input to train a single classifier or multiple clas-
sifiers. The classification output is the motion class to send as the command control to the
prosthesis.

For instance, an extensive analysis can be found in the review study of Scheme

et al.7 and also in Bellingegni et al.17, where a comparative analysis among Non-

linear Logistic Regression (NLR), Multi-Layer Perceptron (MLP), Support Vector

Machine (SVM) and Linear Discriminant Analysis (LDA) is proposed: the main

difference between these algorithms is the linear and nonlinear shape of the de-

cision boundary; straight line or plane for the LDA algorithm; curved line, or

surface, for the NLR, MLP and SVM algorithms. Also the robustness and reli-

ability of the proposed algorithms are a key factors for the online control of the

prosthetic device and depend on their offline performance, complexity and compu-

tational time. In the case of trans-radial amputees, the LDA and NLR obtained

statistically similar value in terms of F1 Score performance and computational

burden17 .
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The majority of the classification strategies, used for the prosthetic control,

are based on single, hierarchical and parallel linear discriminant analysis (LDA)

classifiers able to discriminate until 19 wrist/hand gestures (in the 3-DoFs case),

considering both combined and discrete motions68. To sum up, these strategies

used machine learning techniques (Figure 2.3) to increase the amputee’s ability to

control the prosthesis, in a more natural way, by adding the number of controllable

DoFs, because they do not require independent EMG sites for classifying motion

classes of different joints69.

Figure 2.3: Schematic diagram of pattern recognition-based myoelectric control techniques
and joint selection methods.

In the case of a poliarticulated prostheses with several DoFs, related to the

elbow, wrist, and hand, the simultaneous control of combined movements of dif-

ferent joints (e.g. pouring water into a glass) ensure greater dexterity than the

sequential one.

The simultaneous multi-DoFs control can be easier to implement and natural
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by using PR systems instead of conventional myoelectric control systems70. These

last considered only the amplitude of the EMG signal for specific control sites71,72.

The most employed PR algorithms for the classification of discrete and com-

bined movements for two and three DoFs are: Linear Discriminant Analysis

(LDA)73, the Support Vector Machines (SVM)74, Artificial Neural Networks

(ANN)75, Wavelet Neural Network (WNN)76 and some deep learning methods

based on the decoding of user’s intention through sEMG signals77, or the de-

coding of only the simultaneous multi-DoF Wrist movements78. In particular,

regarding the deep learning algorithms, Zia ur Rehman et al.79 proposed a deep

networks, as the convolutional neural network (CNN) to classify six active motions

and the rest, by using directly the EMG raw signals as inputs and the recordings

of 15 consecutive days. The results of this study demonstrated that CNN signifi-

cantly improved performance and increased robustness over time compared with

standard LDA with features extraction. Another study of Du et al.80 presented a

benchmark database of HD-sEMG recordings that considered the hand gestures

of 23 subjects and developed a multi-layer CNN based to enhance, with a deep

domain adaptation framework, the sEMG-based inter-session gesture recognition.

In Ulysse Côté-Allard et al.79 aggregated data from different users were employed

to evaluate the ability of deep learning algorithms to learn discriminant features

from large datasets. The offline accuracy of the CWT-based ConvNet reached the

98.31 % for 7 gestures over 17 participants and 68.98 % for 18 gestures over 10

participants for the raw EMG-based ConvNet.

However, a limitation of the proposed pattern recognition and deep learning
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strategies is the sequential managing of one DoF at a time from the user, to control

the prosthesis during complex multi-DoFs tasks. Such sequential control strategies

have introduced cognitive burden in planning the intended movement because

the user can not perform fluid, lifelike combined movements43. In particular, the

simultaneous control of different joints is considered a needed capability to restore

upper limb functionality, especially for patients as transhumeral and shoulder

disarticulation amputees who have undergone TMR surgery81.

There has been relatively little investigation into proposing novel PR strate-

gies to simultaneously control multiple DoFs at different joints. From literature,

Herberts et al.82 employed 6 EMG channels to control three bidirectional move-

ments simultaneously: 6 phantom wrist and hand movements (finger flexion (FF),

finger extension (FE), pronation (P) and supination (S) of the stump, wrist flexion

(WF) and wrist extension (WE)) were discriminated by separating classes with

hyperplane computed with Lawrence method83,84.

More recent studies have introduced PR-based simultaneous control systems

up to the management of 2-3 DoFs85,72,86. In particular, three main approaches

have been proposed in the literature to apply pattern recognition systems to both

discrete and combined movements. The first approach trained a single LDA clas-

sifier by labeling as unique classes both discrete (1 DoF) and combined (2-DoFs)

movements87; the second approach introduced three single LDA classifiers that

predicted the simultaneous movement of three fingers in a non-human primate,

by applying a parallel classification scheme44; the third one presented a control

strategy for the classification of simultaneous movements of wrist and hand joints,
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(named ”conditional parallel classification strategy”) based on three parallel LDA

classifiers that employed conditional probability to define the boundaries between

similar classes of movement88.

Another study of Young et al.43 have employed a hierarchical and parallel clas-

sification strategies based on LDA classifiers in order to discriminate both discrete

and combined motions as separated classes. The collected motions were: hand

open/close (HO/HC), wrist extension/flexion (WE/WF), wrist supination/pronation

(WS/WP), elbow extension/flexion (EE/EF), no motion (NM) and all 2-DoFs

combined motions. The hierarchical strategy obtained the best performance from

6 healthy control subjects, by keeping below 15 % the classification errors.

To improve the classification performance when considering combined wrist/hand

classification tasks, the use of intramuscular EMG was investigated on two PR

methods89: the first was based on a single classifier that discriminated between

1 DoF and 2 DoFs motion classes; the second method employed a parallel set of

three classifiers to predict up to 3 DoFs. The results showed that the classifica-

tion error significantly decreased when using the intramuscular EMG compared

to surface EMG for the parallel configuration (p<0.01), but not for the single

classifier.

Moreover, most of the studies have considered only the offline accuracy and

this may be a relevant limitation for the prosthetic control assessment, since many

studies have shown that offline accuracy does not necessarily correspond to real-

time performance90,91.
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2.3.1 State of art of the multi-DoFs PR-based control techniques on TMR sub-

jects

To improve the simultaneous control of multiple arm functions for many (ADLs),

the TMR is considered very promising92,93. This surgical technique, combined

with PR-based systems, represents an opportunity, especially for SD and TH

amputees, to overcome the limited number of independent EMG sites available

for controlling a multi-DoF prosthetic systems94,95. Indeed, the advanced EMG-

based pattern recognition strategies have the potential to perform in a more natu-

ral way the simultaneous control of multiple DoFs with respect to the conventional

myoelectric control methods96, because they do not require independently control

sites or mode-switching to activate multiple joints like elbow, wrist, and hand. The

following 10 articles have been found in the literature in which pattern recognition

algorithms have been employed in TMR patients:

In Mastinu et al.97, the monitoring of TMR myoelectric signals of two TH

amputee subjects, with TMR surgery and an e-OPRA, has been analyzed for

48 weeks after surgery to understand the potentiality compared to conventional

surface electrodes. The TMR-radial and TMR-ulnar sites were used for hand

opening and closure, respectively, while the triceps and biceps muscles for the

flexion and extension of the elbow. The LDA classifier was used with four TD

features: the summation of absolute value of EMG signals, defined as mean ab-

solute value (MAV); the cumulative length of the EMG signal waveform defined

as waveform length (WL); the zero crossing (ZC) that measures how many times

two consecutive samples have different sign (when the EMG signal crosses zero) in
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order to detect the onset of movement during the procedure of data segmentation;

and the slope sign changes (SSC) that represents the number of times the slope of

EMG signal changes sign. Four discrete motions of elbow and hand were recorded

with the Artificial Limb Controller, a prosthetic device designed for patients with

e-OPRA implants98.

In Kuiken et al.94, five TMR patients with SD and TH amputations were able

to perform, with a virtual prosthetic arm, 10 different motions related to different

joints like elbow, wrist, and hand (elbow F/E, wrist F/E, wrist P/S, hand opening,

3 types of hand grasps -3 jaw chuck, fine pinch, tool grip, and no movement). For

each subject, 12 self-adhesive bipolar EMG electrodes were placed over the reinner-

vated sites: in detail, four electrodes were placed according to clinical evaluation,

while 8 additional sites were chosen by an electrode-placement optimization algo-

rithm that allowed to select, from high density (HD) EMG recordings, a reduced

number of electrodes necessary to preserve sufficient neural control information

for accurate classification of user’s intention99. The proposed PR algorithm was

based on an LDA classifier with four TD features (MAV, ZC, WL, SSC). The LDA

classifier was used to produce in real-time a new prediction every 100 ms. In de-

tails, the performance metrics as motion selection time (MST), motion completion

time (MCT), and motion completion rate (MCR) were introduced for assessing

the functionality, in real-time, of a virtual multifunction prosthesis.

In Smith et al.100, the potentiality of PR myoelectric control was investigated

when using wireless implantable devices. Five TMR subjects (three with SD and

two with TH) were employed for evaluating the capability of performing nine mo-
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tion classes (rest state, elbow F/E, wrist P/S, F/E, hand O/C). However, two

motion classes (hand open and wrist extension) were excluded for all subjects be-

cause two subjects (one with SD, one with TH) did not have a successful fine-wire

insertion into sites. In particular, for two SD subjects, the number of reinnervated

muscle sites was equal to three, while for one SD subject was equal to four. Both

intramuscular EMG signals (imEMG) and sEMG signals were acquired by locating

bipolar fine-wire electrodes and adhesive bipolar surface electrodes, respectively,

on TMR sites. One subject with SD was excluded from pattern classification

because he had the sEMG signals corrupted by a 60 Hz noise.

In Huang et al.101, different spatial filters were tested to enhance the spatial

selectivity of EMG recordings and the performance of EMG pattern classification

by applying spatial filtering to high-density EMG recordings. Three subjects with

TMR were recruited: the first one had a BSD amputation with four reinnervated

muscle sites; the second one had a very short TH with four reinnervated muscle

sites; the last TMR subject had a long TH amputation with two reinnervated

muscle sites, and two natively innervated muscle sites. High-density surface EMG

signals were recorded from the above mentioned muscle sites, that had been clin-

ically selected. The following fifteen different movements were acquired: elbow

F/E, wrist F/E, P/S, ulnar and radial deviation, two hand opening patterns (that

included finger abduction and finger adduction), and five functional hand-closing

patterns (power grip, prehensile (3-jaw chuck) grip, fine pinch grip, key grip, and

trigger grip). The LDA classifier was used to classify the EMG signal with TD

features (MAV, ZC, SSC, WL) and the surface EMG signals were processed by
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various high pass spatial filters including one-dimensional and two-dimensional

filters.

In Zhou et al.102, 16 movements of the arm, hand, and finger/thumb, with

8 degrees of freedom, were discriminated with an LDA classifier with the TD

feature set, and a combination of AR coefficients and RMS (AR-RMS) of the

signals. The recordings were made by using monopolar electrode configuration

and three bipolar electrodes in three different directions: transversal, longitudinal,

and diagonal. Four TMR subjects were recruited: the first one with a BSD

with four reinnervated muscle sites, the second one with a very short TH and

four reinnervated muscle sites, and two other subjects with long TH amputations

with two reinnervated muscle sites and two natively innervated sites for elbow

flexion/extension.

In Batzianoulis et al.103, three different classification systems based on LDA,

SVMs (with linear and non-linear kernel), and an Echo State Network (ESN)

were evaluated by considering, for each proposed strategy, the classification per-

formance on three phases of dynamic reach-to-grasp motions: acceleration (first

phase), deceleration (second phase), and rest (third phase). Eight able-bodied

control subjects and four TR amputees, two of which underwent TMR surgery for

the neuroma pain, were enrolled. These TMR patients did not have additional

muscle sites for improving myoelectric control. The EMG muscle activity was

recorded with 12 sEMG sensors from seven muscles of the upper arm and five

muscles of the forearm. For LDA and SVM, three features (i.e. average activation

of each time window, waveform length, and number of slope changes) for each
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window of 150 ms have been extracted. Five grasp types (prismatic-2 fingers, pre-

cision disk, palm pinch, lateral, prismatic-4 fingers) were discriminated. In their

most recent study104, the same two TMR transradial amputees presented in103

were employed to extend the previous results by addressing more insights on the

LDA potentiality and introducing the use of the Hellinger distance to quantify the

similarity between motion classes. In this case, the subjects were asked to perform

a bimanual task by considering only three grasp types as the precision disk, lat-

eral, and palm pinch motions. Different from103, only the performance of an LDA

classifier was evaluated in terms of classification accuracy when it was trained for

each phase and over all motion phases. To train the classifier, the EMG signals

of 5 muscles of the residual arm were recorded: Flexor Digitorum Superficialis,

Extensor Digitorum Communis, Flexor Carpi Ulnaris, Extensor Carpi Ulnaris,

Flexor Carpi Radialis.

In Xu et al.105, the authors investigated how the rehabilitation training im-

proved the separability of some channels of sEMG signals that remained still

coupled over TMR. A TMR TH patient with 5 targeted muscles with coupled

sEMG signals has been engaged. Five bipolar EMG electrodes have been placed

on targeted muscles associated with the following movements: hand C/O, wrist

P/S, elbow F/E. A new approach based on pattern recognition control with MAV-

based threshold switches was introduced to improve the classification performance

of an LDA classifier, based on Bayesian decision, with TD features (MAV, WL,

ZC, SSC). Then, the obtained classification parameters have been used for allow-

ing the patient to control a commercial prosthesis (Danyang Prostheses Co. Ltd,
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China): subset of the modified ARAT test was proposed to compare the online

performance of the prosthetic operation.

The LDA classifier with TD-AR (time-domain and auto-regressive) features106

was introduced for classifying elbow F/E, wrist S/P, hand O/C. A grid of stain-

less steel electrodes was placed over specific muscles. However, the exact sites of

reinnervated muscles have been not described in detail. The outcome measures,

obtained both with virtual reality and a physical prosthetic system, were intro-

duced to evaluate the improvements in terms of offline classification errors. For

obtaining physical outcomes all nine subjects used the following custom-fabricated

prosthesis composed of: Boston Digital Elbow (Liberating Technologies Inc.),

wrist Rotator (Motion Control Inc.), single DoF terminal device.

In Hargrove et al.107, the outcome measures, obtained both with virtual reality

and a physical prosthetic system, were introduced to evaluate the improvements

in terms of offline classification errors of 9 transhumeral TMR subjects, when

using prosthesis after a 6-week home trial. Three blocks of Target Achievement

Control (TAC) test108 were used to evaluate the performance of the LDA classifier

with TD-AR (time-domain and auto-regressive) features106. For obtaining phys-

ical outcomes all nine subjects used the following custom-fabricated prosthesis

composed of: Boston Digital Elbow (Liberating Technologies Inc.), wrist Rotator

(Motion Control Inc.), single DoF terminal device.

In Tkach et al.86 was demonstrated that a generic grid arrangement of elec-

trodes performed equivalently or better than the control site (specific site for

electrode placement). Four TMR amputee subjects were employed: two TH sub-
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jects had four reinnervated muscle sites; two SD subjects presented, instead, only

two reinnervated muscles sites. EMG signals were acquired by using 15 bipolar

pairs of EMG electrodes placed according to two conditions: in the “Control Site”

condition, the electrodes were placed over muscle control sites, after clinical pal-

pation; in the “Grid” condition, electrodes were positioned in a grid configuration,

around the residual limb and the surface of the chest, for the TH and SD subjects,

respectively. The LDA algorithm was used with the AR feature set including the

six coefficients of a 6th order autoregressive model.

To sum up, all the 10 studies presented in this sub-section take into account

the pattern recognition strategy based on LDA classifier with different features

set: TD features (MAV, WL, ZC, SSC)105,102,101,100,94,97; TD-AR features106;

AR-RMS102; the AR feature set86; Hellinger distance104; the average activation

of each time window, the waveform length, and the number of slope changes103.

In Batzianoulis et al.103 also the SVMs (with linear and non-linear kernel), and

an Echo State Network (ESN) PR-based strategies were evaluated by considering,

for each proposed strategy, the classification performance on five reach-to-grasp

motions. The minimum number of discriminated classes was equals to 4 discrete

motions related to the elbow and hand97 or only the hand103,104. While, for

the others 7 studies, always the elbow, wrist and hand joints were considered by

including from 9 up to 29 motion classes86 (for both discrete and simultaneous

movements).

The following four studies presented also a comparison between direct control

and pattern recognition based strategies, summarized in Tab. 2.2.
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Table 2.1: Summary of the reported analysis.

Study No.
of pa-
tients

Amp.
Level

No. of reinnervated Sites /
Control Sites

Prostheses/
Virtual Reality

DoF/
motion classes

Performance Evaluation methods

Mastinu et al. 97 2 TH 2 reinnervated sites PR without
prosthesis

4 discrete hand and
elbow motions

accuracy offline, classification error
rate of LDA with 4 time domain
features (MAV,WL,ZC,SSC)

Kuiken et al. 94 5 SD, TH 4 reinnervated sites, 4 con-
trol sites

PR without
prosthesis - VR

10 discrete elbow,
hand and wrist mo-
tions

accuracy offline, motion selection
time, motion completion time, and
motion completion rate of LDA
with TD features 102

Smith et al. 100 5 SD, TH 3-4 reinnervated sites
(SD1,SD2), 2 reinnervated
sites (TH)

PR without
prosthesis

9 discrete elbow,
hand and wrist mo-
tions

classification error rate of LDA
with TD features 109

Haung et al. 101 3 BSD,
TH

4 reinnervated sites (BSD),
4-2 reinnervated sites
(STH,LTH)

PR without
prosthesis

15 discrete elbow,
hand and wrist mo-
tions

offline accuracy of LDA clas-
sifier with TD features (MAV,
ZC,SSC,WL)

Zhou et al. 102 4 BSD,
STH,
LTH

4 reinnervated sites (BSD),
4-2 reinnervated sites
(STH,LTH)

PR without
prosthesis

16 discrete move-
ments of the
arm, hand, and
finger/thumb

offline accuracy of LDA classifier
with TD feature set, and a com-
bination of AR-RMS

Batzianoulis et al. 103 2 TR TMR surgery for the neu-
roma pain, not for control
sites

PR without
prosthesis

5 grasp types
(prismatic-2 fin-
gers, precision
disk, palm pinch,
lateral, prismatic-4
fingers)

offline accuracy, standard errors of
LDA, two SVMs, and ESN Net-
work

Batzianoulis et al. 104 2 TR TMR surgery for the neu-
roma pain, not for control
sites

PR without
prosthesis

3 grasp types (pre-
cision disk, lateral,
and palm pinch)

offline accuracy of LDA classifier
with TD feature

Xu et al. 105 1 TH 3 reinnervated sites/ 5 con-
trol sites

Prosthesis - PR 6 discrete elbow,
wrist and hand mo-
tions

offline accuracy, ARAT, LDA clas-
sifier with TD features (MAV, WL,
ZC, SSC)

Hargrove et al. 107 9 TH not described Prosthesis and
VR - PR

6 discrete elbow,
wrist and hand mo-
tions

SHAP, JTHFT, CRT, BBT,
ACMC, the classification error
rate, completion time, failure rate
of LDA classifier with TDAR

Tkach et al. 86 4 SD, TH 4 reinnervated sites (TH),
2 reinnervated sites (SD)

PR without
prosthesis - VR

8 discrete and com-
bined elbow, wrist
and hand motions

offline accuracy of the LDA classi-
fier with AR feature set

Hargrove et al. 110 4 SD, TH 4-5 reinnervated control
sites

Prosthesis - DC
and PR

2 DoFs (sequen-
tially PR system)

BBT, BST, CRT, classification er-
ror rates

Wurth et al. 111 1 TH 4 control sites PR and DC
without prosthe-
sis - VR

2 DoFs (sequen-
tially and simul-
taneously PR sys-
tems)

FTAT, throughput (bits/second),
path efficiency (%), completion
rate (%)

Hargrove et al. 112 8 TH 4 control sites Prosthesis - DC
and PR

2 DoFs ACMC, SHAP, BBT, CRT

Young et al. 113 3 SD, TH 2 reinnervated sites/ 4 con-
trol sites

Prosthesis - DC
and PR

2 DoFs (sequen-
tially and simul-
taneously PR sys-
tems)

TAC test (completion time, com-
pletion rate, length error), offline
classification error

Acronyms of Table 2.1: BSD: Bilateral Shoulder Disarticulation; SD: Shoulder Disarticula-
tion; TH: Transhumeral;LTH-STH: Long (L) - Short (S) Transhumeral; TR: Transradial; DC:
Direct Control; PR: Pattern Recognition; VR: Virtual Reality; BBT: Box and Block Test CRT:
Clothespin Relocation Test; WMFT: Wolf Motor Functions Tests; AMPS: Assessment of Mo-
tor and Process Skills; LDA: Linear Discriminant Analysis; MAV: Mean Absolute Value; WL:
Waveform Length; ZC: Zero Crossing; SSC: Slope Sign Changes; TD: Time Domain ; AR-RMS:
Auto Regressive-Root Mean Square; ESN: Echo State Network ;SVM:Support Vector Machine;
TD-AR: Time Domain and Auto Regressive; ARAT: Action Research Arm Test; BST: Block
stacking test; FTAT: Fitts’ Target Acquisition Task; SHAP: Southampton Hand Assessment
Procedure; JTHFT: Jebsen-Taylor test of Hand Function
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The first study that directly compared the performance of pattern recognition

systems to direct control systems using a physical prosthesis with TMR patients

is Hargrove et al.110. Four patients (one male with SD, two males and one female

with TH amputation) had at least 4 reinnervated control sites (5 in one case) used

for direct control of the elbow F/E and hand O/C joints. The P/S of the wrist

joint was controlled and selected in different ways by the various patients, in a

manner similar to that used with their old prostheses. For the PR-based control

system, four pairs of bipolar electrodes have been added to the four pairs used for

direct control. The PR control system was composed of a LDA classifier with TD

features and AR coefficients. The velocity of the desired movement was computed

using a simple proportional control algorithm. The performance achieved by all

patients experts in the daily use of the myoelectric prosthesis with DC control and

with experience in the laboratory use of the prosthesis controlled with PR, have

been presented in Tab. 2.2. All subjects said they preferred PR-based control,

because more intuitive. However, the authors pointed out that direct control

allowed the simultaneous movement of two joints, while the PR-based control was

limited to sequential control even when tasks required multiple DoFs.

In Wurth et al.111, a real-time comparison between DC and PR-based control

strategies was carried out to control a multi-DoF myoelectric prosthesis. Only one

TH amputee among the enrolled subjects underwent the TMR procedure, with

four independent control sites. The others were nine healthy control subjects and

one TR amputee. For the DC control, the MAV EMG signals of the wrist flexors

and extensors muscles were recorded from able bodied and TR subjects by using
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pre-gelled adhesive bipolar Ag-AgCl electrodes. Instead, for the TH amputee

subject, four bipolar electrodes were placed on the flexor and extensor muscles,

in order to control more than one DoF simultaneously. For the PR-control, the

LDA classifier was used with four TD features (MAV, ZC, SSC, WL) and six AR

coefficients. In particular, the able bodied and TH subjects were asked to perform

hand O/C, wrist F/E, and no motion. Instead, for the TH subject, the elbow F/E

was replaced by wrist F/E, because this DoF was considered more intuitive and

relevant to be controlled for this level of amputation.

In Hargrove et al.112, a clinical study was reported on 8 TH patients, with dif-

ferent levels of amputation and prosthetic solution composed of motorized Boston

Digital Elbow (LTI), Motion Control Wrist Rotator (Motion Control Inc), and

terminal device (7 hook from Greifer or EDT and 1 hand). All the subjects used

prosthesis both in controlled (laboratory) and uncontrolled (home) environment.

The eight patients were randomly divided into two groups of four subjects, each

of which completed the home-trial using initially a prosthesis with a different con-

trol strategy, according to the group they belonged to. The two configurations

were used for six weeks each. The electrode sites were identified with different

methods depending on the different strategy adopted: when using direct control,

the muscle sites were identified manually, using a combination of surgical notes

when available, palpation, and myoelectric signal testing. As for the PR control,

linear electrode locations were not targeted over specific muscles, rather a grid

of electrodes was used. The algorithm used for PR-based control was the LDA

described in106. For the DC control, dual-site differential DC system employed
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antagonistic muscle pair in order to control elbow F/E and terminal device O/C

(hand or hook). In addition, mode switches were configured, for each subject, to

control the wrist P/S DoF according to their previous device use.

In Young et al.113, three different control strategies (direct control with pro-

portional strategy, sequential PR control - one DoF at time, and simultaneous

PR control - two DoFs at time) were analyzed in order to evaluate the ability of

four amputees (2 TH and 2 SD), who underwent TMR surgery, to simultaneously

control up to 2 DoFs with a virtual prosthesis. TH patients had two reinner-

vated muscle sites used for controlling hand O/C movements, and two natively

innervated muscles (the biceps and triceps brachii) used for elbow F/E motions.

The SD subjects had four reinnervated sites for controlling hand O/C and elbow

F/E movements. Four pairs of self-adhesive Ag/AgCl bipolar surface electrodes

were placed in the same muscle sites used for the conventional prostheses con-

trol. Other pairs of electrodes were placed near the primary sites where muscle

activity could be palpated. The following 8 discrete and combined motions were

acquired: elbow F/E, hand O/C, elbow F/E combined with hand O/C. The TMR

amputees controlled discrete motions using their four independent muscle sites.

For the PR-strategy, an LDA algorithm with four TD features (MAV, ZC, SSC,

WL) and six AR coefficients of a sixth-order were used for the classification. As

for the sequential control condition, the same methods introduced in109 were used.

Instead, for the simultaneous control strategy, the authors used the system tested

on able-bodied subjects in43.

To summarize, in all the articles of this section, a physical prosthetic device
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with two111 or three DoFs110,112 was employed, except for the113, in which a

virtual prosthesis was used instead of the physical one. As regards the direct

control strategy, in all the studies, the simultaneous joint selection methods was

employed. Only in Young et al.113, the control technique was specified, i.e. the

proportional control technique. As regards the reviewed papers on PR-based

control, the LDA was always adopted with TD and AR features.

2.4 Conclusion

In this chapter, a review about PR control strategies of upper limb prosthesis to

decode simultaneously gestures and forces and to discriminate multi-DoF motion

classes has been presented. The main limitations of the current prosthetic sys-

tems is to be not very intuitive and unnatural18, in spite of the progress made

in this field based on EMG-PR114. To overcome these limitations, a hierarchi-

cal PR-based strategy have been presented in the Chapter 3, to allow amputees

to restore simultaneously both the hand/wrist gestures and force levels during

grasping tasks.
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Table 2.2: Evaluation of the performance obtained with the DC and PR systems.
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3
Simultaneous sEMG classification of

hand/wrist gestures and forces

3.1 Introduction

After a careful study of the literature concerning the PR algorithms for the pros-

thetic control and the use of sEMG signals as a promising approach for decoding
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the motor intention of amputees in a non-invasive way, this chapter presents a hi-

erarchical classification approach that aims at recognizing the desired hand/wrist

gestures, as well as the desired force levels to exert during grasping tasks. In liter-

ature, two main approaches, based on mathematical models and machine learning

techniques, have been analyzed to find a relationship between muscular activation

and force. However, no hierarchical strategy, based on PR approach, has ever

been proposed to simultaneously identify desired gestures and forces. Thus, in

this chapter, firstly, the presented hierarchical PR approach has been described

deeply (in section 3.3) to understand how it works. Then, it was tested and val-

idated based on Non Linear Logistic Regression (NLR) and Linear Discriminant

Analysis (LDA) algorithms, on 31 healthy subjects. A Finite State Machine was

introduced to manage and coordinate three classifiers based on the NLR and LDA

algorithms: the “hand/wrist gestures classifier” was introduced for the discrimi-

nation of 7 hand/wrist gestures (i.e. Rest, Spherical, Tip, Platform, Point, Wrist

supination, and Wrist pronation), while the “Spherical” and “Tip” force classifiers

were created for the identification of three force levels (i.e. Low, Medium, and

High). This study reveals that the use of non-linear classification algorithm, as

NLR, is as much suitable as the benchmark LDA classifier for implementing an

EMG pattern recognition system, able both to decode hand/wrist gestures and

to associate different performed force levels to grasping actions. Then, to inves-

tigate also the ability of trans-radial amputees to manage simultaneously desired

hand/wrist gestures and three force levels, an extended analysis based on Logistic

Regression (LR), NLR, and LDA algorithms has been carried out to assess the
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robustness of the hierarchical PR system. In this case, also the LR was evaluated

to simplify the training step of the model (without the polynomial expansion)

and to speed out the real time prediction (within 80 ms), without affecting the

classification performance. The hierarchical PR system was tested and validated

both offline and in real-time. For this purpose, the hand (RoboLimb) and a

wrist module (WristRotator) were considered into the experimental protocol for

real-time validation. Therefore, the real-time validation of the proposed method

was evaluated in a real scenario, giving the trans-radial amputees the possibility of

controlling a multi-DoF prosthetic system and exerting three different force levels.

A statistical analysis based on the Mann-Whitney test (U-test) with Bonferroni

correction (p<0.016) was carried out to assess the best solution when considering

the performance of the three algorithms: the comparative analysis reports not

statistically significant differences in terms of F1Score and misclassification errors

between the LR, NLR and LDA classifiers. The best solution for controlling the

prosthetic system in real-time by transradial amputees, seems to use simultane-

ously the LR algorithm with Time Domain (TD) features extraction (FE) for the

“hand/wrist gestures classifier” and the NLR with TD-FE for the “Spherical” and

“Tip” force classifiers.

Through these algorithms, the amputees obtained the lowest mean value of motion

completion time (MCT) and the highest mean value of the motion completion rate

(MCR).
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3.2 Experimental Setup and protocol on healthy subjects

Thirty-one healthy participants (age: 28 ± 7.6 years) were involved in the experi-

ments. Six commercial active sEMG sensors (Ottobock 13E200= 50, 27 mm X 18

mm X 9.5 mm) were equidistantly fixed on an elastic adjustable bracelet and then

were placed on the forearm of the able-bodied subjects in order to acquire sEMG

signals (Fig.3.1). The study protocol complied with the Declaration of Helsinki

and was approved by the local ethics committee (Comitato Etico Università Cam-

pus Biomedico di Roma, reference number: 15/16 PAR ComEt UCBM).

The bracelet was located about 5 cm below the subjects elbow, in line with the

positioning of the electrodes, commonly used to control a prosthetic hand115.

This type of electrodes outputs an enveloped signal of the “raw” signal (after

amplification, filtering and rectification). The number of sEMG sensors was chosen

equal to six because it is considered as the highest number that is possible to place

into the socket115. Moreover, it allowed to reduce the data dimensionality and

complexity17. The EMG sensors operated in the range 0−5V with a bandwidth

of 90−450Hz and a common rejection ratio higher than 100dB.

Five Force Sensitive Resistors (FSR), Model 402 by Interlink Electronics, were

placed on a glove to verify the effective forces executed by the subjects. The

relationship between the FSR voltage value V and the force value F was established

with a statistical characterization as explained in116. The relation between voltage

and force is described trough the following mathematical expression

F= p1V5+ p2V4+ p3V3+ p4V2+ p5V+ p6 (3.1)
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Figure 3.1: The experimental setup was composed by: (i) a sEMG elastic bracelet, (ii) NI
DAQ USB 6002, (iii) a conditioning circuit and (iv) glove equipped with Force Sensitive Resis-
tors (FSR), Model 402 by Interlink Electronics

obtained with the polynomial model

y=
n+1

∑
i=1

pix(n+1−i) (3.2)

where n+ 1 represents the number of fitting coefficients, while n (1≤ n≤ 9) is

the degree of the polynomial. The Anderson loop was used as signal conditioning

circuit117.

The EMG and force data were simultaneously acquired at 1 KHz, using a

suitable software on Labview platform, by DAQ USB 6002 device. The PC (Sam-

sung Intel(R) Core (TM) i7-4500U CPU @ 1.80 GHz) and DAQ communicated
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by means of an USB port.

Figure 3.2: Subject positioning and data acquisition during experimental validation of the
proposed approach. The subject was sitting in a comfortable chair in front of a PC monitor
and was asked to perform six repetitions of each hand/wrist gesture. The subject performed
“Spherical” and “Tip” gestures during the grasping of a rectangular object and executed three
force levels. Written informed consent for the publication of this image was obtained.

The subject was sitting in front of a monitor (Fig.3.2) and was asked to perform

the following seven hand gestures: Rest (hand relax), Spherical (hand with all

fingers closed), Tip (hand with thumb and finger touching as if picking a small

object), Platform (hand completely open and stretched), Point (hand with all

fingers closed except for the index finger), Wrist supination and Wrist pronation.

The participants were asked to produce each of these gestures for six times and

hold it for 2 s with an interval of rest state about 2 s between each repetition. The

tasks were performed in a single experimental session. The electrodes placement

was the same over the repetition of each task. Demonstrations of each movement

were displayed following a predefined list on a computer screen (Fig.3.2). For each
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Table 3.1: Measuring Performance: The Confusion Matrix

ACTUAL
y=1 y=0

PREDICTED hθ=1 TP FP
hθ=0 FN TN

movement, the clinical operator instructed all participants to follow the demon-

stration of his motion and to perform it with a comfortable and consistent level

of effort.

In a initial phase before the training, each subject was asked to produce max-

imum muscle contractions in order to perform the highest peak of force, while

grasping a stiff object of rectangular shape (weight 66 g, dimensions 50× 100×

17mm ) with “Spherical” and “Tip” grasps. The object was used also during the

training session.

The goodness of the classification was evaluated in terms of F1Score because

it is considered more robust, in lieu of accuracy, to assess the performance118.

In detail, if we considered an example of a simple confusion matrix (Tab.3.1),

where true positive (TP) represents the number of the positive example that the

model correctly classified as positive; true Negative (TN) is the number of nega-

tive examples that the model correctly classified as negative; false Positive (FP)

represents the number of negative examples that the model incorrectly classified

as positive; false Negative (FN) is the number of positive examples that the model

incorrectly classified as negative; the F1Score can be evaluated as the harmonic

mean of precision and recall taking both metrics into account in the following

equation 3.5
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Precision= TP

TP+FP

Recall= TP
TP+FN

F1Score= 2∗ Precision∗Recall
Precision+Recall

(3.3)

Three force thresholds were established at 30% (low), 60% (medium) and 90%

(high) of the sum of all force contributions recorded from FSR sensors. Three

force bands were defined as follows to reduce the difficult to perform a punctual

value of force: the low level was fixed between the ±15% of the lowest threshold

(i.e. 30%), the medium level was fixed as ±15% of the medium threshold (i.e.

60%), while the high level starts from −15% of the highest threshold (i.e. 90%)

and continued until the maximum value. These bands were used to give a visual

feedback to the subject during the recording of “Spherical” and “Tip” gestures.

In each subject’s acquisition, the sEMG data were organized in a 84000 ∗ 6

dimensions matrix. Each column of the matrix was coupled with an EMG sensor.

Firstly, the enveloped EMG signal was acquired at 1 KHz to create 3 Datasets,

used for both the NLR and LDA algorithms (Fig.3.3). The TrainingSet of the

“hand/wrist gestures classifier” was composed by sEMG signals related to all the

seven states of FSM. This TrainingSet included the recording of Spherical and

Tip gestures performed at three different force levels in order to correctly classify

gestures independently from muscular contraction changes due to force variations.

The TrainingSets of “Spherical and Tip force classifiers” were composed only by

sEMG data expressing different muscular contraction levels for these gestures.

For the NLR classifiers, the “raw” sEMG signals were used as input features in
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order to speed up the training and cross validation of the NLR algorithm (Fig.3.3

A). In detail, the use of only “raw” sEMG signals allowed a significant reduc-

tion of the classification time and of the response time without loss of system

performance119,120,121. Moreover, the use of “raw” scaled sEMG signals as in-

put features approximated the class evaluation time and system readiness to the

sampling time17. Instead, for each of the three LDA classifiers, five time-domain

(TD) features (Mean Absolute Value (MAV), Root Mean Square (RMS), Slope

Sign Change (SSC), Waveform Length (WL) and Variance (σ2) ) were extracted

from the corresponding channels of “raw” EMG data (Fig.3.3 B). In each analysis

windows of 150 ms with an overlap of 100 ms were used122.

3.3 Algorithm for hand/wrist gestures and force classification

In this section, the forces/gestures classification approach is explained deeply and

it holds for each proposed classification algorithm because it works independently.

In detail, a hierarchical pattern recognition strategy was proposed for the

classification of the desired hand/wrist gestures and force levels from muscular

signals (Fig.3.4).

The FSM coordinated the hierarchical activation of the three classifiers. The

highest classifier in the hierarchy was a single classifier able to discriminate seven

discrete hand/wrist motion classes. The output of this classifier determined the

desired hand/wrist gesture and, in case of “Spherical” or “Tip” class, the force

classifier, lower in the hierarchy, to be activated. Thus, the force classifiers were

activated for force levels recognition.
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Figure 3.3: Block diagram of classification system for the creation of three different Train-
ingSet for obtaining the relative output classes. A) For the NLR classifiers, the raw sEMG
signals are used as input features in order to speed up the training and cross validation of
the NLR algorithm. B) For the LDA classifiers, five commonly used time domain features
were extracted: Mean Absolute Value (MAV), Root Mean Square (RMS), Slope Sign Change
(SSC), Waveform Length (WL) and Variance (σ2).

The described hierarchy was implemented adopting NLR algorithm for both

gesture and force classifiers. The same hierarchy was then reproduced using LDA

algorithm in order to perform a comparative analysis. The Linear Discriminant

Analysis (LDA), using time domain of the EMG signal, was frequently employed

in literature because it was considered an efficient algorithm, simple to train and

with an optimal compromise in terms of computational burden81. The Wilcoxon

Signed-Rank test applied to the F1Score values was performed with significance
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Figure 3.4: Hierarchical classification strategy.“Hand/wrist gestures classifier” allowed the
identification of the desired motion class among 7 different gestures. “Tip force classifier”,
lower in the hierarchy, allowed the classification of 3 force levels for “Tip” gesture. “Spherical
force classifier”, lower in the hierarchy, allowed the classification of 3 force levels for “Spheri-
cal” gesture.

threshold set to 0.05.

The FSM coordinated the three classifiers activation (i.e one for hand/wrist

gestures and two for force levels).

The proposed classification system was characterized by three different classi-

fiers (Fig.3.5):

• The “hand/wrist gestures classifier” was able to discriminate seven states,

corresponding to seven hand and wrist gestures (blue circle states in Fig.3.5).

This classifier was always active and it was the highest classifier in the

hierarchy (Fig.3.5).

• The “Spherical force classifier” was able to discriminate three force levels

(i.e. Low, Medium and High Level shown in Fig.3.5 in the red box). It

was active if the “Spherical” gesture was identified and it was lowest in the

hierarchy (Fig.3.5).
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Figure 3.5: Finite State Machine (FSM) strategy for the classification of 7 different
hand/wrist gestures and 3 force levels: the blue circle states indicated the hand gestures and
wrist motions and they were all classified through the “hand/wrist gestures classifier”. Three
force levels (Low, Medium and High) can be classified through the “Spherical or Tip force
classifier” if the “hand/wrist gestures classifier” discriminated the “Spherical” or “Tip” state,
respectively. If the “Spherical” or “Tip” state was classified, the hierarchical classification
strategy was adopted.

• The “Tip force classifier” was able to discriminate three force levels (i.e.

Low, Medium and High Level shown in Fig.3.5 in the red box). It was

active if the “Tip” gesture was identified and it was lowest in the hierarchy

(Fig.3.5).

FSM determined the following different scenarios: until the FSM system re-

mained in one of the two states (i.e. “Spherical” or “Tip”), the output of the

FSM system provided hand/wrist gestures and the force levels information. The

force classifier was conditioned on the decision of the first classifier of hand/wrist

gesture. Thus, the classifiers of the second level of the hierarchy discriminated
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the force levels applied during the related grasping class. Otherwise, if the FSM

system was in a different state from the “Spherical” or “Tip”, only the single

“hand/wrist gestures classifier” was activated and the gesture information was

supplied.

Figure 3.6: Plot of the raw sEMG recording for the six EMG channels, related to all the 7
performed movements of a single acquisition session from one of the subjects who was involved
into the experiment. The plot of raw sEMG recording of “Spherical” and “Tip” classes are
related to muscular activations performed at medium force level.

Differently from Young et al.,43 the hierarchical classification system is used

to discriminate simultaneously hand/wrist gestures and desired force levels.

The FSM use allowed the two classifiers of different grades of the hierarchy

to work simultaneously. Until the “Spherical” or “Tip” state is classified by

“hand/wrist gestures classifier”, the “Spherical force classifier” or the “Tip force

classifier” intervenes to discriminate force levels.

The raw sEMG recording for the six EMG channels, related to all the 7 per-
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formed movements of a single acquisition session, was reported in (Fig.3.6).

The NLR and LDA algorithms are employed for implementing the hierarchical

classification approach, since both of them guaranteed statistically similar value

for F1Score performance. Moreover they have also comparable computational bur-

den, despite LDA has the fewest number of classification parameters17. In detail,

several studies have been considered the LDA classifier with features extraction as

ground truth123,81 and it can be used for the online control of prosthetic devices124

that is commercially available by COAPT (https://www.coaptengineering.com).

Force information is provided only for the two grasping classes (i.e. “Spherical”

and “Tip”) in which an object interaction is expected. Seven hand/wrist gestures

(i.e. Rest, Spherical, Tip, Platform, Point, Wrist supination and Wrist prona-

tion) had been discriminated by using a Nonlinear Logistic Regression (NLR)

algorithm. When the “Spherical” or the “Tip” class are identified, a second NLR-

algorithm-based classifier, i.e., respectively, “Spherical force classifier” or “Tip

force classifier” is activated simultaneously in order to discriminate three force

levels (i.e. Low, Medium and High).

The same hierarchical pattern recognition strategy was implemented with

three linear classifiers (“hand/wrist gestures classifier”, “Spherical force classifier”

and “Tip force classifier”), based on LDA with time domain features extraction.

The performance of each algorithm (NLR and LDA) were measured by means of

F1Score value and statistical analysis had been based on the Wilcoxon Signed-

Rank test. A comparative analysis among NLR and LDA with feature extraction

was implemented in order to define the most suitable classification algorithm for
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the realization of a gestures and forces classification architecture to control of a

prosthetic device.

The performance of the proposed approach were evaluated during an exper-

imental session involved 31 healthy subjects. The users are asked to perform 7

hand/wrist motions and to replicate three different force levels during the “Spher-

ical” and “Tip” grasps. In order to provide a qualitative assessment of the ability

to classify both gestures and force levels, only the offline results were reported for

the healthy subjects. Then, an advanced experimental protocol that considered

also the real-time performance was employed to translate results from laboratory

to clinical practice, by using an upper-limb prostheses for transradial amputees.

3.3.1 LR and NLR classification algorithm and dataset organization

In this section, firstly the similarity and differences between LR and NLR algo-

rithms are reported. In detail, the mathematical expressions, used for both LR

and NLR algorithms, are introduced and the differences between them are ex-

plained. Then, the dataset organization is introduced by describing the data split

approach employed. In this study the Logistic regression model used the following

logistic function to evaluate the class membership probability Eq.3.4 for both LR

and NLR classifiers

P(1 | x,θ) =


g(θT · x) = 1

1+e−θT·x+θ0

1−P(y= 0 | x,θ)
(3.4)

where θ and θ0 are, respectively, the classification parameters vector and bias
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term, while g(·) is the logistic function. For the NLR classifiers, additional poly-

nomial features (e.g. x1,x2,x1 ∗ x2,x21 ,x22) were introduced to make non-linear this

logistic regression model.

The following cross-entropy error cost function was introduced to train the

supervised classification algorithm by minimizing a specific cross-entropy error

cost function

J(θ,θ0)=− 1
m

[
m

∑
i=1

y(i) · lng
(
θT · x(i)+ θ0

)]
− 1
m

[
m

∑
i=1

(
1− y(i)

)
· ln

(
1− g

(
θT · x(i)+ θ0

))]
(3.5)

where m is the number of samples of TrainingSet, y(i) is the known class mem-

bership of the i-th sample, θ and θ0 are the classification parameters and g(·) is the

logistic function. Resilient Backpropagation (RProp) was chosen as minimization

algorithm in comparison to the Backpropagation, its faster of training and the rate

of convergence tends to be less125,17. Each single classifier was iteratively trained

with all possible configurations of its internal parameters that had an appropriate

range of values17.

For both the LR and NLR algorithms, the prediction of class labels hθ was

achieved by comparing the probability distribution P(y|x) with a decision threshold

(TH)

hθ =


P(1 | x,θ)≥ TH→ 1

P(1 | x,θ)< TH→ 0
(3.6)
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Both the LR and NLR algorithms guaranteed a prediction response within

100 ms, although the LR is able to make a prediction also within 80 ms and

it is easier to use and simpler to interpret, due to the absence of the polynomial

expansion. Indeed, the NLR with respect to LR consisted only in transforming the

original features into higher degree polynomials before training the model. This

has the advantage that can fit many more types of curves, but, on the other side,

it can require more effort both to find the best fit and to interpret the role of the

independent variables. Thus, the main advantage of using LR were: to simplify

and speed out the training step of the model without affecting the classification

performance.

To improve the robustness of the algorithms when considering sEMG data

of transradial amputees (presented in Section 3.4.2), the regularization term was

added to the cross-entropy error cost function to improve the generalization per-

formance on unseen data

J(w) =
n
∑
i=1

−y(i) · lng(θT · x(i)+ θ0)− (1− y(i))

·ln(1− g(θT · x(i)+ θ0))+ λ
2∥w∥

2
(3.7)

where λ is the regularization parameter that adds penalty on the cost function

when the magnitudes of the fitting parameters increase. The gradient of the cost

function is a vector where the j(th) element is defined as


∂ J(θ)
∂ θ0 = 1

m
m
∑
i=1

(hθ(x(i))− y(i))x(i)j for j=0

∂ J(θ)
∂ θ0 = 1

m
m
∑
i=1

(hθ(x(i))− y(i))x(i)j + λ
mθj for j≥0

(3.8)
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Moreover, the first-order iterative optimization algorithm “Gradient descent”

was used for finding a local minimum of the multivariate differentiable cost func-

tion, with a maximum number of iterations equals to 150126. In detail, the Polack-

Ribiere flavour of conjugate gradients was used to compute search directions, and a

line search with a quadratic and cubic polynomial approximations and the Wolfe-

Powell stopping criteria was employed together with the slope ratio method for

guessing initial step sizes127.

Regarding the DataSet organization, three-way data split approach128 was

applied to the dataset (84000 ∗ 6 sEMG data) and the Training Set (TR), the

Cross Validation Set (CVS) and the Test Set (TS) were set to contain 60%, 20%

and 20% of the data, respectively. A random shuffle was implemented for filling

these subsets with a proper proportion of all classes samples distribution.

The unique operation done on sEMG data was the scaling: it consists of

subtracting the mean value to each signal and dividing the result by the range, as

done in17.Then, downsampling (with a step=10, 100 Hz) was applied to reduce

the data dimensions and training process.

The discarded data rising from the downsampling process (90% of initial data)

composed a new set of data called Generalization Set (GS) used as a second test to

obtain an estimation of the generalization capability of each classifier. The three

way data split approach was applied on the data coming from downsampling

process (10% of initial data): TR, CVS and TS were set to contain 6%, 2% and

2% of the data, respectively. The TR and CVS were used to train and cross

validate the classifiers and the TS and GS were employed to test the performance
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of the classifiers.

Once the optimal classification model has been chosen, TS was used to evaluate

the performance of classifier when new features were introduced as input. To

avoid overfitting and explore the best model, the CVS was used to evaluate the

performance of classifiers for each set of classification parameters17.

3.3.2 LDA classification algorithm and dataset organization

In this section, firstly the time-domain (TD) features, used as input for the LDA

algorithm, are described. Indeed, a proper features set that represent the sEMG

signals129, can improve the ability of a linear classifier to provide accurate move-

ment classes and force level recognition. Then the mathematical expressions that

defined the classifier and the dataset organization are presented. In our study, for

each of the three LDA classifiers, five TD features (Mean Absolute Value (MAV),

Root Mean Square (RMS), Slope Sign Change (SSC), Waveform Length (WL) and

Variance (σ2) ) were extracted from the corresponding channels of “raw” EMG

data. In each analysis windows of 150 ms with an overlap of 100 ms were used122.

The MAV is defined as the summation of absolute value of EMG signals17 and

can be calculated as

MAV=
1
L

L

∑
i=1

|(xi)| (3.9)

where xi is the ith time sample in a window and by L the total length of the

window.

The WL represents the cumulative length of the EMG signal waveform and
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can be calculated as

WL=
L

∑
i=2

|(xi− xi−1)| (3.10)

The Slope sign change represents the number of times the slope of EMG signal

changes sign and it is defined as

SSC= 1
L
L−1
∑
i=2

f[(xi− xi−1)× (xi− xi+1)]

f(xi) =


1, x≥ threshold

0, otherwise

(3.11)

The Root Mean Square is the mean power of the signal and it is defined as

RMS=

√
1
L

L

∑
i=1

x2i (3.12)

The Variance represents a statistical measure of how signal varies from its

average value and it is defined as

VAR=
1

L− 1

L

∑
i=1

x2i (3.13)

Since the LDA classifiers do not require the setting of internal parameters17,

the training and test rely on a two ways data split approach128. Thus, the initial

dataset was divided as follows: the TrainingSet (TR) contains 70% of the data and

the test set contains the remaining 30% of the data. The training of the classifiers

was performed by using the Eqs.(3.14,3.15). The subset were iteratively filled
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trough a random shuffle in order to obtain a configuration with proportionate

class number17. The downsampling step was not necessary because the features

extraction avoided the generation of large-scale-dataset and guaranteed a short

time for the training of the classifiers. The Linear Discriminant Analysis (LDA)

with features extraction is a binary supervised machine learning algorithm able to

transform the features into a lower dimensional space, which maximizes the ratio

of the between-class variance to the within-class variance. This guarantees the

maximum class separability130. The training of the classifiers was performed by

using the Eqs.(3.14,3.15). The following decision function is used to discriminate

between only two different classes and to assign class label 1 or 2 to unknown data

hβ(x) =


(βT · x+ β0)≥ 0→ 1

(βT · x+ β0)< 0→ 2
(3.14)

where β and β0 are, respectively, the classification parameters vector and the

bias term. In details, the classification parameters can be evaluated as


β= Σ−1 · (μ1−μ2)

β0 =−βT ·
(
μ1+μ2

2

)
+ ln

(
Π1
Π2

) (3.15)

where Σ is the pooled covariance matrix, μ1, μ2, Π1, Π2 are the mean vectors

and the prior probabilities of class 1 and class 2, respectively. Since LDA is a

binary algorithm a one vs. all approach was implemented to solve the multi-class
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classification problem. The class label (c) is predicted as

hβ(x) = max
c

(
cβT · x+ cβ0

)
and


cβ= Σ−1 · (μc)

cβ0 =−cβT ·
(μc
2
)
+ ln(Πc)

(3.16)

where cβ and cβ0 are the classification parameters vector and the bias term of

c class, respectively. An ad hoc developed software was implemented in Matlab

for the construction of the three LDA classifiers.

The LDA were trained and tested at 1KHz (without downsampling step) and

for this reason the NLR model was evaluated considering the F1score on GS for

the comparative analysis of the performance.

For the results obtained from amputees subjects (section 3.4.2), the EMAV

and EWL were employed instead of the MAV and WL, respectively, because the

combination of them with other EMG features have been considered valuable for

performance enhancement in rehabilitation and clinical applications131.

In detail, the EMAV is defined as the summation of absolute value of EMG

signals132 and can be calculated as

EMAVi =
1
L

L
∑
i=1

|(xi)p|

p=


0.75, if i ≥ 0.2 L & i ≤ 0.8 L

0.50,otherwise

(3.17)

The EWL is an extension of WL that represents the cumulative length of the
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EMG signal waveform and can be calculated as

EWL=
L
∑
i=2

|(xi− xi−1)
p|

p=


0.75, if i ≥ 0.2 L & i ≤ 0.8 L

0.50,otherwise

(3.18)

where, in both the Eqs.3.17, 3.18, the parameter p is used to enhance the

information content at the middle region of the time window131.

3.4 Experimental results on healthy subjects

The results of the “hand/wrist gestures classifier” are reported in Tab.3.2 in terms

of the average accuracy and F1Score for NLR and LDA algorithms.

The results of LDA classifiers with time domain features extraction were ob-

tained with data sampled at 1 KHz (without downsampling). Thus, for the com-

parative analysis, we reported the results of NLR classifiers tested on “GS” be-

cause they represent the behaviour of the classifiers when data sampled at 1 KHz

are provided as input17. Average classification accuracy for the NLR “hand/wrist

gestures classifier”, the NLR “Spherical force classifiers” and “Tip force classifiers”

are respectively equals to 98.78%, 98.80%, 96.09%. The LDA “hand/wrist ges-

tures classifier” reaches an average classification accuracy equals to 95.41%, while

the LDA “Spherical force classifiers” and “Tip force classifiers” show an average

classification value of 98.74% and 97.60%, respectively.

The results of the two force classifiers, “Spherical force classifier” and “Tip

force classifier” are shown, respectively, in Tab. 3.3 and Tab.3.4, in terms of
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Table 3.2: Mean value and standard deviation of F1Score and Accuracy of the “hand/wrist
gestures classifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Hand/Wrist gestures Classifier
NLR Classifier LDA classifier

F1_Score Accuracy F1_Score Accuracy
Classes Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std
Rest 98,25 4,05 99,50 1,24 97,62 4,31 99,05 3,55

Spherical 95,63 6,22 98,71 1,94 94,28 7,58 93,89 7,76
Tip 95,56 4,93 98,69 1,55 94,25 6,14 93,68 7,56

Platform 95,97 6,58 98,86 1,84 94,60 6,32 95,96 5,25
Point 92,69 9,25 97,63 3,58 93,52 6,02 92,38 7,67

Wrist supination 95,70 6,70 98,64 2,26 95,57 6,18 95,27 7,36
Wrist pronation 98,20 4,93 99,41 1,7 98 3,53 97,66 4,41

Table 3.3: Mean value and standard deviation of F1Score and Accuracy of the “Spherical
force classifier” calculated for 31 healthy subjects with NLR and LDA algorithms. The classi-
fication performance for the NLR classifiers are evaluated on “GS”, while LDA classifiers are
tested on “TS” with data sampled at 1 KHz (without downsampling).

Spherical Force Classifier
NLR Classifier LDA Classifier

Classes F1_Score Accuracy F1_Score Accuracy
Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 97,49 4,84 98,35 3,13 98,49 2,62 98,7 2,76
Medium 97,43 4,21 98,25 2,86 98,43 2,46 98,05 3,35
High 99.69 1,2 99,80 0,78 99,47 1,33 99,48 1,81

Table 3.4: Mean value and standard deviation of F1Score and Accuracy of the “Tip force clas-
sifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Tip Force Classifier
NLR Classifier LDA Classifier

Classes F1_Score Accuracy F1_Score Accuracy
Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 91,54 8,61 94,46 5,42 97,11 3,46 97,79 4,34
Medium 91,56 8,24 94,36 5,14 96,31 4,17 96,36 5,46
High 99,03 1,96 99,26 1,31 99,16 2,03 98,66 3,77

the average F1Score and accuracy for the NLR and LDA classifiers. The average

classification accuracy of the NLR “Spherical force classifier” is 98.35% for the low

force level, 98.25% for the medium force level and 99.80% for the high force level.

The LDA “Spherical force classifier” shows an average classification accuracy of
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98.7% for the low force level, 98.05% for the medium force level and 99.48% for

the high force level. The average classification accuracy of the NLR “Tip force

classifier” is 94.36% for the low force level, 94.46% for the medium force level and

99.26% for the high force level. The LDA “Tip force classifier” shows an average

classification accuracy of 97.79% for the low force level, 96.36% for the medium

force level and 98.66% for the high force level.

Fig.3.7 shows the average confusion matrix when testing the NLR and LDA

“hand/wrist gestures classifier” on “GS” and “TS”, respectively.

Figure 3.7: Normalized confusion matrix of the “hand/wrist gestures classifier” obtained with
NLR algorithm (A) and LDA algorithm (B). On the main diagonal the cardinality of the cor-
rect classifications is reported; in the top left dial and bottom right dial, the cardinality of the
misclassified data related to the 7 output classes representing the hand gestures are reported.

In details, Fig.3.7 A reports the normalized confusion matrix for the NLR

“hand/wrist gestures classifier”, while Fig.3.7 B is related to the LDA “hand/wrist

gestures classifier”.

Fig. 3.8 shows the average confusion matrices when testing the NLR “Spherical
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Figure 3.8: Normalized confusion matrix of the “Spherical force classifier” obtained with NLR
algorithm (A) and LDA algorithm (B). Normalized confusion matrix of the “Tip force classi-
fier” obtained with NLR algorithm (C) and LDA algorithm (D). The cardinality of the correct
classifications is reported on the main diagonal; in the top left dial and bottom right dial, the
cardinality of the misclassified data related to the 3 output classes that represented the force
levels are reported.

force and Tip force classifiers” on the “GS” (Fig. 3.8 A and C) and the LDA

“Spherical force and Tip force classifiers” on “TS” (Fig. 3.8 B and D). As shown

in Fig.3.9 the NLR and LDA “hand/wrist gestures classifier” were able to identify 7

hand gestures with an average F1Score of 96.01% and 95.41% respectively (Fig.3.9

66

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



A). The “Spherical force classifier” identified the force level reaching an average F1

score of 98.75% and 98.79% with NLR and LDA classifiers, respectively (Fig.3.9

B). The “Tip force classifier” was able to define the force level with an average F1

score of 94.04% and 97.53% with NLR and LDA classifiers, respectively (Fig.3.9

C). The Wilcoxon Signed-Rank test applied to the F1Score values points out

no statistically significant difference (“ns”) between NLR and LDA algorithms

(p> 0.05).

Figure 3.9: A) Average F1Score values calculated on 30 healthy subjects using NLR
“hand/wrist gestures classifier” algorithm, tested on “GS”, and LDA “hand/wrist gestures
classifier” with 5 time domain features, tested on “TS”. B) Average F1Score values calculated
on 30 healthy subjects using NLR “Spherical force classifier” algorithm, tested on “GS”, and
LDA “Spherical force classifier” with 5 time domain features, tested on “TS”. C) Average
F1Score values calculated on 30 healthy subjects using NLR “Tip force classifier” algorithm,
tested on “GS”, and LDA “Tip force classifier” with 5 time domain features, tested on “TS”.
Statistical non-significance is indicated by “ns”.
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To assess the ability of discriminating well the force levels also when consider-

ing the FSR sensors, the Fig.3.10 has been introduced: the forces applied to the

object from the 31 healthy subjects are showed as the average values of the sum

of all the FSR measurements.

Figure 3.10: Force sum average values are obtained, by FSR measurements, for 31 healthy
subjects during, respectively, the “Spherical” and “Tip” gestures, performed six times: the
blue, red and black values represent the mean value and standard deviation of respectively
low, medium and high force values performed by each subject.

The misclassification error rates, defined as the percent of incorrect clas-

sifications, are presented in Tab.3.5 and Tab.3.6 for both the NLR and LDA

“hand/wrist gestures classifier”.

The NLR “hand/wrist gestures classifier” performed the highest misclassifi-

cation errors (i.e. 9%) with “Point” class, while the LDA “hand/wrist gestures

classifier” performed misclassification errors greater than 10% (i.e. 11%,12,7%

and 11,3%) for the “Spherical, Tip and Point” classes, respectively. The NLR and

68

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



Table 3.5: Misclassification error rates of the “hand/wrist gestures classifier” calculated with
NLR and LDA algorithms

Misclassification error rates (%)
Hand/Wrist gestures Classifier

Classes NLR Classifier LDA Classifier
Rest 1 1

Spherical 6 11
Tip 5 12,7

Platform 5 7
Point 9 11,3

Wrist Supination 5 7
Wrist Pronation 2 4

Table 3.6: Misclassification error rates of Spherical and Tip Force Classifier calculated with
NLR and LDA algorithms

Misclassification error rates (%)
NLR Classifier LDA Classifier

Classes Spherical Force Classifier Tip Force Classifier Spherical Force Classifier Tip Force Classifier
Low 2 8 4 4

Medium 3 8,5 8 8,5
High 1 2 4 4

LDA “Spherical force classifier” reached the maximum misclassification error (i.e.

3% and 8%, respectively) for the “Medium” force level. The “Tip NLR and LDA

force classifier” presented the same maximum misclassification error (i.e. 8.5%)

for the “Medium” force level.

3.4.1 Discussion

As shown in Tab.3.2 the NLR and LDA “hand/wrist gestures classifier” were able

to identify 7 hand gestures with an average F1Score about equals the 95%. Also

the “Spherical force classifier” and “Tip force classifier” obtained average F1 score

above 96%. These results seem to be very promising if we consider that similar
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values of average F1Score have been achieved only from six healthy subjects and

for gesture classification76, without considering the force levels. The comparative

analysis between NLR and LDA classifier, applied to F1Score values, reported no

statistically significant difference between them.

Confusion matrices, reported in Fig.3.7, Fig.3.8, confirmed the positive results

of the accuracy parameter. The cardinality of the correct classifications on the

main diagonal underlined the high classification accuracy even if some misclas-

sified data out of the main diagonal suggested lower performance of “Tip force

classifier” respect to “Spherical force classifier”. This is due to the major difficulty

encountered by few subjects in modulating between low and medium force levels

during a Tip grasp. The high force levels were always well discriminated at 99%

of average accuracy for both the NLR and LDA force classifiers. In Tab. 3.5,

the LDA “hand/wrist gestures classifier” obtained a greater misclassification er-

ror rates than NLR “hand/wrist gestures classifier” ranging from 1% to maximum

12,7% for discriminating 7 hand/wrist gestures classes by using data including

different muscular activations related to desired force levels. This may due to the

fact that linear classifiers, with straight line or plane decision boundary, could

not be the most appropriate method for a 7 multi-class problem with features

not linearly separable at all. In comparison to the results presented in Scheme

et al.7, the misclassification error values, obtained for the “Spherical” and “Tip”

classes with the LDA “hand/wrist gestures classifier”, were lower than 17% and,

thus, it can be considered an effective result. Moreover, the misclassification error

values, obtained for the “Spherical” and “Tip” classes with the NLR “hand/wrist

70

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



gestures classifier” were, respectively, equals to 6% and 5% and these results can

be considered positive for an usable system (< 10%)7. Finally, the misclassifica-

tion error rates for the “Spherical and Tip force classifiers” are similar (Tab. 3.6),

ranging from 1% to maximum 8,5% for both the NLR and LDA classifiers.

Almost all healthy subjects were able to modulate the force levels and fall

into the range displayed by the visual feedback, without generating high variance

values, as shown in Fig.3.10. Fewer subjects difficulty reproduced the force values

within the force intervals, despite the visual feedback as reference. For instance,

in Fig.3.10, the subjects 25 and 3 were not able to well differentiate between

medium and high force levels during Tip grasp (represented as red and black

points), while subject 28 performed the three force levels too closed during Tip

grasp. This depended on the subject’s difficulty to maintain the applied force

within the force intervals.

These results are also more appreciable if we take into account that NLR, used

for the classification of both hand/wrist gestures and force levels, was trained and

tested using only raw scaled sEMG signals as input features. On the other hand,

the LDA algorithm employed the minimum number of classification parameters

and computational burden. However, the use of time domain features extraction

based on time windowing, make the class evaluation time equals to the window

shift and the system delay approximates to the time window length17. Further-

more, the same number of sensors were adopted to classify 7 gesture classes with

respect to the previous 517 and to identify 3 levels of force during the execution

of “Spherical” and “Tip” grasps. The proposed hierarchical classification archi-
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tecture permitted to decode the user’s motion intention and desired force levels

with high reliability. The proposed hierarchical pattern recognition approach

has obtained effective results with both NLR and LDA algorithms that have been

demonstrated to be suitable for discriminating both hand/wrist gestures and force

levels applied during grasping tasks.

3.5 Experimental validation on upper limb amputees

3.5.1 Experimental setup and protocol

Fifteen trans-radial amputees were enrolled, 12 male and 3 female (aged 45 ±

13.44) at the INAIL prosthesis center in Vigorso di Budrio. The study protocol

complied with the Declaration of Helsinki and was approved by the local ethics

committee (Comitato Etico di Area Vasta Emilia Centro (CE-AVEC), reference

number: CP-PPRAS1/1-01). All patients signed informed consent for voluntary

participation in the study. The experimental setup was composed of twelve com-

mercial sEMG sensors (Ottobock 13E200 = 50, 27 mm × 18 mm × 9.5 mm)

and two hand dynamometers (Vernier HD BTA, 46 mm x 28 mm x 170 mm)

that were used for the EMG and force signals acquisition, respectively. A custom

electronic interface (Fig.3.11.A) was developed to connect properly the sensors to

the NI-DAQ 6218 (National Instruments). The described experimental setup was

connected via USB to the PC (MSI prestige 15, Intel (R) Core (TM) i7-1185G7

CPU @ 1.80 GHz), to allow data acquisition by using a LabView software. For

each arm, six sEMG sensors were located equidistantly from each other on an

elastic bracelet, located 4 cm below the patient’s elbow Fig.3.11. The number of
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Table 3.7: Summary of the trans-radial patients information

Patient Age Sex Amp.side Dom.limb Years
from
amp.

Expert Stump
length
(cm)

P1 25 M DX DX 11 yes 12
P2 37 M SX DX 13 yes 9
P3 52 F DX DX 37 no 6
P4 57 M DX DX 25 yes 15
P5 40 F SX DX 26 yes 8
P6 54 M DX DX 24 yes 14
P7 26 F SX DX 25 no 7
P8 61 M DX DX 13 yes 22
P9 32 M DX DX 6 yes 7
P10 43 M DX DX 18 yes 21
P11 64 M SX DX 20 yes 7
P12 31 M DX DX 7 yes 5
P13 41 M DX DX 5 yes 23
P14 47 M SX DX 25 yes 26
P15 65 M DX DX 50 yes 14.5

sEMG sensors was described in section 3.2.

In order to evaluate the real time robustness of the proposed PR strategy, a

prosthetic system, composed of hand device (RoboLimb, by Touch Bionics) and

wrist module (Wrist Rotator, by Ottobock) was employed. A custom electronic

board and relative firmware was developed in order to control the prosthesis via

Bluetooth.

The tasks were performed in a single experimental session. The electrodes

placement was the same over the repetition of each task. Demonstrations of

each movement were displayed following a predefined list on a computer screen

(Fig.3.11.C and Fig.3.11.D). During the offline training, for each movement, the

clinical operator instructed all participants to follow the demonstration of his

motion and to perform it with a comfortable and consistent level of effort. Then,

in the real-time phase, the participants were asked to reproduce the same tasks

in the most similar way to the offline training. The performance of the proposed
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approach69 was evaluated during an experimental session, that was organized as

follows:

• Step 1 - Force thresholds settings. To define the three threshold values for

the low, medium, and high force level, the mean values obtained from three

acquisitions were considered for each level. This procedure was employed for

both Spherical and Tip grasps, for a total of 18 acquisitions. The average

values will be used, for each level, as a reference during step 2.

• Step 2- Training step. In a initial phase before the training, the patient was

asked to perform bi-manually the following 7 hand and wrist gestures for six

times, and to hold each for 3 seconds: Rest, Spherical, Tip , Platform,Point,

Wrist supination and Wrist pronation. For the grasping tasks, the amputees

were asked to modulate also the force, according to three force levels, estab-

lished as following: the low level was fixed between the ± 10 % of the mean

value for the low threshold, the medium level was fixed as ± 10 % of the

mean value for the medium threshold, while the high level starts from −10

% of the highest threshold and continued until the maximum value. These

force bands are needed to reduce the difficult for amputees to repeatably

perform a punctual value of force. Then, each of the three classifiers was

trained by using the recorded data by including all the 3 force levels.

• Step 3- Online Validation. Before starting the real-time evaluation, the pros-

thetic system was connected to the PC via Bluetooth. The outputs of the

proposed PR algorithms, i.e. the hand/wrist gestures and the desired force
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level, were sent via Bluetooth to the prosthetic system in order to repli-

cate the discriminated motion with the prosthesis, also giving a feedback

to the patient. For the “Spherical” and “Tip” grasps, the hand device was

controlled at 3 different speeds, based on the level of classified force. The

second dynamometer was used to record the force applied by the prosthetic

system. The patient was asked to perform each motion task for 3 times,

starting from the rest; for the grasping tasks, each level of force was consid-

ered as a different tasks, for a total of 33 recordings. All motion tasks were

recorded for 5 seconds133.

In detail, after the step 2, the recorded sEMG data were organized in a

DataSet matrix with 6 columns, each coupled with an EMG sensor. The

training and test was subdivided by considering the two ways data split

approach128: the 70% of the data were reserved for the “TrainingSet” (TR),

while the remaining 30% of the data for the “Test Set” (TS). For the LR and

NLR algorithm, the first-order iterative optimization algorithm “Gradient

descent” was used to set the optimal internal parameters. One vs. all

approach was introduced to adapt the LR,LDA and the NLR classification

algorithms to the multi-class classification problem.

Firstly, in this study, a statistical analysis based on the Mann-Whitney test

with Bonferroni correction was carried out to assess if the performances of the

three proposed algorithms increased significantly with or without TD domain

features extraction. Indeed, in literature, the use of EMG-PR based strategies

with TD features, has used often to improve the robustness of the proposed pros-
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Figure 3.11: The experimental setup was composed of: (A) two sEMG elastic bracelets to
record with 12 sEMG sensors Ottobock 13E200 the signals from both the arms; the NI DAQ
USB 6002 to allow the acquisition of the sEMG signals and dynamometers data; two hand
dynamometers (Vernier HD BTA, 46 mm x 28 mm x 170 mm) to study the force information
from both the healthy limb and the bench prosthesis. (B) the prosthetic system was composed
of hand device (RoboLimb, by Touch Bionics) and wrist module (Wrist Rotator, by Otto-
bock). The software interface has been created with the Labview platform to (C) record the
sEMG signals and the dynamometer data and to train offline the classifiers and (D) to record
in real-time the outputs of the trained classifiers.

thetic systems134,135. In particular, the features extraction avoided the gener-

ation of large-scale-dataset without performing the downsampling step and the

time to complete the training is not too long. In detail, the feature extraction

was performed by calculating the following five time domain features131, reported

previously in Section 3.3.2: Enhanced Mean Absolute value (EMAV), Enhanced

Wavelength (EWL), Slope Sign Change (SSC), Root Mean Square (RMS), Vari-

ance (VAR). Data were segmented by using a window of 150 ms with an overlap

of 100 ms122. The same algorithms introduced in the Section 3.3.1 and 3.3.2 were
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tested on transradial amputees. Their performance were evaluated offline through

F1Score and the misclassification errors values, and also in real-time by consider-

ing the motion selection time, the motion completion time and motion completion

rate.

3.5.2 Experimental Results

3.5.3 Offline performance

A preliminary comparison between the performance of the three algorithms (LR,

LDA, and NLR) with or without the features extraction step was carried out

to evaluate how to improve the robustness of the proposed classifiers. In this

analysis, we had also considered the LR algorithm to evaluate if can be used as

well as the NLR algorithm, without affecting the classification performance. The

advantage of using LR were to simplify the training step of the model (without the

polynomial expansion) and to speed out the real time prediction (within 80 ms)

when controlling the prosthetic system. In detail, the results in terms of F1Score

(Fig.3.12) from 15 trans-radial amputees (Tab.3.7) with the use or not of the TD

features, introduced in Section 3.3.2, were reported for the “Hand/wrist gestures

classifier”, “Spherical force classifier” and “Tip force classifier” (Fig.3.11).

For the “Hand/wrist gestures classifier”, the Mann-Whitney test applied to

the F1Score values points out statistically significant difference (“*”) between

LDA algorithm without and with the features extraction step. Instead, for the

“Spherical force classifier”, there was a statistically significant difference (“*”) be-

tween both LR and LDA algorithms without and with the features extraction step
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respectively. Regarding the “Tip force classifier”, all the three algorithms (LR,

LDA and NLR) had revealed a statistically significant difference ( “*”) without

and with the features extraction step respectively.

In detail, the mean average F1Score (Fig.3.12) for the LR “hand/wrist gestures

classifier”, the “Spherical force classifiers” and “Tip force classifiers” were equals

respectively to 93.05 % ± 9.53, 98.24 % ± 4.57, 98.43 % ± 3.91 with FE, and

equals respectively to 90.57 % ± 11.08, 96.91 % ± 4.47, 93.10 % ± 7.18, without

FE. The LDA “hand/wrist gestures classifier” reaches an average classification

F1Score equals to 93.21 % ± 10.47 with FE and 83.20 % ± 12.19 without FE; while

the LDA “Spherical force classifiers” and “Tip force classifiers” showed an average

F1Score value of 98.80 % ± 2.87 and 96.24 % ± 6.22 with FE, respectively, and

equals to 95.71 % ± 5.06 and 90.30 % ± 8.66, without FE, respectively. Finally,

the NLR “hand/wrist gestures classifier”, the “Spherical force classifiers” and “Tip

force classifiers” obtained the mean average F1Score equals respectively to 92.03

% ± 5.79, 97.34 % ± 5.79, 97.94 % ± 3.11 with FE, and equals respectively to

92.84 % ± 10.28, 97.50 % ± 3.84, 94.78 % ± 6.93, without FE.

All the algorithms showed the best performance with the features extraction

step. Thus, in this study, the following results of the hierarchical PR-based strat-

egy were presented by considering the statistical analysis reported in this section.

The box plots in Fig.3.13 and Fig.3.14 showed the F1Score and the misclassifica-

tion errors for each classes, for the “hand/wrist gestures classifier”, the “Spherical

force classifier” and “Tip force classifier” obtained with the LR, LDA and NLR

with FE step.

78

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



Figure 3.12: Average F1Score values calculated on 15 trans-radial amputees using the LR (in
blue), LDA (in red) and NLR (in green) algorithms for (A) the “hand/wrist gestures classi-
fier”, (B) the “Spherical force classifier” and (C) the “Tip force classifier” algorithm, tested
on “TS” with and without the 5 time domain features extraction (FE) step. The statistical
significance is indicated by “*”

The output motion classes of the “hand/wrist gestures classifier” that have

the lowest mean F1Score values (equals about 90 %) were the following showed in

Fig.3.13: the Tip class (90.59 % ± 7.52) and Point class (91.33 % ± 12.61) with

the LR algorithm; the Spherical class (90.03 % ± 16.28) and Tip class (90.11 %

± 9.59) with the LDA algorithm; the Spherical class (91.24 % ± 11.59), the Tip

class (89.68 % ± 7.93), Point class (90.81 % ± 9.97) and the Wrist supination class

(90.26 % ± 14.20) with the NLR algorithm. Instead, for both the “Spherical force

classifier” and the “Tip force classifier”, all the output motion classes obtained a

mean F1Score values above 95 % for the three algorithms.
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Figure 3.13: Average F1Score values calculated on 15 trans-radial amputees using the LR (in
blue), LDA (in red) and NLR (in green) algorithms, tested on “TS” with the 5 time domain
features extraction (FE) step: for (A) the “hand/wrist gestures classifier”, the F1Score of the
7 hand/wrist gestures classes have been reported; for the (B) the “Spherical force classifier”
and (C) the “Tip force classifier” algorithm, the F1Score values of the 3 force levels have been
shown.

The mean average misclassification errors in Fig.3.14 for the LR with FE

“hand/wrist gestures classifier”, “Spherical force classifiers” and “Tip force classi-

fiers” were respectively equals to 6.94 % ± 10.25, 2.05 % ± 5.70, 1.54 % ± 4. The

LDA “hand/wrist gestures classifier” with FE reaches an average misclassification

errors equals to 6.64 % ± 10.63; while the LDA “Spherical force classifiers” and

“Tip force classifiers” show an average misclassification errors values with FE of

1.54 % ± 4.28 and 3.42 % ± 6.45, respectively. Regarding the NLR with FE

“hand/wrist gestures classifier”, “Spherical force classifier” and “Tip force classi-
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Figure 3.14: Average misclassification errors percentage calculated on 15 trans-radial am-
putees using the LR (in blue), LDA (in red) and NLR (in green) algorithms, tested on “TS”
with the 5 time domain features extraction (FE) step: for (A) the “hand/wrist gestures clas-
sifier”, the misclassification errors of the 7 hand/wrist gestures classes have been reported; for
the (B) the “Spherical force classifier” and (C) the “Tip force classifier” algorithm, the mis-
classification errors of the 3 force levels have been shown.

fier” obtained the mean average misclassification errors equals to 7.87 % ± 9.88,

2.56 % ± 7.24, 2.05 % ± 4.15, respectively. For all the three algorithms, the

“hand/wrist gestures classifier” showed the highest values of misclassification er-

rors for the Spherical and Tip grasping tasks. In detail, for the Spherical motion

class the mean misclassification errors were equals to 10.00 ± 12.8, 12.28 ± 21.30,

11.00 ± 14.8 for the LR, LDA and NLR algorithms; while for the Tip motion

class, they were equals to 10.00 ± 9.30, 11.28 ± 10.30, 11.00 ± 9.8 for the LR,

LDA and NLR algorithms.
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Fig.3.15 shows the average confusion matrix when testing the LR, LDA and

NLR “hand/wrist gestures classifier”, “Spherical force classifier” and “Tip force

classifier” (A, B, C , respectively) on the Test Set (TS), respectively.

Figure 3.15: Normalized confusion matrix of the “hand/wrist gestures classifier”, “Spherical
force classifier” and “Tip force classifier” obtained with LR algorithm with FE (A) and LDA
algorithm with FE (B) and NLR algorithm with FE (C). The confusion matrices are normal-
ized with respect to the number of data belonging to the “TS”.

The comparative analysis, based on the Mann-Whitney test with Bonferroni

correction, between LR, LDA and NLR classifiers, applied to F1Score values and

misclassification errors, reported no statistically significant difference between

them.

The Confusion matrices, reported in Fig. 3.15, confirmed the positive results

of the classification accuracy. On the main diagonal the cardinality of the correct
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classifications was reported; for the “hand/wrist gestures classifier”, the cardinal-

ity of the misclassified data related to the 7 output classes representing the hand

gestures were reported; while for the “Spherical force classifier” and “Tip force

classifier”, the cardinality of the misclassified data related to the 3 output classes

that represented the force levels (Low, Medium, High) were considered. For all

the three algorithms, the cardinality of the correct classifications on the main di-

agonal of the “hand/wrist gestures classifier”, underlined the high classification

accuracy even if some misclassified data out of the main diagonal suggested a bit

minus performance of Spherical and Tip motion classes. For the “Spherical force

classifier”, and “Tip force classifier”, the majority of the misclassified data out of

the main diagonal are related to the low and medium force levels. Instead, the

high force levels were always well discriminated at 99% of average accuracy for

the LR and the NLR and at 98% for LDA force classifiers.

3.5.4 Real-time performance

Also a real-time performance evaluation was carried out for each proposed algo-

rithm applied to the hierarchical classification approach. The following perfor-

mance metrics used in133 were employed: the motion selection time (“MST”),

the motion completion time (“MCT”) and the motion completion rate (“MCR”).

In detail, the “MST” was defined as the time from the onset to the first correct

classification (i.e the time taken to successfully select a target movement); the

“MCT” was the time from movement onset to the 10th correct classification (i.e

the time from the onset to the completion of the intended movement); finally the
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“MCR” (“success” rate) was the percentage of successfully completed motions out

of the total attempted motions.

In our study, all the three classifiers with FE step (“hand/wrist gestures clas-

sifier”, “Spherical force classifier”, and “Tip force classifier”), have been tested

in real-time with the LR,LDA and NLR algorithms and have produced a new

prediction within 100 ms.

In particular, the “MST”, “MCT” and “MCR” have been reported in Fig. 3.16

and Fig. 3.17 and are related to mean value obtained from the 15 trans-radial

amputees and calculated over 2 repetitions of all the 11 motion classes.

For the “hand/wrist gestures classifier”, the mean “MCT” values among mo-

tion classes were equals to 2.34 % ± 1.23, 2.54 % ± 1.44 and 2.41 % ± 1.39 for

the LR, LDA and NLR classifiers, respectively.

In detail, for the LR “hand/wrist gestures classifier” classifier, the motion

classes with the highest values of “MCT” were the Spherical class with low force

(2.97 % ± 1.38), the Tip class with high force (2.95 % ± 1.75) and the Point class

(2.60 % ± 1.50); for the LDA “hand/wrist gestures classifier”, the Spherical class

with low force (2.83 % ± 1.82), the Tip class with low force (2.84 % ± 1.44), the

Tip class with high force (2.89 % ± 1.54), the Platform class (3.33 % ± 1.87),

and the Point class (2.82 % ± 1.63) show the highest values of “MCT”. Finally,

regarding the NLR “hand/wrist gestures classifier”, the Spherical class with low

force (2.72 % ± 1.56), the Tip class with high force (2.96 % ± 1.61), the hand

open (2.97 % ± 1.95), and the Point class (2.83 % ± 1.21) reach the “MCT”

values almost equals to 3 s.
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Figure 3.16: Average “MCT” values calculated on 15 trans-radial amputees using: at the top,
the LR (in orange), LDA (in grey) and NLR (in yellow) “hand/wrist gestures classifier”; at
the bottom, the LR (in orange), LDA (in grey) and NLR (in yellow) force classifiers: the
“Spherical force classifier” and the “Tip force classifier” for the Spherical and Tip grasp, re-
spectively; the mean “MCT” values were calculated over 2 repetitions of the reported motion
classes.
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For the LR “Spherical force classifier”, the Spherical classes with low and

medium force obtained the highest “MCT” values (2.48 % ± 1.55 and 2.87 %

± 1.54, respectively). Also the LDA and NLR “Spherical force classifier” show

the highest “MCT” values for the low and medium force classes: 3.10 % ± 1.82

(LDA classifier, low force class) and 2.72 % ± 1.26 (LDA classifier, medium force

class); 2.55 % ± 1.79 (NLR classifier, low force class) and 2.30 % ± 1.62 (NLR

classifier, medium force class). Finally, for the LR “Tip force classifier”, the low

and high force levels have the “MCT” settled down 2.72 % ± 1.93 and 3.45 % ±

2.07 values, respectively; while the medium force level obtained the “MCT” value

over 4 s but within the 5 s (4.95 % ± 1.20). Also for the LDA, the “MCT” values

for the medium force level was over 4 s ( 4.48 % ± 1.49); while for the low force

level, it last less than 3 s ( 2.94 % ± 1.77); for the high force level, it was barely

above 3 s ( 3.05 % ± 1.55). Finally, for the NLR “Tip force classifier”, all the

three output force levels have the “MCT” values within the 5 s: the low force level

show the lowest value ( 1.52 % ± 1.08); instead, the medium force level reached

the highest value, though contained within 5 s ( 4.37 % ± 1.28); for the high force

level, it was barely low 3s ( 2.65 % ± 1.74).

The mean “MCR” obtained from the three algorithms revealed what are the

motion classes more difficult to perform that have also the highest values of

“MCT”, as described above: for the LR, LDA and NLR “hand/wrist gestures

classifier”, the mean “MCR” reached an average values of 89.39 % ± 25.34, 83.64

% ± 29.09 and 86.67 % ± 30.14, respectively. About the force classifiers, the

mean “MCR” were equals to 77.33 % ± 28.80 for the LR algorithm, 78.11 % ±
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31.96 for the LDA algorithm, and 80.56 % ± 31.71 for the NLR algorithm.

The Mann-Whitney test with Bonferroni correction (P < 0.016) applied to the

“MST”, “MCT” and “MCR” values points out no statistically significant difference

(“*”) between the three algorithms.

Finally, Fig. 3.18 shows the force signals obtained from the dynamometer

when the amputee performed a grasping tasks (Spherical or Tip grasp) with the

prosthesis. The two output classes of the “hand/wrist gestures classifier” and

“Spherical force classifier” or “Tip force classifier” were sent simultaneously to

the prosthesis. In detail, the output of the “hand/wrist gestures classifier” dis-

criminated the desired motion class (among the 7 hand/wrist gestures) to perform

with the prosthesis: if the motion class was the “Spherical” or “Tip”, the classifica-

tion approach become hierarchical and also the force levels information was added

to the classification strategy by activating a second classifier (force classifier). In

this case, the hand device was controlled at 3 different speeds associated to each

classified force level. Thus, the dynamometer data, at the top of the Fig. 3.18 A

and B, showed the force signals obtained when the prosthesis applied the three

force levels (low, medium, and high) on the dynamometer during the Spherical

and Tip class, respectively. At the bottom of the Fig. 3.18 A and B, the boxplot

represented the force values extracted from the plateau of the dynamometer curve.
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Figure 3.17: Average “MCR” percentages calculated on 15 trans-radial amputees using: at
the top, the LR (in orange), LDA (in grey) and NLR (in yellow) “hand/wrist gestures classi-
fier”; at the bottom, the LR (in orange), LDA (in grey) and NLR (in yellow) force classifiers:
the “Spherical force classifier” and the “Tip force classifier” for the Spherical and Tip grasp,
respectively; the mean “MCR” percentage were calculated over 2 repetitions of the reported
motion classes.
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Figure 3.18: At the top, the dynamometer data showed the force signals obtained when the
prosthesis apply the three force levels (low, medium, and high) during (A) the Spherical and
(B) Tip class. At the bottom, the boxplot represented the force values extracted from the
plateau of the dynamometer curve.
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3.6 Discussion

An offline and real-time performance evaluation of the hierarchical PR-based strat-

egy was carried out in this study, by employing the sEMG data of 15 trans-radial

amputees. For the offline performance, the F1Score and misclassification error

values were reported for each classifier (hand/wrist gestures and force classifiers).

The real-time analysis was performed by considering the motion completion time

and motion completion rate metrics. Three algorithms based on LR, LDA and

NLR were tested both offline and in real-time to assess which of them can guar-

antee the best performance of the hierarchical PR strategy that was employed to

contemporary identify desired hand/wrist gestures and force levels. To this aim,

a statistical analysis based on the Mann-Whitney test with Bonferroni correction

was carried out for evaluating, firstly, if an increase of the performances occurred

with or without TD domain features extraction. Then, it was also applied to

understand deeply the difference in terms of the offline and real-time performance

of the three proposed algorithms.

3.6.1 Offline performance

A preliminary analysis was carried out to assess a statistical significant difference

between the F1Score with or without the FE step, for each classifier and for each

proposed algorithm. The results showed that there was a statistically significant

difference (“*”) between the LDA “Hand/wrist gestures classifier” without and

with the features extraction step. In detail, there was an increase of the mean

F1Score values of 10.42 % and a reduction of 4.84 % of the misclassification error
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values.

For the “Spherical force classifier”, there was a statistically significant increase

of the performance for both LR and LDA algorithms, when the FE was applied.

For the LR and LDA “Spherical force classifier”, the mean F1Score values increase

of 1.61 % and 3.09 %, respectively. Also for the “Tip force classifier”, the F1Score

for the LR and LDA classifiers increased significantly with the FE step (5.94 %

and 3.16 %, respectively).

Thus, by applying the FE step, the mean F1Score values, were equals to 93.05

% ± 9.53, 98.24 % ± 4.57, 98.43 % ± 3.91 for the LR, LDA and NLR “hand/wrist

gestures classifier”, respectively. The “Spherical force classifier” identified the

three force levels with an average F1Score of 98.24 % ± 2.05, 98.80 % ± 1.54, and

the 97.34 % ± 2.56, for the LR, LDA and NLR classifiers, respectively. The “Tip

force classifier” was able to discriminate the three force classes by obtaining an

average F1Score values of 98.43 % ± 1.54, 96.24 % ± 3.42, and the 97.94 % ± 2.05

with the LR, LDA and NLR algorithms, respectively. These results seem to be

very promising due to the simultaneously classification of hand/wrist gestures and

force levels by trans-radial amputees with F1Score over 90 % for the “hand/wrist

gestures classifier” and force classifiers, implemented with all the three algorithms.

Also, the offline misclassification errors rates, were used to evaluate the classifiers

performances: they remained within 10 % and this can be considered a positive

result for an usable system7. The statistical analysis between the LR, LDA and

NLR classifiers, applied to F1Score values and misclassification errors, reported

no statistically significant difference among them.
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Also the confusion matrices, reported in Fig. 3.15, confirmed the positive re-

sult in terms of accuracy and underlined for the “Spherical force classifier” and

“Tip force classifier”, the majority of the misclassified data out of the main diag-

onal were related to the low and medium force levels. This is due to the major

difficulty encountered by some amputees (as the subjects P1,P2,P3,P5,P7, and

P12, described in Tab. 3.7) to modulate between low and medium force levels,

especially during a Tip grasp. The difficulty may be due to the shorter length

of the stump. In addition, the dynamometer data, in Fig. 3.18, confirmed that

the force levels are well differentiable, when the prosthesis hold the dynamometer.

Thus, the proposed hierarchical classification architecture had been made more

robust to obtain valid results also on trans-radial amputees, and it was tested also

in real-time to control simultaneously, trough the introduced prosthetic device,

both the motion intentions and desired force levels.

3.6.2 Real-time performance

The real-time results were reported to validate the hierarchical classification ap-

proach also to control a prosthetic device. The desired hand/wrist gestures and

force levels were discriminated simultaneously, by testing the performance of three

different algorithms (i.e LR, LDA and the NLR). For each algorithm, the motion

completion time and motion completion rate were reported to identify the ro-

bustness of the proposed PR system to discriminate simultaneously hand/wrist

gestures and force levels.

For the hand/wrist classifier, the lower mean value of the motion completion
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time, among the 7 motion classes, was obtained with LR algorithm (2.34 % ±

1.22), followed by the NLR (2.41 % ± 1.39) and the LDA (2.54 % ± 1.44) algo-

rithms. For the Spherical and Tip force classifiers, the lowest value of the mean

motion completion time was obtained with the NLR algorithm (2.60 % ± 1.50);

the LR and LDA force classifiers reached fairly similar mean motion completion

time values (2.96 % ± 1.44 and 2.97 % ± 1.51, respectively). Regarding the

mean motion completion rate values, the highest percentage was reached with LR

”hand/wrist gestures classifier” with FE and was equal to 89.09 % ± 25.76; in-

stead, the lowest percentage was obtained by LDA with FE ”hand/wrist gestures

classifier” (83.64 % ± 29.09); the NLR with FE ”hand/wrist gestures classifier”

showed a mean motion completion rate value equal to 86.67 % ± 30.14). For the

Spherical and Tip force classifiers, the best performance in terms of mean motion

completion rate values was reached with the NLR algorithm (80.56 % ± 31.22),

followed by the LR and LDA algorithms (73.33 % ± 28.80 and 76.11 % ± 31.96,

respectively). However, if we didn’t considered the difficulty encountered from

the majority of amputees to reproduce the Tip grasp with the medium force level,

the mean motion completion rate values grew to 85.00 % ± 9.01 for the NLR

algorithm, and to 81.00 % ± 15.02 and 81.00 % ± 7.60 for the LR and LDA

algorithms, respectively.

In detail, for the force classifiers, these lowest values of the motion comple-

tion rate should depended also on the lowest values reached by the ”hand/wrist

gestures classifier” for the Spherical and Tip class. In detail, the LR ”hand/wrist

gestures classifier” obtained the mean motion completion rate values equals to
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86.67 ± 29.5 and 87.78 ± 27.49 for the Spherical class and Tip motion classes,

respectively. Regarding the LDA and NLR ”hand/wrist gestures classifier”, the

mean motion completion rate values were equals to 80.00 ± 35.69 and 85.56 ±

34.23 for the Spherical motion class, respectively; and they were equals to 83.33

± 30.72 and 85.56 ± 32.43 for the Tip motion class, respectively. This can be

due to the difficulty of amputee to keep stable the muscle contraction for both

the grasping task and force levels. In particular, the Tip grasping task with the

medium level was the most difficult to reproduce and to keep stable in real-time

for the majority of amputees.

Thus, the best solution for controlling the prosthetic system in real-time, seems

to use simultaneously the LR algorithm with FE for the ”hand/wrist gestures

classifier” and the NLR with FE for the Spherical and Tip force classifiers. Indeed,

these algorithms reached the best compromise between the lowest mean motion

completion time values and the highest percentage of the mean motion completion

rate values. Both the LR and NLR guaranteed to produce, in real-time, a response

every 100 ms. Thus, this can be considered the best solution for the real-time

applicability of the hierarchical PR approach.

3.7 Conclusion

In this study, a hierarchical classification approach was developed with the aim to

assess the desired hand/wrist gestures, as well as the desired force levels to exert

during grasping tasks. A Finite State Machine was introduced to manage and co-

ordinate three classifiers based on the Non-Linear Logistic Regression algorithm.
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Firstly, the classification architecture was evaluated across 31 healthy subjects.

A Wilcoxon Signed-Rank test was carried out for the statistical analysis of com-

parison between NLR and LDA. The comparative analysis reports no statistically

significant differences in terms of F1Score performance between NLR and LDA.

Thus, this study reveals that the use of non linear classification algorithm, as

NLR, is as much suitable as the benchmark LDA classifier for implementing an

EMG pattern recognition system, able both to decode hand/wrist gestures and

to associate different performed force levels to grasping actions. Then, to inves-

tigate also the ability of trans-radial amputees to manage simultaneously desired

hand/wrist gestures and three force levels, an extended analysis based on LR, NLR

and LDA algorithm had been carried out to assess the robustness, both in offline

and in real-time, of the hierarchical PR system. To this purpose, a prosthetic sys-

tem composed of hand device ( RoboLimb) and wrist module (WristRotator) was

employed to validate the presented method when trans-radial amputees control-

ling multi-fingered hand prostheses and exerted force levels. A statistical analysis

based on the Mann-Whitney test with Bonferroni correction (p<0.016) was car-

ried out to assess the best solution when considering the performance of three

different algorithms: the comparative analysis reports not statistically significant

differences in terms of F1Score and misclassification errors between the LR, NLR

and LDA classifiers. Also in real-time, the Mann-Whitney test with Bonferroni

correction (P < 0.016) applied to the MST, MCT and MCR values points out no

statistically significant difference between the three algorithms. However, consid-

ering also the real-time performance, the best solution to decode simultaneously

95

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



the hand/wrist gestures and force levels seems to be the simultaneous use of the

LR algorithm with FE for the ”hand/wrist gestures classifier”, and the NLR with

FE for the Spherical and Tip force classifiers. Finally, the proposed method al-

lowed to extract from EMG signals all the valuable information regarding not only

muscle contractions related to hand/wrist motions but also the changes of muscle

activation patterns depending on the influence of different force levels.
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Parallel PR-based classification strategy

to simultaneously control 3-DoFs of

elbow, wrist and hand

4.1 Introduction

In the field of myoelectric control systems, pattern recognition (PR) algorithms

have become always more interesting to predict complex electromyography pat-

terns involving more than 2 Degrees of Freedom (DoFs) movements.

When considering a poliarticulated prostheses with several DoFs, related to

the elbow, wrist, and hand, the simultaneous control of combined movements of

different joints (e.g. pouring water into a glass) ensure greater dexterity than the

sequential one136.

From the literature analysis presented in Chapter 1.0.2, the sequential manag-

ing of one DoF at a time from the user had been considered a major limitation of

the proposed PR strategies, when complex multi-DoFs tasks had to be performed.

The majority of the classification strategies are based on single, hierarchical and

parallel linear discriminant analysis (LDA) classifiers able to discriminate until 19

wrist/hand gestures (in the 3-DoFs case), considering both combined and discrete
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motions. However, this strategies were introduced to classify simultaneously only

2 DoFs and were limited by the lack of online performance measures. Moreover,

the use of sequential control strategies caused a cognitive burden especially during

the planning of the intended movement because the user can not perform fluid,

lifelike combined movements43.

In this chapter, a novel parallel classification approach based on the LR al-

gorithm, with the regularization parameter and the FE step, was introduced to

provide classification of complex tasks that involved up to 3 DoFs, by keeping the

number of electrodes to a bare minimum and the classification error rates under

10 %. Moreover both the offline and real-time performance metrics were evaluated

and compared with the LDA parallel classification approach. We extracted the

following time-domain features: mean absolute value (MAV), wavelength length

(WL), slope sign change (SSC), root mean square (RMS), variance (VAR) from the

raw sEMG signals of only 6 channels sensors. In detail, the proposed model dis-

criminated between the following 26 motion classes and no motion class: 6 discrete

motions (elbow flexion, elbow extension, hand open, hand close, wrist supination,

wrist pronation), the rest state, and other 20 complex motions performed during

daily life activities, and derived from the combination of the discrete motions,

reported in Tab.4.1.

Also, the analysis of the real-time performance was evaluated with the motion

selection time, motion completion time, and the completion rate for all the 27

motion classes133. The offline and real-time performances were compared with

the LDA benchmark algorithm, by using three LDA classifiers with the same
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Table 4.1: Report of daily activities where the considered 27 motion classes are involved

Motion Classes Motion Classes Daily Activity

Discrete

1 F elbow flexion for bringing something to you
2 E elbow flexion for giving something to someone
3 C close hand for holding something
4 O open hand for giving something
5 S wrist supination for rotating an object
6 P wrist supination for rotating an object

No Motion 7 NM

Combined

8 FCS brings a biscuit to your mouth
9 EOP rest your open hand on the table
10 FCP bring the back of your closed hand to your forehead
11 EOS bring the back of your open hand onto the table
12 FOS bring your open hand to your mouth
13 ECP beat your fist on the table
14 FOP Bring the back of your open hand to your forehead
15 ECS Bring the back of your closed hand onto the table
16 CS Rotate the back of your closed hand to open the lid of a pot
17 OP Rotate your open hand down
18 OS Rotate the back of your open hand
19 CS Turn your closed hand down to turn the door handle
20 FC Flex your elbow with your hand closed (bring your fist to your mouth)
21 EO Extend your open hand (karate blow)
22 FO Flex your elbow with your hand closed
23 EC Extend your elbow with your hand closed
24 ES flex your elbow and rotate your wrist upwards
25 EP Extend your elbow and rotate your wrist down
26 FP Flex your elbow and rotate your wrist down
27 ES Extend your elbow and rotate your wrist upward

Acronyms of Tab.4.1: F: elbow flexion; FO: elbow flexion with hand open; FC: elbow flexion
with hand close; FS: elbow flexion with wrist supination; FP: elbow flexion with wrist

pronation; FOS: elbow flexion with hand open and wrist supination; FOP: elbow flexion with
hand open and wrist pronation; FCS: elbow flexion with hand close and wrist supination;
FCP:elbow flexion with hand close and wrist pronation; E: elbow extension; EO: elbow

extension with hand open; EC: elbow extension with hand close; ES: elbow extension with
wrist supination; EP: elbow extension with wrist pronation; EOS: elbow extension with hand
open and wrist supination; EOP: elbow extension with hand open and wrist pronation; ECS:
elbow extension with hand close and wrist supination; ECP:elbow extension with hand close
and wrist pronation; C: hand close; CS: hand close with wrist supination; CP: hand close with
wrist pronation; O: hand open; OS: hand open with wrist supination; OP: hand open with

wrist pronation; S: wrist supination; P: wrist pronation; NM: no motion class.

features extraction and parallel classification approach.
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4.2 Parallel classification approach

The parallel classification approach, introduced in this section, was implemented

by using three classifiers one for each DoF: the “Elbow classifier”, the “Wrist

classifier”, and the “Hand classifier” provided the simultaneous control of the

elbow, hand, and wrist joints, respectively.

In detail, the proposed parallel classification approach was implemented with

the LR algorithm, to recognize both discrete and combined elbow, wrist, and hand

motions. Then, the same approach was reproduced using LDA algorithm in order

to perform a comparative analysis.

The control scheme provides the final decision that is composed of the inde-

pendent outputs of the three joint classifiers.

In particular, the “Elbow classifier” was trained with the TrainingSet 1, or-

ganized as reported in Fig.4.1: from the DataSet matrix, described above, that

contained the recordings of four repetitions of each of the 27 motion classes, the

discrete and combined motion classes were labeled into three output classes. In

detail, the output of the “Elbow classifier” determines the elbow flexion ( labeled

as “Class 1”), extension ( labeled as “Class 2”) and the “other motions” ( labeled

as “Class 3”) not involving the use of the elbow. In particular, the “Class 1”

was represented by the examples of nine discrete and combined motion classes

that involved the elbow flexion. The “Class 2” was represented by the examples

of nine discrete and combined motion classes that involved the elbow extension.

While the “Class 3” was represented by the examples of nine discrete and com-
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bined motion classes that involved other joints, as the hand and wrist. The “Wrist

classifier” was trained with the TrainingSet 2 and the same considerations made

for the “Elbow classifier” can be applied. The unique difference was the output

of the “Wrist classifier”, that determines wrist supination (labeled as “Class 1”),

pronation (labeled as “Class 2”) and the “other motions” (labeled as “Class 3”)

that does not involve the use of the wrist. Finally, the “Hand classifier” was

trained with the TrainingSet 3. The output of the “Hand classifier” manages the

hand opening (labeled as “Class 1”), closing (labeled as “Class 2”) and the “other

motions” (labeled as “Class 3”) not implying the use of the hand. The final deci-

sion of the parallel classification approach depends on the simultaneous outputs

of the three classifiers Fig.4.1:if only one joint classifier outputs the “Class 1” or

“Class 2” and the others two classifiers output the “Class 3”, the final output will

be a 1 DoF motion class; if two joint classifiers output the “Class 1” or “Class 2”

and the other one output the “Class 3”, the final output will be a 2 DoF motion

class; finally if all the three classifiers output the the “Class 1” or “Class 2”, the

final decision will be a 3 DoFs motion classes.

In this study, all the six EMG channels were always used for every classification

decisions. The classification scheme is reported in Fig.4.2, through a flowchart:

the final output of this architecture was the movement class derived from the

output combinations of the three classifiers.
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Figure 4.1: Block diagram describing the parallel classification approach composed by three
joint classifiers (“Elbow classifier”, “Wrist classifier” and “Hand classifier”), each trained with
a different TrainingSet.

4.3 Experimental validation on healthy subjects

4.3.1 Experimental Setup and protocol

Fifteen healthy subjects (aged: 36 ± 13), were enrolled in the experiments. The

sEMG data were acquired by using a suitable software on Labview platform and

DAQ USB 6002 device, with a 1 KHz. The PC (Samsung Intel(R) Core (TM)

i7-4500U CPU @ 1.80 GHz) and DAQ communicated by means of an USB port.

Six commercial active sEMG sensors (Ottobock 13E200 = 50, 27 mm × 18 mm

× 9.5 mm) were placed in this way: four sensors were equidistantly fixed on a

elastic bracelet placed about 5 cm below the subject’s elbow Fig.A 4.3; instead the
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Figure 4.2: Flowchart for the parallel classification approach, used for classifying 27 motion
classes related to elbow, wrist and hand joints

remaining two sensors were used to include biceps and triceps activity to record

the elbow flexion and extension, respectively. The number of sEMG sensors was

chosen equal to six to avoid a high-dimensional feature space and maintain simple

the hardware137.

The subject was sitting in front of a monitor Fig.B 4.3 and was asked to

produce each of the 27 gestures reported in REF Table I: the discrete motions

were elbow flexion and extension, hand open and close and, wrist supination and

pronation; the combined motions were up to two and three elbow, wrist, and hand

DoFs combinations. The participants were asked to produce each of these gestures

for four times and hold it for 3 s with an interval of rest state about 2 s between

each repetition. The sEMG data were organized in a DataSet matrix with 6
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Figure 4.3: The experimental setup was composed by: (i) a sEMG elastic bracelet, (ii) NI
DAQ USB 6002, (iii) Labview interface software to acquire the sEMG signals.

column, each coupled with an EMG sensor. The training and test was subdivided

by considering the two ways data split approach128 for both the algorithms: the

70 % of the data were reserved for the “TrainingSet” (TR), while the remaining

30 % of the data for the “Test Set” (TS). One vs. all approach was introduced to

adapt the LDA and LR classification algorithms to the multi-class classification

problem. For the LR algorithm, the first-order iterative optimization algorithm

“Gradient descent” was used to set the optimal internal parameters.

The same algorithms described in Section 3.3.1 and 3.3.2 were employed in the

parallel classification approach. The Mann-Whitney test (U-test) applied to the

F1Score, points out no statistically significant difference between LR and NLR

algorithms for the “Elbow classifier”, the “Wrist classifier”, and “Hand classifier”

(at p < 0.05). Thus, the following analysis in the section 4.3 will considered the

comparison between the LR and LDA algorithms.
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4.3.2 Experimental Results

4.3.3 Offline performance

The offline results of the parallel classification approach are reported for both

LR and LDA algorithms in Tab. 4.2, 4.3,4.4 for the three classifiers (“Elbow

classifier”, “Wrist classifier”, and “Hand classifier”) in terms of F1Score Fig.4.4.

The reported results were obtained by considering the mean values on 15

healthy subjects and by segmenting data with a windows of 150 ms and an over-

lap of 100 ms122 for the features extraction, as described above, for both the

algorithms. The mean F1Score values, over the three output classes, reached an

average classification F1Score equals to 96.1 % ± 2.9 (Tab. 4.2), 91.7 % ± 4.1

(Tab. 4.3), 91.0 % ± 4.8 (Tab. 4.4), for the LR “Elbow classifier”, “Wrist classi-

fier”, and “Hand classifier”, respectively. The mean misclassification error rates

remained under the 10 % value, that can be considered positive for an usable

system53. For the LDA “Elbow classifier”, “Wrist classifier”, and “Hand classi-

fier”, the mean F1Score values were equals to 94.5 % ± 4.8 (Tab. 4.2), 90.7 % ±

4.1 (Tab. 4.3), 89.3 % ± 4.8 (Tab. 4.4), respectively. Figure 4.5 shows also the

average confusion matrix when testing both the LR and LDA classifiers on the

“TS”, over the three output classes that represent the controllable DoFs of each

classifier.

The Mann-Whitney test applied to the F1Score points out no statistically

significant difference between LR and LDA algorithms for the “Elbow classifier”,

the “Wrist classifier”, and “Hand classifier” (Fig.4.4).
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Figure 4.4: Box plots of the average F1Score values calculated on 15 healthy subjects using
LR and LDA algorithms with five time domain features, tested on “TS,” for the Elbow, Wrist,
and Hand classifiers.

Table 4.2: F1Score values for the “Elbow classifier”

ELBOW CLASSIFIER
F1Score

LR LDA
CLASS 1 95,0 ± 4,5 93,1 ± 7,3
CLASS 2 98,6 ± 2,3 97,7 ± 2,9
CLASS 3 94,6 ± 4,1 92,7 ± 6,5
MEAN 96,1 ± 2,9 94,5 ± 4,8

Table 4.3: F1Score values for the “Wrist classifier”

WRIST CLASSIFIER
F1Score

LR LDA
CLASS 1 91,9 ± 4,3 91,0 ± 5,1
CLASS 2 94,9 ± 5,0 94,4 ± 5,2
CLASS 3 88,3 ± 6,3 86,8 ± 6,3
MEAN 91,7 ± 4,1 90,7 ± 4,1

4.3.4 Real-time performance

Both the LR and LDA classifiers were evaluated in real-time by considering the

performance metrics introduced in the Section 3.5.4.
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Table 4.4: F1Score values for the “Hand classifier”

HAND CLASSIFIER
F1Score

LR LDA
CLASS 1 93,6 ± 5,4 92,3 ± 4,9
CLASS 2 89,7 ± 5,7 87,8 ± 5,8
CLASS 3 89,7 ± 5,3 87,7 ± 5,4
MEAN 91,0 ± 4,8 89,3 ± 4,8

Figure 4.5: Normalized confusion matrix of the Elbow, Wrist, and Hand Classifiers obtained
with the LR (A) and LDA (B) algorithms. The confusion matrices are normalized concerning
the number of data belonging to the “TS”.

In particular, the MST, MCT and MCR had been reported in Tab. 4.5 and

were related to the mean values obtained from the 15 healthy subjects and calcu-

lated over 2 repetitions of all the 27 motion classes.
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The mean MCT values among the 27 motion classes was equals to 1.84 ± 1.25

s and 2.49 ± 1.87 s for the LR and LDA algorithms, respectively (Fig.4.6).

The mean MCR calculated with both LR and LDA algorithms for the 15

healthy subjects revealed what are the motion classes more difficult to perform

(Fig.4.7): if considering the discrete motion classes, the elbow extension had the

mean MCR values equals to 79 % ± 40 and 80 % ± 37 for the LR and LDA

algorithms, respectively.

Regarding the 2 DoFs motion classes, the LR algorithm had the MCR above

the 85 % excepted for the following complex movements that involved the hand or

the elbow joint with the wrist rotations: the elbow extension with hand open (76

% ± 44), the hand open with wrist supination (82 % ± 39), and hand open with

wrist pronation (82 % ± 38). Instead for the LDA algorithm, a major number of

2 DoFs motion classes that involved elbow with hand and wrist rotations (9 on a

total of 12 motion classes) have the mean MCR that ranged from 73 % to 83 %

(Tab.4.5).

Also for the 3 DoFs motion classes, the LR algorithm had better performance

with respect to the LDA algorithm: for the LR, the mean MCR was above the

85 % excepted for the elbow flexion with hand close and wrist supination (82 %

± 39). Instead for the LDA, the mean MCR values ranged from 73 % to 83 %,

excepted for the elbow extension with hand open and wrist pronation (97 % ± 13)

and elbow extension with hand close and wrist pronation (87 % ± 30) (Tab.4.5).

The Mann-Whitney test applied to the MST values points out no statistically

significant difference (“*”) between LR and LDA algorithms, while a significant
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difference has been revealed for both the MCT and MCR values (Fig. 4.8).

Figure 4.6: Mean and standard deviation values of motion completion time values, performed
by subjects, for all the 27 motion classes, with both LR (blue color) and LDA (orange color)
algorithms.
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Table 4.5: The mean “MST”, “MCT” and “MCR” values related to 1 DoF, 2 DoFs and 3
DoFs, for the LR and LDA algorithms.

Motion Classes LR LDA
MEAN MST MCT MCR MST MCT MCR

1
D
oF

F 0.23 ± 0.23 1.80 ± 1.37 94 ± 24 0.13 ± 0.15 2.04 ± 1.72 90 ± 21
E 0.55 ± 0.66 2.87 ± 1.92 79 ± 40 0.58 ± 0.68 2.57 ± 1.95 80 ± 37
C 0.67 ± 1.50 1.56 ± 1.29 94 ± 24 0.62 ± 1.58 1.52 ± 1.36 93 ± 26
O 0.21 ± 0.19 1.46 ± 0.99 97 ± 12 0.27 ± 0.52 1.83 ± 1.87 87 ± 30
S 0.17 ± 0.15 1.37 ± 0.58 97 ± 12 1.17 ± 2.09 3.27 ± 2.43 83 ± 31
P 0.26 ± 0.19 1.32 ± 0.48 100 ± 0 0.26 ± 0.35 1.86 ± 1.62 90 ± 28
R 0.05 ± 0.01 0.78 ± 0.77 100 ± 0 0.05 ± 0.01 0.80 ± 0.11 100 ± 0

MEAN 0.30 ± 0.42 1.59 ± 1.05 94.42 ± 16 0.44 ± 0.76 1.98 ± 1.58 89 ± 24.71

2
D
oF

s

FO 0.31 ± 0.20 1.53 ± 0.81 94 ± 24 0.30 ± 0.33 1.93 ± 1.58 90 ± 28
FC 0.40 ± 0.27 1.65 ± 0.74 94 ± 24 0.36 ± 0.37 2.28 ± 1.76 80 ± 37
FS 0.64 ± 1.51 1.81 ± 1.30 94 ± 24 0.80 ± 1.61 3.05 ± 2.23 70 ± 41
FP 0.62 ± 0.61 2.05 ± 1.89 91 ± 26 0.80 ± 1.11 2.85 ± 2.08 73 ± 32
EO 0.55 ± 0.49 2.89 ± 2.01 76 ± 44 0.44 ± 0.43 2.84 ± 2.05 73 ± 32
EC 0.60 ± 0.97 2.21 ± 1.89 85 ± 34 1.05 ± 1.81 2.98 ± 2.33 77 ± 45
ES 0.35 ± 0.27 1.88 ± 0.84 100 ± 0 0.64 ± 0.96 3.40 ± 2.20 87 ± 45
EP 0.40 ± 0.37 1.70 ± 1.70 91 ± 26 0.37 ± 0.38 2.51 ± 1.84 83 ± 36
CS 0.33 ± 0.30 1.88 ± 1.36 94 ± 24 0.63 ± 0.85 2.65 ± 1.83 87 ± 42
CP 0.26 ± 0.16 1.65 ± 0.89 100 ± 0 0.71 ± 1.61 3.07 ± 2.21 77 ± 42
OS 0.48 ± 0.83 2.06 ± 1.79 82 ± 39 1.01 ± 1.85 2.97 ± 2.32 70 ± 46
OP 0.68 ± 1.54 2.13 ± 2.03 82 ± 38 0.70 ± 1.64 2.57 ± 2.09 80 ± 32

MEAN 0.46 ± 0.62 1.95 ± 1.43 90.25 ± 25.25 0.65 ± 1.07 2.76 ± 2.04 79 ± 39

3
D
oF

s

FOS 0.29 ± 0.16 1.40 ± 0.59 100 ± 0 0.20 ± 0.15 2.45 ± 2.06 80 ± 37
FOP 0.63 ± 0.91 2.14 ± 1.77 88 ± 33 0.20 ± 0.15 2.11 ± 1.99 77 ± 37
FCS 0.58 ± 0.80 2.13 ± 2.01 82 ± 39 0.31 ± 0.43 2.61 ± 2.15 73 ± 42
FCP 0.41 ± 0.39 1.96 ± 1.65 91 ± 26 0.29 ± 0.32 2.66 ± 2.15 73 ± 42
EOS 0.49 ± 0.40 2.58 ± 1.44 88 ± 33 0.59 ± 0.67 3.47 ± 1.83 73 ± 37
EOP 0.36 ± 0.21 1.34 ± 0.35 100 ± 0 0.30 ± 0.22 1.61 ± 1.07 97 ± 13
ECS 0.44 ± 0.38 2.20 ± 1.32 94 ± 24 1.17 ± 1.84 3.33 ± 2.15 83 ± 32
ECP 0.46 ± 0.28 1.46 ± 0.55 100 ± 0 0.42 ± 0.32 2.08 ± 1.53 87 ± 30

MEAN 0.45 ± 0.44 1.90 ± 1.21 93 ± 19 0.43 ± 4.1 2.54 ± 1.87 80 ± 34
MEAN 0.42 ± 0.52 1.84 ± 1.25 92 ± 21 0.54 ± 0.84 2.49 ± 1.87 82 ± 34
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Figure 4.7: Mean and standard deviation values of motion completion rate values, performed
by subjects, for all the 27 motion classes, with both LR (blue color) and LDA (orange color)
algorithms.

Figure 4.8: A) Box plot of the average MCT values calculated on 15 healthy subjects using
LR and LDA algorithms. B) Box plot of the average MCR values calculated on 15 healthy
subjects using LR and LDA algorithms. Statistical significance is indicated by “*”.
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4.4 Discussion

4.4.1 Offline performance

The results, obtained from 15 healthy subjects, for the simultaneous classification

of 27 motion classes, were summarized in terms of mean F1Score values (Fig.4.4)

in Tab.4.2, Tab.4.3, Tab.4.4. The “Elbow Classifier” reached the highest mean

F1Score values (96.1 % ± 2.9 with LR algorithm, 94.5 % ± 4.8 with LDA algo-

rithm); the “Wrist Classifier” obtained the mean F1Score values equals to 91.7 %

± 4.1 with LR algorithm and 90.7 % ± 4.1 with LDA algorithm; the “Hand Clas-

sifier” reached the lowest values equals to 91.0 % ± 4.8 with LR algorithm, and

89.3 % ± 4.8 with the LDA algorithms. The discrimination of the hand motions

combined with the wrist movements was more difficult also in88. These results

seem to be very promising if we consider the importance for amputee subjects of

controlling simultaneously more than two DoFs during daily living activities.

Confusion matrices, reported in Fig.4.5 confirmed the positive results of the

accuracy parameter. The cardinality of the correct classifications on the main

diagonal underlined the high classification accuracy even if some misclassified

data out of the main diagonal suggested a bit minus performance of both LR

and LDA “Wrist classifier” and “Hand classifier” respect to the “Elbow classifier.”

This can be due to the major difficulty to discriminate between combined wrist

and hand motion classes.

It is interesting to note that the parallel classification approach with the three

LR classifiers obtained the best offline classification performances both in terms
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of F1Score.

The statistical analysis, based on the Mann-Whitney test, confirmed no sta-

tistically significant difference (“*”) between the F1Score values of the LR and

LDA “Elbow classifier”, “Wrist classifier”, and “Hand classifier”.

4.4.2 Real-time performance

The motion completion time values obtained with both LR and LDA algorithms

were reported in Fig. 4.6: for the LR algorithm, the mean motion completion

time values were equals to 1.73 ± 0.58 s, 1.95 ± 0.36 s, and 1.90 ± 0.45 s for the

1 DoF, 2 DoFs, and 3 DoFs motion classes, respectively.

Conversely, for the LDA algorithm the mean motion completion time values

were equals to 2.18 ± 0.63 s, 2.76 ± 0.40 s, and 2.54 ± 0.63 s for the 1 DoF, 2

DoFs, and 3 DoFs motion classes, respectively (Fig. 4.6). The results suggest that

the difference in real-time prediction is not marginal: the mean motion completion

time values were over 2 s for the LDA with respect to the LR algorithm (less than

2 s) for 2 and 3 DoFs.

In addition, the LDA classifiers presented the motion completion time values

one second higher than LR classifiers for the following motion classes (Fig. 4.6):

supination (S, 1.90 s), elbow flexion with wrist supination (FS, 1.24 s), elbow

extension with wrist supination (ES, 1.52 s), hand closing with wrist pronation

(CP, 1.41 s), elbow flexion with hand opening and wrist supination (FOS, 1.05 s),

elbow extension with hand closing and wrist supination (ECS, 1.13 s).

Thus, it is worth noting that the LR classifiers reached higher real-time per-
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formance, especially for the combined motions with wrist supination. This can be

considered a positive results since previous studies have presented conflicting data

regarding the contribution of the muscles involved in pronation and supination

that are generally deep muscles138.

The number of successful motions over the total number of motions attempted

(27 motion classes x 2 repetitions= 54 total motion attempted) was reported as

the motion completion rate for both LDA and LR algorithms in Fig. 4.7. For the

LDA algorithm, the motion completion rate values were significantly lower than

that obtained with LR for the following 2 and 3 DoFs motion classes: the motion

completion rate of the elbow flexion with wrist supination motion class was 24.12

% lower than that with the LR algorithm; the hand close with wrist pronation

motion class (22.67 % lower); the elbow flexion with hand opening and the wrist

supination class (20.00 % lower). These results confirm the lower robustness of

LDA classifiers to classify in real-time the 2 and 3 DoFs combined motions with

wrist supination.

The statistical analysis, based on the Mann-Whitney test, confirmed a statis-

tically significant difference (“*”) between the LR and LDA motion completion

time values (Fig. 4.8.A) and between the LR and LDA motion completion rate

values (Fig. 4.8.B). Thus, in real-time, the parallel classification approach based

on the three LR classifiers ensured better performance than the LDA classifiers

and seems to be the most robust approach.
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4.5 Experimental validation on TMR patient

4.5.1 Case Study Report

The introduced parallel classification approach was evaluated also on a TMR

patient (female, aged: 29 ) with shoulder disarticulation (SD) after a traumatic

event, who underwent TMR procedure at Policlinico Campus Bio-Medico of Rome

in date 15/06/2018. The patient had 5 reinnervated control sites and one natively

innervated muscle sites used for the direct control of the elbow F/E wrist S/P and

hand O/C joints. In detail, the monitoring of muscle activity generated by the

muscles reinnervated with TMR were evaluated, in a non-invasive way, through

the use of six surface electromyographic sensors (Ottobock). These sensors have

been located in the areas where, through palpation, the activation of the muscle

signals related to the re-innervated muscle district was found. In particular, the

sensors were placed on the following muscle reinnervated sites, used for the control

of 3 degrees of freedom (elbow, wrist and hand) Fig. 4.9:

• The musculocutaneous nerve, which innervates the muscles of the anterior

arm and in particular of the coracobrachialis muscle, has been reinnervated

at the clavicular portion of the pectoralis major muscle. This muscle site is

involved for the elbow flexion movement.

• The axillary nerve, which innervates the teres minor and ends as the deltoid

branch, has been retained on the native deltoid muscle and is involved for

the elbow extension.
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• The median nerve, originating from the brachial plexus and originating from

the lateral secondary trunk (cervical spinal nerves C5-C7), has been rein-

nervated on the dorsal major muscle and is involved in the wrist pronation.

• The radial nerve, which innervates the medial and lateral heads of the

brachial triceps muscle, has been reinnervated on the sternal part of the

pectoralis major and is involved for the wrist supination.

• The median nerve relating to the medial cords of the brachial plexus has

been reinnervated on the abdominal portion of the pectoralis major muscle

and is involved in the closing hand.

• The radial nerve, which innervates the posterior portion of the upper limb,

has been reinnervated on the great dorsal muscle and is involved in the

opening hand.

The success of nerve transpositions was assessed by serial visits and instrumen-

tal examinations (every 2-4 weeks). Three months after the surgery (September

2018), the treated subject reported sporadic involuntary contractions of the re-

innervated muscles. The first finding of a voluntary activation of re-innervated

muscles occurred during the fourth post-surgery month (October 2018); in this

same period the presence of the motor evoked potentials was observed in the rein-

nervated muscles through the transcranial magnetic stimulation (TMS). From this

evidence, the subject began to be aware of these preliminary voluntary contrac-

tions and to exercise them, even autonomously (1-2 daily sessions, of about 30

minutes each, to be carried out at home).
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Figure 4.9: Scheme of the reinnervated sites for the TMR patient.A: the musculocutaneous
nerve (blue), the median nerve (yellow), and radial (red) nerves transfer on the clavicular
head, the abdominal head and the sternal head of the pectoralis major muscle, respectively;
B: the axillary nerve (orange) transfer on the deltoid muscle; the median nerve (yellow) and
the radial nerve (red) transfer on the dorsal muscle.

The TMR patient had learned to associate the contraction of reinnervated

muscles at specific movements of the prosthetic system, with the virtual reality

system in Fig. 4.10: this system allow TMR patient to move with the on/off DC

control strategy the avatar of an arm that mimic the lost upper limb behavior,

replicating the performance of the human arm. Each EMG sensor allowed TMR

patient to manage the movement of a single degree of freedom of the virtual arm.

The degree of freedom is activated when the corresponding EMG signal exceeds

the preset threshold. It is possible to activate several degrees of freedom at the

same time.

This system was tested during the training of the TMR subject, starting from

June 2018. The training involved the execution of simple gestures ( with 1 DoF),
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Figure 4.10: Block diagram of the interfacing system with electromyographic signals and the
virtual reality for training the TMR patient.

and complex gestures (with 2 DoFs), that are reported in Tab.4.1. After this

preliminary training with the virtual reality system, that aimed the patient to

learn how controlling the sEMG signals from the reinnervated sites to move the

virtual arm, the TMR patient began a second training phase with the experimental

prosthesis, presented in Fig. 4.11. The patient was close to the bench prosthetic

system, and she was asked to activate the muscles to control the corresponding

DoFs of the prosthetic arm. In Fig. 4.11, the patient performed the supination of

the wrist and the flexion of the elbow with the prosthetic system.

In order to assess the ability of controlling multiple DoFs simultaneously, in a

more natural and intuitive way, the offline and real-time performance of the paral-

lel classification approach has been evaluated on the TMR subject to discriminate
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Figure 4.11: The TMR patient control the bench prosthetic system composed of three differ-
ent modules: the elbow with active flexion/extension (Hosmer); the HANNES hand; the wrist
with active pronation/supination (Ottobock).

27 motion classes, reported in Tab.4.1

4.5.2 Experimental Setup and protocol

The sEMG data were acquired at 1 KHz by using a suitable software on Labview

platform and DAQ USB 6002 device, to create 3 Datasets, used for both the LR

and LDA “Elbow classifier”, “Wrist classifier”, and “Hand classifier”, introduced

before in Section 3.4.1. The PC (Samsung Intel(R) Core (TM) i7-4500U CPU @

1.80 GHz) and DAQ communicated by means of an USB port. Six commercial

active sEMG sensors (Ottobock 13E200 = 50, 27 mm × 18 mm × 9.5 mm) were

placed on the reinnervated sites (described in Fig. 4.9), after clinical palpation
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Fig. 4.12.

Figure 4.12: A) sEMG electrode placement on the anterior part of the pectoralis major muscle
for the elbow flexion movement, wrist supination and hand closing; B) sEMG electrode place-
ment on the posterior part of the dorsal major muscle for the elbow extension, wrist pronation
and hand opening movements.

The TMR subject was sitting in front of a monitor (Fig 4.13) and was asked

to produce each of the 27 gestures reported in Tab.4.1: the discrete motions

were elbow flexion and extension, hand open and close and, wrist supination and

pronation; the combined motions were up to two and three elbow, wrist, and

hand DoFs combinations. The TMR patient was asked to produce each of these

gestures for four times and hold it for 3 s with an interval of rest state about 2

s between each repetition. The sEMG data were collected in eight experimental

sessions, from July to September. Depending on the availability and the physical

condition of the TMR amputee during the reported day, one or two experimental
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sessions were recorded within the same day. For instance, for both these days

(9/07/2020 and 9/09/2020), two experimental sessions were recorded within the

same day. The electrodes placement was the same over the repetition of each task,

within the same day. Then, at the end of the acquisition day, the physiotherapists

marked on the amputee’s body with a dermographic pen the muscle sites in order

to place the electrodes in the same way over different days. Demonstrations of

each movement were displayed following a predefined list on a computer screen

(Fig.4.13). During the offline training, for each movement, the clinical operator

instructed the TMR amputee to follow the demonstration of his motion and to

perform it with a comfortable and consistent level of effort. Then, in the real-

time phase, the TMR amputee was asked to reproduce the same tasks in the most

similar way to the offline training.

The same algorithms described in Section 3.3.1 and 3.3.2 were employed in

the parallel classification approach.

4.5.3 Experimental Results

4.5.4 Offline performance

The offline results of the parallel classification approach are reported for both LR

and LDA algorithms in Tab. 4.5, 4.6,4.7 for the three classifiers (“Elbow classifier”,

“Wrist classifier”, and “Hand classifier”) in terms of F1Score (Fig.4.14).

In detail, the reported results were obtained by considering the acquisition of

8 days ( from July to September, Tab. 4.5, 4.6,4.7), by using the same algorithms

described before in the Section 3.3.1 and 3.3.2. In Fig.4.14, the mean F1Score
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Figure 4.13: Training Session: recording of the DataSet based on sEMG signals for training
the “Elbow classifier”, “Wrist classifier”, and “Hand classifier” through the Labview software
interface.

values, over the three output classes, reached an average classification F1Score

equals to 86.1 % ± 7.7, 79.3 % ± 8.8, 86.5 % ± 2.6, for the LR “Elbow classifier”,

“Wrist classifier”, and “Hand classifier”, respectively. In Fig. 4.15, the average

confusion matrix were reported when testing both the LR and LDA classifiers on

the “TS”, over the three output classes.

A statistical analysis, based on the Mann-Whitney test, applied to the F1Score,

was made firstly to assess if there was a statistical significant difference between

the results of the LR and LDA algorithms, considering the last acquisition day of
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Table 4.6: F1Score values for the “Elbow classifier”

Elbow classifier
LR LDA

TMR patient F1 F1
Trial days Elbow flexion Elbow extension NM Elbow flexion Elbow extension NM

6/07/2020 (morning) 62,30 76,0 84,40 66.9 77.7 84.5
7/07/2020 (morning) 95,50 96,90 95,10 94.4 97.1 95.2
8/07/2020 (afternoon) 78,50 93,40 84,30 81.7 93.1 88.1
9/07/2020 (morning) 79,90 93,00 80,80 82.5 92.7 81.7
9/07/2020 (afternoon) 73,60 81,50 82,00 72.9 77.3 82.8

9/09/2020 (morning-first trial) 86,90 89,70 83,50 88.1 89.2 82.9
9/09/2020 (morning-second trial) 87,90 99,00 87,70 88.7 96.4 87.0

10/09/2020 (afternoon) 90,90 94,10 88,60 90.1 95.1 89.1

Table 4.7: F1Score values for the “Wrist classifier”

Wrist classifier
LR LDA

TMR patient F1 F1
Trial days Wrist supination Wrist pronation NM Wrist supination Wrist pronation NM

6/07/2020 (morning) 83,60 87,70 80,60 81.3 87.4 80.8
7/07/2020 (morning) 65,70 66,00 63,60 73.8 72.1 73.7
8/07/2020 (afternoon) 87,50 87,70 80,90 86.9 90.1 86.1
9/07/2020 (morning) 72,50 71,70 69,30 75.4 77.9 80.2
9/07/2020 (afternoon) 88,50 89,50 86,30 89.1 91.0 85.6

9/09/2020 (morning-first trial) 89,20 83,00 88,90 86.5 82.7 90.1
9/09/2020 (morning-second trial) 77,00 81,50 83,50 76.5 80.3 84.9

10/09/2020 (afternoon) 70,50 73,50 74,80 72.3 78.0 77.9

July and the last acquisition day of September. For both these days (9/07/2020

(afternoon) and 10/09/2020 (afternoon)), the the Mann-Whitney test points out

no statistically significant difference between LR and LDA algorithms for the

“Elbow classifier”, “Wrist classifier”, and “Hand classifier” (Fig.4.14). Then, based

on these results, to assess if there was a significant improvement of the performance

over the time, in terms of the F1Score, between the last day of July and September,

the statistical analysis was performed for both the algorithms. The Mann-Whitney

test points out no statistically significant difference between these days for both

the algorithms.
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Table 4.8: F1Score values for the “Hand classifier”

Hand classifier
LR LDA

TMR patient F1 F1
Trial days Hand close Hand open NM Hand close Hand open NM

6/07/2020 (morning) 98,60 79,40 76,70 98.9 81.7 79.3
7/07/2020 (morning) 94,90 85,30 81,90 97.4 84.7 83.0
8/07/2020 (afternoon) 99,00 79,30 79,20 98.6 81.5 80.5
9/07/2020 (morning) 99,40 83,00 81,80 98.9 83.7 83.4
9/07/2020 (afternoon) 98,60 83,90 83,70 98.4 84.1 83.4

9/09/2020 (morning-first trial 99,90 78,20 76,60 100.0 79.9 80.5
9/09/2020 (morning-second trial 98,60 77,10 75,80 98.5 75.7 73.9

10/09/2020 (afternoon) 99,60 82,20 82,80 99.1 84.3 85.3

Figure 4.14: Box plots of the average F1Score values calculated on TMR patient using LR and
LDA algorithms with five time domain features, tested on “TS,” for the Elbow, Wrist, and
Hand classifiers.
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Figure 4.15: Normalized confusion matrix of the Elbow, Wrist, and Hand Classifiers obtained
with the LR (A) and LDA (B) algorithms. The confusion matrices are normalized concerning
the number of data belonging to the “TS”,for the Elbow, Wrist, and Hand classifiers.
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4.5.5 Real-time performance

Both the LR and LDA classifiers were evaluated in real-time by considering the

performance metrics reported in the Section 3.5.4.

The boxplot (Fig.4.16) reported the mean MCT values (related to the 8 ac-

quisitions) among the 27 motion classes: the mean MCT values were equals to

3.40 ± 1.70 s and 3.70 ± 1.60 s for the LR and LDA algorithms, respectively.

Figure 4.16: Box plot of the average “MCT” values (related to the 8 acquisitions) calculated
on TMR patient using the LR and LDA algorithms.

The mean MCT values (related to the 8 acquisition days), showed an increasing

trend if we considered the 1, 2 and 3 DoFs motion classes (Fig. 4.17). The

increase of the mean MCR values was confirmed also in Fig. 4.18 that showed the

percentage of bad classified classes, over time.

In Fig.4.20 the mean and standard deviation values of the MCR, among the 27
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Figure 4.17: Box plots of the mean MCT values (related to the 8 acquisition days), when con-
sidering the 1, 2 and 3 DoFs motion classes for both the LR and LDA algorithms.

motion classes, were reported, considering the 8 acquisition days. Considering the

mean MCR of the last day of July and the last day of September, an increase of

the performance can be observed (Fig.4.19): for the LR algorithm, the mean MCR

value increased from 50 (last day of July) % to 100 % (last day of September) for

1 DoF motion classes, from 50 % (last day of July) to 75 % for 2 DoFs classes

(last day of September), and from 50 % (last day of July) to 63 % (last day of

September) for the 3 DoFs motion classes. Also for the LDA algorithm, there

was an improvement: the mean MCR values classes increased from 58 (last day

of July) % to 92 % (last day of September) for 1 DoF motion classes, from 62 %

(last day of July) to 71 % for 2 DoFs classes (last day of September), and from

45 % (last day of July) to 63 % (last day of September) for the 3 DoFs motion

classes.
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Figure 4.18: Percentage of bad classified classes on a total of 27 motion classes, for both the
LR and LDA algorithms, over the 8 acquisition days (from July to September).

Figure 4.19: The mean MCR of the last day of July and the last day of September related to
the LR (A) and LDA (B) algorithms.

The Mann-Whitney test applied to the MCR values points out the statistically

significant difference between the last acquisition day of July and September for
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both the LR and LDA algorithms.

Figure 4.20: Mean and standard deviation values of motion completion rate values (related to
the 8 acquisitions), performed by TMR patient, for all the 27 motion classes, with both LR
(blue color) and LDA (orange color) algorithms.
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4.5.6 Discussion

4.5.7 Offline performance

The results for the simultaneous movements (27 classes) related to the 8 acqui-

sition days were summarized in Tab. 4.5, 4.6,4.7 for the three classifiers (“El-

bow classifier”, “Wrist classifier”, and “Hand classifier”) in terms of F1Score

(Fig.4.14). The “Elbow Classifier” and the “Hand Classifier” reached the highest

mean F1Score values: they were equals to 86.1 % ± 7.7 and 86.5 % ± 2.6 with the

LR “Elbow Classifier” and “Hand Classifier”, respectively; 86.5 % ± 7.2 and 87.3

% ± 2.4 with the LDA “Elbow Classifier” and “Hand Classifier”, respectively.

The “Wrist Classifier” obtained the lowest mean F1Score values equals to 79.3 %

± 8.8 with LR algorithm and 81.7 % ± 6.2 with LDA algorithm. These lower

values than that obtained for the elbow and hand joints can be due to the major

difficulty to control the wrist motions during 2 and 3 DoFs complex motions88.

Confusion matrices, reported in Fig. 4.15 confirmed the presence of misclassified

data out of the main diagonal for all the three LR and LDA classifiers.

The statistical analysis based on the Mann-Whitney test confirmed no sta-

tistically significant difference between the mean F1Score values of LR and LDA

“Elbow classifier”, “Wrist classifier”, and “Hand classifier”.

It is interesting to note that the parallel classification approach with both LR

and LDA classifiers obtained promising results that can be improved by training

the TMR patient over time and thus, by extending the analysis for a major number

of months.
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4.5.8 Real-time performance

The mean motion completion time values (related to the 8 acquisition days),

showed an increasing trend if we considered the 1, 2 and 3 DoFs motion classes

(Fig. 4.17): for the LR algorithm, they were equal to 3.00 ± 1.60 s (1 DoF) and

3.60 ± 1.20 (2 DoFs) s and 3.80 ± 0.90 s (3 DoFs). Instead, for the LDA algorithm,

they were equal to 3.20 ± 1.40 s (1 DoF), 3.70 ± 1.10 s (2 DoFs) and 4.20 ± 1.00 s

(3 DoFs). Thus, the LDA algorithm presented the motion completion time values

slightly higher than LR classifiers, especially for the 2 and 3 DoFs motion classes.

In particular, in Fig. 4.16 we can observe which are the motion classes with the

highest mean motion completion time values, related to the 8 acquisition days,

obtained with the LR algorithm: hand open (4.50 ± 2.07), and wrist supination

(5.00 ± 1.65) for the 1 DoF motion classes; elbow flexion with hand open (5.30

± 1.58), elbow flexion with wrist pronation (5.20 ± 1.59), elbow extension with

hand open (4.40 ± 1.80), elbow extension with wrist supination (4.50 ± 1.63),

for the 2 DoFs motion classes; elbow flexion with hand close and wrist supination

(4.40 ± 2.50), elbow flexion with hand close and wrist pronation (4.70 ± 1.86),

and elbow extension with hand open and wrist supination (4.45 ± 2.32) for the 3

DoFs motion classes. The statistical analysis, based on the Mann-Whitney test,

does not reveal a significant difference between the motion completion time values

obtained with the LR and LDA algorithms.

The mean motion completion rate values, shown in Fig. 4.20, confirmed that

the motion classes most difficult to be performed were the same that had the high-

est mean motion completion time values. In addition, it is worth noticing that
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the Mann-Whitney test points out the statistically significant difference between

the last acquisition day of July and September for both the LR and LDA algo-

rithms. The increase of the mean motion completion rate values was confirmed

also in Fig. 4.18 that showed the percentage of bad classified classes, over time:

for both the LR and LDA algorithms a decrease of the percentage of errors made

was evident. In detail, for the LR algorithm, this percentage of errors went from

the 59.26 % (trial on 7/07/2020) to 14.81 % (trial on 10/09/2020). Regarding

the LDA algorithm, this percentage of errors decreased from the 55.56 % (trial on

9/07/2020) to 14.81 % (trial on 9/09/2020).

4.6 Conclusion

In this chapter, a novel parallel PR-based strategy for classifying 27 motion classes

(up to 3 DoFs) was proposed. It relies on the use of three parallel LR classifiers to

simultaneously control multiple DoFs related to the elbow, wrist and hand joints.

To date, the single, hierarchical, and parallel classification approaches, based on

the LDA classifiers, were introduced to discriminate until 19 wrist/hand gestures

(in the 3-DoFs case), considering both combined and discrete motions68.

The proposed method was applied to the sEMG signals recorded from 15

healthy subjects (Sect. 4.3) and a TMR patient (Sect. 4.5), by using 6 commercial

sEMG sensors. Then, a comparative analysis among the performance of LR and

LDA algorithms was done by considering the Mann-Whitney test. A feature set

consisting of TD features131 was used to process the data with a windows of 150

ms with an overlap of 100 ms122.

133

Tesi di dottorato in Scienze e Ingegneria per l'Uomo e l'Ambiente/Science and Engineering for Humans and the Environment, 
di Francesca Leone, discussa presso l’Università Campus Bio-Medico di Roma in data 26/07/2021. 
La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca, 
a condizione che ne venga citata la fonte.



Twenty-seven motion classes (up to 3 DoFs) were tested with both offline

(in terms of F1Score) and online ( in terms of MCT, MST, MCR) performance

measures.

About the offline results obtained from the 15 healthy subjects, the Mann-

Whitney test applied to the F1Score, points out no statistically significant dif-

ference between LR and LDA algorithms for the “Elbow classifier”, the “Wrist

classifier”, and “Hand classifier”. In detail, the mean F1Score values were above

the 90 % for all the classifiers, and the mean misclassification error rates remained

under the 10 % value, that can be considered positive for an usable system53.

Instead, the offline analysis performed on TMR patients showed that the clas-

sification performance reached lower mean F1Score values than that on healthy

subjects: they were equals to 86 % for the “Elbow classifier” and “Hand classifier”

and 80 % for the “Wrist classifier”.

Moreover, it was verified the real-time robustness of the proposed PR-based

parallel strategy. About the real-time results from healthy subjects, despite the

LDA was considered the benchmark classifier for real-time employment139, the

performances of the LR algorithm in terms of motion completion time values

were statistically better than that obtained with the LDA one. Instead, for the

TMR subjects, there wasn’t a statistical significance difference between the perfor-

mance obtained with the LR and LDA algorithms. However, the Mann-Whitney

test applied to the motion completion rate values points out the statistically sig-

nificant difference between the last acquisition day of July and September for both

the LR and LDA algorithms and a positive trend of this performance metric was
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confirmed over the time. Hence, these results strongly encourage to further in-

vestigate the performance of this PR solution for TMR patient, by extending the

number of acquisition and of TMR patients. As the proposed system has reached

an advanced grade of accuracy also on TMR patients, an embedding solution will

be proposed to control simultaneously and in a natural way different joints of a

complex multi-DoFs prosthetic device.
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5
Conclusion

This thesis aims at providing promising PR-based strategies for (i) controlling

simultaneously, with a hierarchical classification strategy, the hand/wrist gestures

and exerted forces during grasping tasks; (ii) discriminating up to 27 motion

classes (3 DoFs) related to several joints, as the elbow, hand, and wrist. The

common purpose is to address the future research towards the development of
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prostheses that are functional and able to mimic the lost upper limb behavior,

replicating the performance of the human arm.

To achieve the first purpose, an extended analysis of the performance of the hi-

erarchical PR-based strategy was presented in Chapter 3, by reporting the results

on 31 healthy subjects, and then both offline and real-time performance related

to sEMG data recorded from 15 transradial amputees. The analysis performed

on sEMG data recorded from 31 healthy subjects shows that there were no sta-

tistically significant differences in terms of F1Score performance between NLR

and LDA. Therefore, this study reveals that the use of non linear classification

algorithm, as NLR, is as much suitable as the benchmark LDA classifier for imple-

menting an EMG pattern recognition system, able both to decode hand/wrist ges-

tures and to associate different performed force levels to grasping actions. Then,

an extended analysis based on LR, NLR and LDA algorithm had been carried out

to assess the robustness, both in offline and in real-time, of the hierarchical PR

system. A real scenario, composed of hand device (RoboLimb) and wrist mod-

ule (WristRotator) was controlled in real-time by using the hierarchical PR-based

strategy and both offline and real-time performance metrics were evaluated to

investigate the ability of trans-radial amputees to manage simultaneously desired

hand/wrist gestures and three force levels. The comparative analysis, based on

Mann-Whitney test (U-test) with Bonferroni correction (p<0.016), reports not

statistically significant differences in terms of F1Score and misclassification er-

rors between the LR, NLR and LDA classifiers. However, considering also the

real-time performance, the best solution to decode simultaneously the hand/wrist
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gestures and force levels seems to be the simultaneous use of the LR algorithm

with FE for the ”hand/wrist gestures classifier”, and the NLR with FE for the

Spherical and Tip force classifiers. Future works will be focused on the validation

of the presented method on an embedding solution of this classification system:

the final electronic device, composed of a micro-controller unit, will allow amputee

to wear the prosthetic device to control simultaneously hand/wrist gestures and

force levels.

Regarding the second purpose, the parallel classification approach was pre-

sented in Chapter 4 to provide the simultaneous classification of complex motion

classes (up to 3 DoFs), by keeping the number of electrodes to a bare minimum

and the classification error rates under 10 %. The Mann-Whitney test (U-test) ap-

plied to the F1Score and misclassification errors values, points out no statistically

significant difference between LR and LDA algorithms for the “Elbow classifier”,

the “Wrist classifier”, and “Hand classifier”. However, the LR classifiers reached

higher real-time performance, especially for the combined 2 and 3 DoFs motions

with wrist supination. This can be considered a positive results since the difficulty

to discriminate the contribution of the muscles involved wrist rotations that are

generally deep muscles. Also an analysis of the preliminary offline and real-time

results, obtained from a TMR subject, were carried out and seem to be promising,

despite the few number of acquisition day related to two months (from July to

September). The statistical analysis based on the Mann-Whitney test (U-test),

confirmed no statistically significant difference between the mean F1Score val-

ues and misclassification errors rate of LR and LDA “Elbow classifier”, “Wrist
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classifier”, and “Hand classifier” (at p < 0.05). Regarding the real-time analysis,

the mean “MCT” values (related to the 8 acquisition days), showed an increasing

trend if we considered the 1, 2 and 3 DoFs motion classes with an significant de-

crease of the percentage number of the bad classified classes. Thus, this PR-based

system obtained promising results also on TMR patient. Future development will

regard collect additional sEMG data from TMR patient in order to validate the

proposed system for a major number of months, by training over time the TMR

patient, until the classification error rates will be under 10 % for each joint. After

reaching an advanced grade of real time accuracy by TMR patient, an embedding

version of this classification system will be developed to control a multi-DoFs

prosthetic device. In this scenario, future works will be focused to integrate the

embedding version of the classification system with the multi-DoFs prosthesis and

to clinically validate the final system.

In particular, future works will be focused on the validation of the presented

method on an embedding solution of this classification system: the final elec-

tronic device, composed of a micro-controller unit, will aim to allow amputee

to wear the prosthetic device to control simultaneously hand/wrist gestures and

force levels. This step forward will be relevant for implementing practical tech-

nological solutions to adopt in a real scenario, by taking into account energy save

policies to perform long-term test on an increasing number of trans-radial am-

putees and TMR patients. When positive results will be obtained also with the

embedded solutions, for both the introduced hierarchical and parallel classifica-

tion approaches, the systems will be re-engineered to comply with the normative
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concerning medical devices and it will be used by amputees during future trials.
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