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Abstract

In the field of medicine, radiomics is a method that extracts a large number of
quantitative features from medical images with the ultimate goal to enhance the
prognosis of patients. Since the term radiomics was coined in 2012, its research ef-
forts has been growing exponentially, fuelled by the ambition to move towards more
personalised medicine and thanks to technological development in the hardware and
software of medical scanners, as well as to advances in artificial intelligence. This
thesis explores different aspects of the radiomics workflow with the aim of finding
techniques that improve the results and stability of this method. In details, we inves-
tigated here: the development and introduction of new features, available solutions
to cope with imbalanced learning, the combination of deep learning and machine
learning techniques, and the influence of segmentation on model performance. The
results shed light on ways to improve the standard radiomics workflow, by modifying
the standard procedures.

Keywords: Radiomics, Machine Learning, Deep Learning, Imbalance Learning,

Local Binary Patterns, multi-VOI analysis
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Chapter 1
Introduction

The last decade has been characterised by a major revolution in medicine and its
applications, manifested in a shift from a reactive to a proactive approach. While
in the past the focus was on treating diseases, it is now on maximising individuals’
health. This new form of medicine is predictive, personalised, preventive and partic-
ipatory (P4 medicine), as|Hood and Friend describe [3]. Traditionally, most medical
treatments were designed for the average patient, with a “one-size-fits-all” approach,
even if it was apparent that patients respond differently to the same treatment. In
response to this, medicine is moving towards a more predictive approach, in which
patients are stratified based on their individual differences, e.g., genes, environment
or family history. This permits to develop tailored therapeutic strategies for each
individual patient. After the completion of the Human Genome Project (HGP)
in 2003 [4], scientists have started to use genomic methods in their research [5.
Subsequently, researchers have developed several other ‘-omic’ disciplines, such as
proteomics (analysing information about produced proteins), phenomics (analysing
information of mutational phenotypes) and epigenomics (analysing the complete set
of methylation alterations in the genome) [6].

Following the development of the ‘-omic’ sciences, in 2012 [Lambin et al | [7] intro-
duced the concept of radiomics. Radiomics is based on the idea that medical images
contain more information than physicians can detect, so that medical images have
started to play a greater role in the personalisation of therapeutic treatments. Since
the acquisition of medical images is a non-invasive procedure, there is the possibility
to use them not only assess the clinical condition of patients, but also to discover
information used to guide the treatment and, in general, to predict the progno-
nis. While radiomics was initially based on Machine Learning methods, it later also
made use of Deep Learning methods. Both Learning techniques are Artificial Intelli-
gence methods, developed to simulate human intelligence by machines. After |Aerts
et al| [§] published the first article on using for prognosis purposes, many researchers
followed the lead and focused on applying radiomics to clinical problems. Nowadays,

radiomics applications are developed especially in the field of oncology, to predict
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the evolution or treatment response of specific tumours, but applications have also
been developed in non-oncological fields. Furthermore, initially radiomics was cen-
tered on prognosis problems as introduced by |Aerts et al.; but due to its popularity
in the medical society, some research groups applied radiomics methods to diagnosis
problems replacing the concept of Computer Aided Diagnosis which was used until
then. The analysis of the literature presented in section and section shows
that, even if many studies focused on different radiomics applications, the techni-
cal methodologies used during the radiomic workflow were similar. In general the
radiomic workflow constist of the following steps: the segmentation of the area of
interest, the quantitiative features extraction and selection and, finally, the anal-
ysis, which usually consists in developing a classification or regression model. As
reported in chapter [2] since the introduction of radiomics, the literature follows the
techniques introduced by the first published paper, without evaluating substantial
innovations.

To address this issue, the aim of this thesis is to offer several improvements
to the radiomics workflow. Firstly, the thesis analyses quantitative features that
are commonly used in radiomic applications. Two alternatives to the standard ra-
diomics features are proposed; the first analyses the value of features extracted from
feature maps, while the second introduces the Local Binary Patterns, wellknown in
computer science [9], but never used for medical applications. Secondly, to tackle
the undesirable effect that imbalanced class distribution can have on classification
results, the thesis analyses two approaches to learn under this condition. The first
consists in an over-sampling technique, which generates synthetic samples belonging
to the minority class. The second biases the learning process by using an error-cost
approach to guide the classifier. Thirdly, this thesis discusses how to combine au-
tomatic features computed by deep network with shallow learners, showing that in
the case of datasets with reduced size this could be beneficial with respect to use a
deep network only or handcrafted features. Finally, the thesis analyses two ways in
which segmentation can influence model performance. The first compares the result
of an automatic segmentation and a manual segmentation of chest X-Ray images.
The second analyses the differences between three segmentation methods commonly
used in radiotherapy (Gross Tumour Volume, Clinical Target Volume and Planning
Target Volume).

The research carried out used datasets of patients with Non-small-cell lung can-
cer studied in chest Computed Tomography images, patients with acoustic neuroma
studied with Brain Magnetic Resonance Imaging and patients with COVID-19 stud-
ied with Chest X-Ray images.

This work is organised as follows. Chapter 2 consists of three parts: section
defines the concept of radiomics and its workflow, section [2.2] provides an overview

of the literature on clinical applications, and section [2.3| provides an overview of
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the technical aspects used in the radiomic literature. Chapter 3 describes the afore-
mentioned four contributions to boost the radiomic workflow: section [3.1] describes
the development and introduction of new features; section describes the two
approaches to address imbalanced learning; section [3.3| introduces the combination
of Deep Learning and Machine Learning algorithms, whilst section [3.4] analyses how
segmentation influences model performance. Finally, Chapter 4 concludes and offers
future perspectives, while Appendix A summarises of all the other papers published

during the course of this PhD not already mentioned in this thesis.
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Chapter 2

State of the Art

The term radiomics has been introduced by |[Lambin et al.|in 2012 in Radiomics: Ex-
tracting more information from medical images using advanced feature analysis [T],
inspired by the already known term mdz’ogenomz’csﬂ The authors highlight that
future medical treatments will be directed toward personalised medicine using dif-
ferent data sources, such as demographics, pathology, radiology and genomics data.
The idea of the authors was that imaging data as a source could contain comple-
mentary and interchangeable information to determine personalised treatments [10].
Moreover, medical images, such as CT, MRI and PET were routinely used during
medical practice for cancer management, prediction, screening or follow-up during
screening and are therefore available for patients. Furthermore, in recent years the
information content of medical images has improved thanks to innovations in differ-
ent fields. Indeed, hardware and software have improved due to the innovation and
refinement of imaging contrast agents, the standardisation of acquisition protocols,
and the innovation in imaging analysis techniques. All these innovations lead to the
introduction of the radiomics analysis.

Radiomics was defined as the automatic high-throughput extraction of large
amounts (200+) of quantitative features of medical images to support the prognosis
of patients. The hypothesis is that quantitative analysis of medical image data
through automatic or semi-automatic software of a given imaging modality can
provide more and better information than a physician. This is supported by the
fact that patients exhibit differences in tumour shape and texture measurable by
different imaging modalities [7].

Even though the usage of radiomics has gained increasing popularity in the
last years, the quantitative features used were first proposed and defined in 1973
by Haralick et al. [L1].

Radiomics and artificial intelligence applications applied to medical images have

increased in the last decade due to the non-invasive characterisation of diseases

!The first article published and available on Scopus containing the keyword radiogenomics

has been published in 2003 [5]
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Figure 2.1: Amout of published articles for each year
Figure obtained from ”Scopus” using as keyword ”radiomics” updated on the 23
December 2021.

and tissues as described by [Sollini et al| [I2] and as shown in Figure 2.1 Fur-
thermore, Sollini et al.| analysed the clinical issue most commonly addressed with
radiomics or artificial intelligence methods. Of the analysed 171 articles, 147 ad-
dressed oncological problems while 24 addressed non-oncological problems. The
cancers most frequently analysed were Brain, Lung, Gastrointestinal and Breast
tumours.

In this chapter, the first section will focus on radiomics with its definition
and workflow. The second section will deepen the radiomics literature dis-
tinguishing applications to different anatomical districts. Finally, the last section
(2.3)) will handle and resume the methodological aspects developed in the radiomics

literature.

2.1 Radiomics

2.1.1 Definition of Radiomics

As introduced at the beginning of the current chapter, radiomics is defined as the
high-throughput extraction of a large number of imaging features extracted from
medical images [7]. The central hypothesis is that quantitative analysis of medical

images using semi-automatic or automatic software can obtain more information
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than visual inspections performed by physicians. The hypothesis is based on the
idea that these imaging features have the potential to capture distinct phenotypic
differences of tumours and have great prognostic power, thus improving clinical sig-
nificance across different diseases [I3]. Therefore, patients with differences in the
tumour shape and texture can be more easily recognised by the quantitative features
than by the radiologist. Radiomics focuses on optimising unsupervised quantitative
imaging feature extraction through a mathematical algorithm based on intensity,
grey-level intensities and texture-based features, followed by developing decision
support systems to estimate patient risk and improve individualised treatment se-
lection and monitoring accurately. Figure highlighted in yellow some examples
wherein the clinical pathway routine, radiomics could be used, and its potentiality
in clinical practice.

As shown in Figure clinician could be supported by a radiomics approach
in detecting and characterising suspected lesions. As a second step, the decision
making step could be supported by suggesting an observation or treatment path.
Furthermore, radiomics analysis could help in the treatment planning, and the out-
come prediction could be indicated when integrated with data from different sources
such as molecular or histological data. Finally, radiomics optimisation can support

clinicians to diagnose or predicting the patients’ outcomes correctly.

ical Judgment B
q ¥ Observation
= Manual segmentation /

w
. & o
Symptoms \ = Volume/max diameter Integrated Diagnostics Out
utcome

Staging

.
& N ng > Treatment - Detailed ¥ @ MT > P
Incidential f \.’ =  Qualitative measures \’ e R Al Optimization
Findings ] Al-guided Detection and Decision Making Al-guided Treatment Treatment
Characterization Planning and Monitoring Administration

Current Practice Al «areas of input»

Medical Imaging

Figure 2.2: Current Practice and Decision Points of the current clinical pathway.
In yellow possible radiomics input are evidenced to show how radiomics can help in the

different clinical pathway steps. Figure taken from Bi et al.[I4].

2.1.2 Radiomics Workflow

The radiomics workflow consists of the steps shown in Figure The first step
is the database acquisition, collection and reconstruction. The collected images
were segmented to define the Region or Volume of interest, where usually this area
coincides with the tumour regions. Finally, quantitative features are extracted from

the segmented regions and then used to obtain a diagnosis or patient prognosis.
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Figure 2.3: The radiomics workflow.

2.1.2.1 Image acquisition and reconstruction

The imaging acquisition step is the first step of the radiomics workflow. Even if
the following manuscript handles only MRI and chest X-ray images, for the sake of
completeness, a global overview of all commonly used image modalities for radiomic

applications was made:

e CT: As it will be shown in section 2.3.1, CT images is the modality most
commonly used for radiomics purposes [I5]. CT images are widely used since
tissue density, shape and texture of tumour and lymph-nodes are assessed.
Although, images quality depend on the parameters used during acquisition
and on the reconstruction algorithms as described by [Kumar et al.| [I0]. Pa-
rameters that affect the image quality are the slice thickness, the axial field of
view and the reconstruction matrix, or the Hounsfield units. For example, de-
creasing the slice thickness reduces the slice’s photon statistics, increasing the
image noise. Moreover, the axial field of view and the reconstruction matrix
size determines the pixel size and the spatial sampling having an impact on
the heterogeneity of the image [I6]. Despite the differences, vendors develop
similar algorithms to have comparable image qualities. A possible solution
to compare features extracted from CT images that are used for radiomics
purposes is the usage of a phantom to test the effect of different scanners
and acquisition parameters [16]. Alternatively, radiomics studies investigated
the robustness and stability of features extracted from CT images applying
test-retest studies [17].

e MRI: MRI images intensity values do not depend directly on the tissue density,
as in CT images, but depends on the tissue properties, such as the relaxation
times and their response in certain conditions. Therefore, MRI image qual-
ity depends on the acquisition parameters such as the field of view, the field
strength and the slice thickness. The Radiological Society of North Amer-
ica defined a Quantitative Imaging Biomarkers Alliance who defined a stan-
dard protocol for acquisitions defining the acquisition parameters [I8]. How-
ever, MRI sequences such as Diffusion-weighted imaging (DWI) and Dynamic
contrast-enhanced (DCE) MRI, allow the assessment of physiological tissues
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properties. The first shows the apparent water diffusion coefficient that is
related to the tissue cellularity, while the DCE shows the vascular flow, the
permeability and volume fractions due to the contrast agent [I0]. Although
both sequences represent quantitative information, their reproducibility is still

dependent on the acquisition parameter.

e PET/CT: The last commonly used imaging technique is the PET/CT image.
PET images used for radiomics purposes are usually acquired with the radio-
tracer 18F-fluorodeoxylglucose (18F-FDG) since most of the malignant tumour
types exhibit a high glycolytic rate [19]. PET and CT images are usually com-
bined because CT images give information about the patients’ anatomy, while
PET images give information about the functionality of the organs. Features
extracted from PET images are the most difficult features to compare since
they depend on the calibration of the scanner and the acquisition protocol
and the patient condition (blood glucose level, uptake period, breathing, and
inflammation). Inter-institution cross-calibrations are necessary before quan-

titative analysis of the images.

e Other image modalities: Besides the three imaging modalities most frequently
used for radiomics applications, the following imaging modalities were also
used for radiomics applications.

— PET/MRI: PET/MRI technology is a quite new technology not com-
monly installed and available compared to PET/CT [20]. Due to the
small numbers of worldwide available PET/MRI machines, collecting
databases that can be used for radiomics applications is still an issue.
Similarly to PET/CT, PET/MRI combines the anatomical information
obtained with the MRI with the functional information of the PET im-
age. Even if the imaging technology is quite new, radiomics applica-

tions have already been developed for example by Antunes et al. and
by (Chen| 21, 22].

— Ultrasound: Ultrasound imaging is the second most commonly used di-
agnosis modality [23], due to the ability in distinguishing between benign
and malignant lesions, using safe and non-ionising technologies [24]. Al-
though, ultrasound images are highly affected by acquisition variability
caused by the operator experience and the used technology [24]. Conse-
quently, the repeatability of the images is affected and hence the extracted
features, reducing the number of radiomics applications using this imag-

ing methodology.

— X-Ray: X-Ray imaging is the most common medical imaging acquired

in medical practice [23]. Despite the usage of this imaging technique, ra-
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diomics applications are not very common since X-ray images were usu-
ally not used for oncological issues. In the literature, the most common
applications concerns mammography imaging for breast cancer detection

and lung x-ray imaging for COVID-19 diagnosis.

— Photon-counting CT (PCCT): Photon-counting CT, introduced in clini-
cal routine in 2021 [25], represents a great innovation for the CT scanners
due to the single one-step conversion of X-ray photons into an electrical
current that generates the medical image instead of the two steps, nec-
essary in the standard CT images. Given the novelty, radiomics appli-
cations have been developed on this new imaging modality to study the

differences from the original CT images [26].

2.1.2.2 Segmentation

Radiomics features are usually extracted from a segmented area within the collected
dataset. Segmentation is defined as the contouring of the region of interest (ROI)
or volume of interest (VOI) such as a tumour, an anatomical structure or nor-
mal tissue. There are three main segmentation methods: manual, semi-automatic,
and automatic. The first, the manual segmentation, is obtained manually by expert
readers and is often treated as ground truth [I0]. Even if this segmentation is consid-
ered as the gold standard, this method commonly suffers from high inter-variability
and is time-consuming and labour-intensive [27]. To limit the variability, different
physicians could perform different segmentations, which resolves the inter-variability
problem but increases the dedicated time. Moreover, the segmentation variability
introduces a bias in the radiomic feature extraction and evaluation since they highly
depend on the used segmentation. [Balagurunathan et al|[28] compared the seg-
mentation obtained manually and by an automatic software, analysing the feature
stability and the similarity of the segmentation. The authors showed that in large
tumours, the variability decreases compared to small tumours. Moreover, in section
[3:4.2] the segmentations’ influence on the results has been studied, highlighting the
dependence between segmentation, features, and results.

Since in radiomics, large datasets are necessary, causing a high number of nec-
essary segmentations, an alternative segmentation method must be found. The al-
ternatives were the automatic or semi-automatic segmentation methods developed
for different imaging modalities and anatomical regions. These segmentation meth-
ods can be distinguished into four techniques, based on the used methodology to

distinguish areas within an image [29].

e Threshold-based technique: The Threshold-based technique is the simplest
method because it relies on the pixel /voxel intensity value distinguishing pixels
using one or more threshold values. However, due to the algorithm’s simplicity,
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this method does not work well with complex images, especially with images

without enhanced tumour areas.

o Region-based technique: The Region-based segmentation method groups pixel-
s/voxels with homogeneous properties according to a predefined criterion [30].
The most common segmentation method belonging to this technique is the
region-growing method. This method starts from a pixel chosen by the reader
and adds automatically neighbouring pixels that respect a similarity crite-
rion [I5]. Unfortunately, this method suffers if the image contains too much

noise, leading to a wrong segmentation [10].

o Model-based technique: This third introduced method builds a model based
on parameters or on geometry. Based on different rules, the model can im-
prove the segmentation border of the wished area. An example is the level-set
method. Based on a level-set function, this method ideally evolves by finding

the contour equation.

o Pizel/Vozel Classification Techniques: The last segmentation method classifies
each pixel/voxel to a specific class, classifying the different areas of the image.
This type of classification is usually fully automatic and two examples will
be discussed. The first is the semantic segmentation, where the model assigns
each voxel to a specific class of what is being represented, for example: people,
building, street. Two examples are the fully convolutional network (FCN)
model first applied by |Long et al.| [3T] and the U-Net [32] . The second method
is the instance segmentation, where the model needs to classify correctly each
voxel to a class, but it also assigns the voxel also to the specific instance, for
example person 1, person 2 or person 3. Instance segmentation is preceded
by a object detection step due to the necessity to recognise all objects before
classifying them. An example is the well known Mask R-CNN [33] which
classifies and localised objects using a bounding box followed by a semantic
segmentation that classifies each pixel into a set of categories. Applications
of this method in medical imaging have been developed by |/Anantharaman

et al.| [34] to segment oral lesions.

Semi-segmentation methods are based on user input, while the utterly automatic
segmentation method is based on Deep Learning algorithms, for example, the U-
Net [35], that automatically segments the ROI or VOI. Despite the differences, all

algorithms should be as automatic as possible, time-efficient and accurate.

2.1.2.3 Feature extraction

After the segmentation, the following step in the radiomics workflow is the feature

extraction and qualification. These features describe the tumour characteristics such
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as the tumour intensity histogram, the tumour shape, and the texture. The following

items describe the most commonly used feature classes in a radiomics workflow:

o Shape-based features: Features belonging to this class describe the 2D or 3D
shape of the segmented area. For example, features can describe the total
area or volume of the ROI/VOI, the global shape of the area, if roundish or
speculated, and the compactness or shape of the area.

o First-order histogram: Represents the distribution of intensities of the data
within the segmented area in a single histogram. The histogram describes the
range of voxel values that can be Hounsfield units in CT images, SUV values
in PET images or signal intensity in MRI resulting from the signal equation
used. Different statistics can be obtained from the histogram, such as mean,
max, median, min values and range, skewness, and kurtosis values. The latter
represents the degree of histogram asymmetry and sharpness. Moreover, the
uniformity and the entropy are extracted and represent the inhomogeneity of

the selected area. More complex values can be extracted if needed.

o Texture based features: Texture based features, also referred to as second-order
histogram features, refers to the spatial variation of the intensity level within
the segmented area and were introduced in 1973 by Haralick et al. [I1]. These
features are based on different support matrices obtained from the original

image and deepened in the following overview|[10), [15]:

— Grey-Level Cooccurrence Matriz (GLCM): The most common feature
group are the Grey-Level Cooccurrence Matrix (GLCM) features. These
features are based on a joint conditional probability function obtained
counting the number of times a specific pixel, or voxel if 3D, with value
x is close to a pixel with value y separated by a distance d in direction
a. The output matrix size depends on the intensity levels within the
original image. Consequently, from these new functions, features can be
extracted describing characteristics such as the entropy, related to the
heterogeneity, the energy, describing the homogeneity of the image, the
contrast, which measured the local variation or the correlation, the cluster

prominence, the cluster shade or the cluster tendency.

— Gray Level Run-Length Matriz (GLRLM): The GLRLM is a 2D matrix,
that describes the times each element of intensity j of the original matrix
appears consecutively to the element of intensity ¢ in a specified direction
as defined by |Galloway||36]. Moreover, the matrix is based on the Grey
level run defined as the length of consecutive voxels having the same

intensity value. Features as Short Run Emphasis, Long Run Emphasis,
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Short Run Low/High Gray Level Intensity and Long Run High /Low Gray

Level Intensity are calculated based on this matrix.

— Gray Level Size Zone Matriz (GLSZM): The GLSZM is a 2D matrix [37]
where in column 5 and row ¢ the number of areas of voxel with the same
grey level ¢ with size j are stored, resulting in wide and flat matrices if the
ROI/VOI is homogeneous. Features such as Small/Large Zone Emphasis
and Low/High Grey Level Zone Emphasis resulted from this matrix.

— Neighborhood Gray-tone Difference Matrix (NGTDM): The last com-
monly used matrix is the NGTDM, which contains the summation of
the differences between all pixels with the considered grey tone and the
average value of their surrounding neighbours for each entry. Features
obtained from this matrix include coarseness, contrast, busyness, com-

plexity and texture strength.

e Other Features: Further features can be extracted using a filtered image as
the input image. The most common filters used for radiomic application were
the wavelet filter or the gaussian filter, both implemented in the library pyra-
diomics widely used for radiomics applications. The first yields eight decom-
positions per level (low and high pass filter), while the second is an edge
enhancement filter. The advantage of applying filters on images before ex-
tracting the features is that filters, such as wavelet or gaussian filter, highlight

information hidden in the images that could provide valuable information.

o Automatic Feature: The last type of features used for radiomics applications
are the features automatically extracted by Deep Learning algorithms. The
most common and efficient deep learning algorithm applied to images is the
convolutional Neural Network (CNN) [38]. These Networks are based on dif-
ferent layers: Convolutional Layer, Pooling Layer, and Fully-Connected Layer.
The Networks can have different combinations of these layers, but all of these
models reduce the entire image into a single vector of class scores. The ob-
tained single vector can be seen as the list of automated features since it
comprises quantitative values describing imaging characteristics. Briefly, the
convolutional layer consists of several filters, for example with size 5 x 5 x 3
that are slide across the entire input volume computing a dot product between
the filter and the input image at the specific position. As a result, an acti-
vation map is obtained, containing the response of the image to that specific
filter. The filters usually focus on visual features such as edge detection or
orientation detection. For each convolutional layer, a set of filters is used (for
example, 12), and each analyse a different aspect of the original image, result-
ing in 12 different activation maps obtained from the original image stacked

and passed to the next layer as a 3D volume [39]. After the convolutional layer,
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the pooling layer has the function to reduce the dimensionality of the stacked
images. After repeating this process many times, a last flatten layer reduces

the obtained data into one vector representing the automated features.

2.1.2.4 Feature selection

As introduced before, many quantitative features can be extracted, resulting in
thousands of descriptors for each image, and usually, their number exceeds the di-
mension of the total dataset. Since features can be redundant and correlated, a high
number of features can lead to overfitting problems ﬂ Therefore, a feature selection
step is necessary to reduce the number of features keeping the significant and rel-
evant features for the given task. Feature selection usually increases classification
performances and lowers computational costs deleting irrelevant features, those who
cannot help with the classification, redundant features, those who give the same
information as other features, and noisy features, those who may be relevant but
due to the introduced noise they may be less useful than others.

Feature selection can be distinguished into three categories of label availability:
the unsupervised, the supervised and the semi-supervised features selection [41].

The unsupervised features selection is generally used for clustering tasks since the
data label is unknown, and feature selection cannot be based on the class distribu-
tion. The supervised feature selection method is mainly used for classification tasks.
The availability of the labels allows the algorithm to identify and select irrelevant,
redundant and noisy features effectively. Finally, semi-supervised feature selection
methods were used if only part of the dataset was labelled. In this condition, an
unsupervised method is not recommended since it does not use important informa-
tion such as the label, while the supervised method necessarily needs to exclude
all unlabelled data losing information. On the other hand, feature selection can
be made through three different search strategies, the filter selection, the wrapper,
and the embedded feature selection [42]. Note that each of this category contains
unsupervised, supervised or semi-supervised methods.

Filter, wrapper and embedded feature selection are now briefly summarised fol-
lowing three reviews [43, 44 45]. Nevertheless there are other feature selection
methods, such as clustering or Principal Component Analysis (PCA), described by
Rizzo et al|[16] and which will not be deepened here.

o [ilter Feature selection: This feature selection approach selects features based
on their characteristics without using any learning algorithm. Features are

ranked based on specific characteristics, and subsequently, features with the

2Qverfitting definition: ” A model overfits the training data when it describes features
that arise from noise or variance in the data, rather than the underlying distribution from Which

the data were drawn. Overfitting usually leads to loss of accuracy on out-of-sample data”.
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highest ranking are chosen. This method is very efficient but has the dis-
advantage of losing important features since no learning methods are used.
The most common filter feature selection approach used is the minimum re-
dundancy maximum relevance (mRMR), where mutual information (MI) com-
pares the outcome and the single features. Features with the maximum MI are
selected [15, 46). However, the analysis of single features with the outcome
is defined as univariate selection and has the disadvantage of not considering
the relationships within the features. Another commonly used feature selec-
tion method is the Relevance in estimating features (RELIEF) method which
analyses the inter-dependent features. The core idea was to rank the features
according to how well attributes can distinguish data that are next to each
other [I5], @7]. Different variations of this method were developed, such as
the ReliefF, which deals with multiclass problems, or the RReliefF algorithm
developed for regression problems. However, even considering the advantages
of this method such as the time reduction or the complexity reduction, the

method has shown to be unable to detect redundant features [I5].

Wrapper Feature selection: The wrapper feature selection approach, differ-
ently from the filter selection approach, uses a learning algorithm to detect the
ideal feature subset. The chosen learning method analyses different subsets
of features, adjusting the included features based on the performance evalua-
tion to find the best combination that maximises the model performance [4§].
The feature set with the best performances will be chosen as the final feature
set. Wrapper feature selection methods can be distinguished into three types,
the forward selection method, which iteratively adds features to the final fea-
ture set, the backward elimination, which started including all features all
iteratively excluded features and the step-wise selection, which is based on a
combination of the forward selection and the backward elimination methods.
An example of wrapper feature selection method belonging to the backward
elimination method is the Recursive Feature Elimination. This method intro-
duced by |Guyon et al| [49], begins using all available features and finding an
importance score for each feature. In the second step, the worse feature is ex-
cluded, the model is built again, and the importance score is calculated for all
remaining features. This procedure is repeated until the model performance

is maximised.

Embedded Feature selection: The last introduced feature selection method in-
cludes the feature selection into the model construction. This helps to include
the advantages of the two previously introduced methods, the filter method’s
computational efficiency, and the interaction with the learning model of the

wrapper approach. Unlike the wrapper approach, in the embedded feature
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selection, the selection is made directly during the training, without further

feature evaluation.

2.1.2.5 Analysis

Since a radiomics analysis aims to develop models to diagnose or prognosis patient
outcome, the development of machine learning or deep learning models is necessary.
There are many machine and deep learning methods, but all learning models require
observations or data, known as features, to analyse the dataset’s hidden pattern.
Different machine learning perspectives will be introduced in this section, followed

by a deep learning algorithms introduction.

MACHINE LEARNING Machine learning algorithm can be subdivided into four
main categories, the supervised, the unsupervised, the semi-supervised and the re-

inforcement learning.

e Supervised learning: As already introduced in the feature extraction para-
graph, supervised learning needs to have a labelled dataset describing the
label, for example, overall survival, or the class of the data, for example be-
nign/malignant. Within the supervised learning models, two different groups
can be distinguished, the classification task, which needs a discrete outcome
such as categories, and the regression task, where a continuous outcome, for
example, Overall Survival is needed. Both methods use a training set to learn
the data and the corresponding outcome and produce an inferred function to
predict the test set where the label is unknown. Therefore, the model assigns
a new target to the data in the test set and the comparison between the real
label and the assigned ones determine its performance. The most common
used classification method is the Logistic Regression (LR) [I5]. LR is a classi-
fication method used with binary categorical variables, for example malignant
or benign tumours. LR uses a logistic function to get a binary output variable.
Furthermore, LR’s range is limited to values between 0 and 1, meaning that
all input values are transferred using the LR function to values between 0 and

1 using the following equation: Logisticfunction = . Finally, all values

1

el—z
under 0.5 are assigned to class 0, while all values ab;:fre be)long to class 1 [50)].
The second commonly used classification method is the Random Forest (RF).
This method is based on multiple independent Decision Trees, a classification
methods based on if-then reasoning, that are trained on a random subset of the
data [51]. The subsets of the dataset are obtained using a bootstrap method.
Each DT in the RF works in parallel on a different dataset and uses different
subsets of available features, leading to unique DTs’” within the RF. Finally,

the RF aggregates the decisions obtained by the single DT models using a
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majority decision. Support Vector Machine (SVM) is the third most common
used classification method [I5]. The main idea behind this technique is to find
a hyperplane in an n-dimensional space that classifies the data contained in
the dataset. Data that falls on a different side of the hyperplane belong to
different classes. Furthermore, the hyperplane needs to have the maximum
margin of all points of the classes, because this can increase the confidence
that future points will be classified correctly. The hyperplane has many di-
mensions as the number of features and can be represented by linear, gaussian
or other functions. Besides the three introduced ML classifiers, summarised
in the review written by |[Avanzo et al.| [I5] and commomly used for radiomics
purposes, many other algorithms are available and can be summarised in the
following groups [52], (i) Regression Algorithms, which models the relation-
ship between variables, iteratively refined using a measure of error and the
models prediction, (ii) Instance-based Algorithms, that are based on specific
instances that are deemed important and generalised based on similarity mea-
sure, (iii) Regularisation Algorithms, who are an extension of other methods
and penalise complex models, favoring simple and good generalising models,
(iv) Decision Tree Algorithms, that construct models based on decisions made
on values of the data, (v) Bayesian Algorithms, who apply the Bayes’ Theorem
and (vi) Ensemble Algorithms, that are made of multiple weaker models that

are independently trained followed by a combination of the single predictions.

o Unsupervised learning: Oppositely to supervised learning, no label is furnished
in unsupervised learning. This method is often used for data clustering since
it analyses the dataset’s relationship and hidden structure. Also, unsupervised
learning can be subdivided into two tasks, the clustering and the association
task. In the clustering task, the aim is to divide the dataset into groups based
on specific feature characteristics, while in the association task, the aim is to
find association rules within the dataset. Some examples of models that belong
to this family are K-means and DBSCAN, used for clustering purposes, and
apriori used for association tasks. K-mean, the fastest and easiest clustering
model, starts with k£ randomly positioned centroids and recursively adjust their
position to have the smallest incluster sum of squares [53]. The number of & is
usually furnished by the user in charge to find the correct number of clusters
within the dataset. The second mentioned model, DBSCAN searches for each
data, how many instances are located within a small distance e. If at least
n samples are in the e-neighbourhood, the region can be considered a core
instance. All data within the same core instance belong to the same cluster,
and more than one neighbouring core instance can also belong to the same
cluster. Since association tasks are barely or never used for radiomics purposes,

the apriori method will not be deepened. The models can be summarised
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in the following groups [52]: (i) Clustering Algorithms which describe the
class of problem, (ii) Association Rule Learning Algorithms that defines rules
describing the relation between variables in data.

o Semi-supervised learning: The semi-supervised learning, like the semi-supervised
feature selection, has both labelled and unlabelled data. As described by|Van Eh-
gelen and Hoos [54], semi-supervised learning uses the unlabelled data as a
support for classification task, or uses the available data as a support during

the clustering process.

e Reinforcement learning: The Reinforcement learning, not commonly used for
radiomics purposes, learns how to behave through trial-and-error interactions
with a dynamic environment, using estimated errors as rewards or penalty
during the classification task [55]. The higher the error, the bigger the penalty
and the smaller the rewards and reverse. This algorithms uses the errors and
rewards to automatically determine the behaviour and maximise the perfor-

mance.

DEEP LEARNING Recently, Deep Learning (DL) methods applied to medical im-
ages have increased due to the availability of larger datasets and the increased com-
putational speed [56]. DL applications obtained good results in object detection and
recognition tasks, recognising imaging patterns and performing accurate segmenta-
tions [57]. Moreover, DL methods have the advantage of not needing preprocessing
steps, such as tumour segmentation and feature extraction, but it takes as input the
whole image as it is. The depth of DL models is not given by a deeper understand-
ing of the image, but is referred to the model’s depth, determined by the number of
layers within the model [58]. A DL model can be represented by Figure which
shows the input image, the output, and the hidden layers. There are many different
types of DL models, but all have in common the main structure shown in Figure [2.4]
where the number and complexity of the hidden layers distinguish the deep learning

models.

Layer1 Layer2 Layer3 Layerd

Original
input
- - - Final
output

00~ MW =0

Figure 2.4: Overview of a DL Model
Figure taken from (Chollet| [58].
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As introduced in section [2.1.2.3] the most common deep learning models are
the convolutional Neural Network (CNN) due to their ability to handle 2D and 3D
images. In Figure 2.5] an overview of the model construction is shown, showing that
a CNN model is made by a first part, made of different types of layers, and a second
part, represented by green and red dots, with a fully connected neural network.

fc_3 fc 4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution ! /—M
(5 X 5) kerr.1el Max-Pooling (5 x 5) kerr.1el Max-Pooling (with
valid padding 2x2) valid padding (2x2) dropout)

INPUT nl channels nl channels n2 channels n2 channels ||| E ' 9
(28x28x1) (24 x24 xnl) (12x12xnl) (8 x8 xn2) (4x4xn2) .) OUTPUT

n3 units

Figure 2.5: Overview of a CNN model structure
Figure taken from Sahal [59].

The first part can be summarised as the feature extraction part, while the second
is the classification part. The feature extraction part of the CNN model contains
at least two types of layers, the convolutional layer already introduced in section
2.1.2.3| and the pooling layer, which is necessary since it reduces the feature map
dimension according to specific rules. A third layer, commonly part of a CNN
model, is the activation layer. This layer is necessary to add some non-linearity
to the model and solve the Vanishing Gradient problem for profound models. The
Vanishing Gradient problem is caused in profound learning models when the value of
the gradient of the initial layers cannot learn correctly. The most common activation
functions used in the activation layers were the Rectified Linear Activation (ReLU),
the Logistic (Sigmoid) function and the Hyperbolic Tangent (Tanh) [60]. Finally,
the second part of the model, made by a fully connected neural network, analyses
the output of the feature extraction part, to obtain the data classification. The
data is flattened before the fully connected neural network analysis. Some of the
most recognised architectures, which belong to the CNN and are commonly used for

medical applications, are Alexnet, VGGNet, ResNet, and InceptionNet [57].

VALIDATION METHODS Performance of the models is mainly represented by ac-
curacy, sensitivity and specificity or by the recall, precision, Fl-score and AUC
values. The choice of the performance metric is based on the author and the data

distribution. For imbalance datasets, as shown in section [3.2] the accuracy is not the
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correct metric since it highly depends on the dataset distribution, while the balanced
accuracy or the Fl-score are appropriate metrics in these conditions. Moreover, per-
formance is evaluated in different conditions, the validation performance and the test
performance, obtained on the validation set and the test set, respectively [61].

To train and evaluate the model correctly, a validation process is necessary to
split the dataset into training, validation and test. The most common internal
validation method used, is the leave-one-out validation, where the whole dataset
is used for training except a single element that is used for validation [I5]. The
procedure is repeated until every element has been in the validation set at least one
time. Other commonly used validation methods are the bootstrap method and the
k-fold validation method. The Bootstrap method consists in the extraction with
replacement of the samples contained in the dataset to generate the training set,
in which elements could be represented more than once. Data never chosen were
assigned to the validation set. The second method splits the entire dataset into &
parts, using one part as validation and the others as the training set repeating this

procedure until all parts have been used as the validation set.

2.2 Clinical Applications

After the first radiomics application proposed by [Aerts et al.|[§] many articles anal-
ysed radiomics applications using Machine Learning or Deep Learning methods.
Reviews of the radiomics literature can be subdivided into two types. The first
analyses the literature from a clinical point of view, while the second analyses the
literature deepening the technical aspects used. In this section, the first type of
reviews will be reported and summed up, while section [2.3| reports the reviews deep-
ening the technical issues.

Yip and Aerts| [62], Bi et al.| [14], |[Lee and Lee| [63] and |Sollini et al.| [I2] focused
their reviews on the clinical applications of radiomics works using machine learning
methods. In Table an overview of the cited articles is shown, comparing the
found potential applications of radiomics, the clinical areas of applications, the used
images, factors that affect radiomic feature quantification, false positive discovery
rate and proper study design and finally conclusion /limitation of the analysed stud-
ies. |Yip and Aerts/ and [B1 et al.|introduced the potential applications of radiomics
in a clinical environment summarising that radiomics has a great potential in de-
tecting abnormalities, predicting the treatment response and the patients outcome,
in tumour staging and identification and in the assessment of cancer genetics. All
included reviews, except for [Lee and Lee includes articles using CT, MRI and PET
images while [Lee and Lee| deepen radiomics application only using PET/CT im-
ages. Sollini et al. reports that from the 171 considered articles, 86% of the works
handled with oncology problems including brain (31%), Lung (25%), Breast (15%),
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Gastrointestinal (14%), Urology (11%), Musculoskeletal (2%) and Skin (1%). The
other 14% of the articles focused on not oncological problems such as infections or
ophthalmological problems.

Clinical applications summed up by the included reviews showed that articles
analysing the Central nervous system (CNS) focused on an accurate diagnosis and
an extent of the disease. Another focus of radiomics applications is analysing the
effect after treatments since the surrounding neural tissue may be affected by the
treatment.

Radiomics applications on brain tumours considering PET/CT images are lim-
ited since the necessity to use adequate radiopharmacy that are not commonly used
in clinical practiceﬁ As on the other imaging techniques, these studies deepen the
patient survival, the diagnosis value of the signature, and the tumour progression
after radiotherapy. The second most studied topic is the Lung tumour. These works
aim to improve the early detection, characterisation and staging of lung tumours,
specifically the lung cancer screening, lung cancer characterisation, the assessment
of the intra-tumour heterogeneity, the cancer subtypes and the response to target
therapies.

Radiomics studies focusing on breast cancer aim to differentiate the breast cancer
subtypes and predict the treatment response, such as the staging and prognosis
prediction.

Yip and Aerts summed up the factors that affect the radiomics features quan-
tification: the acquisition modes, the reconstruction parameters, the smoothing and
segmentation thresholds, the reproducibility of the radiomics features, the image dis-
cretisation schemes, the Respiratory motion, and the Tumour size and intratumoral
heterogeneity.

Finally, articles conclude that radiomics has a high potential but that not all
features are recommended to be used due to the instability of the features. Fur-
thermore, authors conclude that the dataset size has to be at least ten to fifteen
patients per feature [62], that the database should be published to improve collab-
orations [I4] and that PET/CT images have a lower spatial resolution compared to
other imaging methodologies. Finally, that especially for small tumours, the relia-
bility of heterogeneity of the parameters is limited [63]. In the following subsection,
to reviews focusing on specific radiomics applications in clinical areas are
deepened and summarised. As described previously, in literature, the most common
radiomics applications were studied for the following tumours: brain, lung, oesoph-
agus and gastric, hepatic, kidney and rectal, breast and prostate. For completeness,
all applications have been summarised, even if the manuscript addressed only lung

and brain applications. For each subparagraph a table summarising the technical

3The most common used radiopharmacy in clinical practice is FDG which has string limita-

tions when used for brain oncological issues [64], [65].
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evaluation and summary and the clinical applications of each article considered in
the reviews is reported.

2.2.1 Brain Cancer

Radiomics and Machine Learning applications on brain tumours have been widely
analysed and summed up by different revisions, such as the review written by [Zhou
et al.| [66], who analysed radiomics application on general brain tumours, and (Chad-
dad et al.| [67], [Lotan et al.| [68] and |Soni et al.| [69] who studied radiomics application
on glioblastomas. Focusing on the reviews written by |Zhou et al. and|Chaddad et al.,
the authors analysed and summarised the different steps of a radiomics workflow.
They started from the role of clinical imaging as a prerequisite for radiomics models
to the outcome of predictive analysis with machine learning techniques, deepen-
ing the main clinical applications: the survival time prediction, the classification
of tumour subtypes and the tumour tissue discriminative analysis for general brain
tumours. Moreover, (Chaddad et al. focused on the prediction of clinical, proteomic
(e.g., Ki-67 expression), genomic (e.g., IDH1 status) and transcriptomic charac-
teristics, or the development of personalised treatments. Furthermore, the review
summarised that different articles studied the discrimination between pseudopro-
gression and progressive disease. [Soni et al. deepened the literature of radiomics
applied to gliomas focusing on texture analysis. The authors compared the con-
cepts and methodologies of texture analysis through various MR imaging texture
analysis applications. Finally, |[Lotan et al. discussed the used resources, the seg-
mentation methods and the machine learning methods and results of recent articles
that focused on machine learning applications on gliomas. The first reported result
was that since 2014, the number of papers that addresses the segmentation using
CNN-based models has continued to improve every year. Comparing 33 articles,
the authors found that about 30% analyses the IDH mutation, 21% of the articles
analysed the survival time, and 18% analysed the histological grade of the tumours.
70% of the analysed articles used Machine Learning methods while 30% used Deep
Learning methods, and the overall results obtained were in the range of 0.66- 0.96 the
AUC value and 67% - 98% the accuracy value. The authors conclude by highlighting
the challenge of ML and DL applied to gliomas.
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Table 2.2: Overview of cited reviews focusing on radiomics applications on brain

cancer
Technical evaluation and summary Clinical Applications
Features Extraction: Quantitative Features, Survival Time Prediction,
7h ¢ al| @B biologically inspired Features, Machine Learning Classification of Glioblastoma Subtypes
ou et al.| [66
h Applications: Supervised, Unsupervised, , Tumour-Tissue Discriminative
Semisupervised applications, Deep Learning Analysis, Applications of Imaging and genomics

Radiomics applications on GBM,
Intratumoural heterogeneity
and radiogenomics, Prediction of clinical,

Tmage acquisition, Standardisation, Segmentation,

Chaddad et al.|[67] proteomic (e.g., Ki-67 expression),

Feature extraction and Analysis, Model Building X
genomic (e.g., IDH1 status)
and transcriptomic characteristics,

or the Development of Personalised Treatments.

Machine learning and Deep
Lotan et al. {68 Dataset availability, Segmentation X X g I,
h learning applications on Gliomas

. . . L. Texture analysis for Gliomas: grading,
Soni et al.|[G9)] Texture analysis and Feature definition and description . c K . o o
survival analysis, radiogenomics, miscellaneous applications

2.2.2 Lung Cancer

The first clinical application of a radiomics method was developed on lung images
by [Aerts et al|[§] in 2014. The application developed a radiomics algorithm applied
to 788 patients with non-small-cell lung cancer and 231 with other head and neck
cancers. For each image, radiomics features were extracted, and the patients’ clinical
and gene information were added to the imaging features. Finally, to prognose the
overall survival, a radiomics heat map and a prognostic signature were developed.
Since this first application, thousands of articles have been published regarding
radiomics applications on lung images.

The following seven reviews summarised and analysed the vast literature of ra-
diomics and machine learning methods applied to lung images. |Ather et al.| [70]
described the need for the development of automatic nodule identification methods
to support the radiologist in their activity due to the substantial variability be-
tween radiologists. Furthermore, besides the nodule identification task, the authors
discussed the nodule segmentation task, widely studied by published articles, and
the promising results mainly obtained by deep learning algorithms. The authors
distinguished between two main targets, radiomics used for lung cancer detection,
segmentation and characterisation and radiomics used for the treatment outcome
prediction. The first target can be further exploited into the following tasks: Cancer
detection, contouring, characterisation, segmentation of regions of interest in lung
cancer, prediction of histology and tumour stage and tumour genotype classifica-
tion. The second target can be exploited as complete response and local control
prognosis, distant metastases prognosis, survival prognosis, response to chemo- and

targeted molecular therapy, side effects prediction, and post-treatment recurrence
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Similar main applications have been observed also by [Avanzo et al. [71], |Chen
et al.| [72], (Constanzo et al. [73] and |[Rabbani et al.| [74]. |Chen et al.|discussed the
most commonly used imaging techniques for radiomics application, concluding that
the most common imaging modality for radiomics analyses is the CT. In contrast
to CT, MRI and PET are used less frequently because even if they could give
complementary information to CT images, standardisation is needed, or the analysis
is affected by the different acquisition parameters.

Thawani et al. [75] decided to deepen the limitations of radiomics applications
on lung cancer tasks and concluded that the most critical limitation is the lack
of reproducibility of the biomarkers. Furthermore, the variability of acquisition
parameters, for example, the contrast enhancement and convolution kernel, affect
the diagnostic performance of the found radiomics signature. The authors described
that to overcome these limitations, standard imaging protocol should be developed.
Besides the limitations, [Thawani et al. summarised a few results of the evaluated
articles showing that the AUC value obtained with a patient survival analysis task
using size, intensity, shape, texture and wavelet features is 0.6. In contrast, the best
reported AUC result was 0.85 obtained with a recurrence-free analysis task using
texture features.

The last reported review was written by |[Scrivener et al| [76] who compared
11 papers that used computed tomography images, 3 papers that used positron
emission tomography and 8 papers that used PET/CT images. Again, the authors
summed up the main radiomics tasks in classifying lung nodules and the prognosis
of established lung cancer. Since the compared methodological issues were different
in the reviewed papers, a direct comparison could not be made, but the authors
identified only five studies out of the 22 analysed that were externally validated.
Results reported in articles with classification tasks showed AUC values ranging
from 0.56 to 0.981. Articles facing the Overall Survival issue reported AUC results in
the range of 0.62 to 0.82. In contrast, the only reported article regarding recurrence
analysis had an AUC value of 0.85 and the article that faced a staging task obtained
an AUC value of 0.56. The authors conclude that radiomics analysis has great

potential in improving diagnosis and prognosis tasks.
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Table 2.3: Overview of cited reviews focusing on radiomics applications on lung

cancer

Technical evaluation and summary Clinical Applications

Nodule detection, nodule segmentation,
Ather et al.|[70 S
. nodule classification, follow-up

precision diagnosis and treatment:
Chen et al.|[72 Used imaging, segmentation, feature extraction: differentiate between cancer and nodules,
en et al.
’ shape, intensity, texture, wavelet, pathological and molecular classification,

treatment response and prognosis indication

segmentation, features extraction: . .
L. patient survival, tumour response,
Constanzo et al.|[73] SUV, IVH, texture, dynamic image . .
radiogenomics example.
features , model development

diagnosis, genomic classification,

. prognosis, treatment in radiation oncology,

Rabbani et al.|[74] . ’ . °©
immunotherapy, treatment selection

and outcome prediction,

cancer detection and characterisation:
Prediction of histology and tumor stage,
Tumour genotype,Prediction of treatment

vanz . segmentati
Avanzo et al.|[(1] segmentation
outcome: complete response and local
control, distant metastases, survival ,
response to treatment
segmentation, Feature analysis lung cancer diagnosis and prognosis ,

Thawani et al.|[75 . . . . e
* and their categories, radiogenomics and prediction of treatment

Image acquisition, segmentation,
Scrivener et al.| [76] feature extraction, model development tumour classification, tumour prognosis,

and validation,

2.2.3 Esophageal and Gastric cancer

The first reviews who handled the radiomics literature applied on esophageal cancer
were written by van Rossum et al.| [77] and Sah et al.| [78], whereas |[Sah et al. dis-
cussed also the gastric literature. The images commonly used to analyse oesophagal
cancer were CT and PET, while MRI was not routinely performed in the clinical
pathway. From these images, both reviews found that the same features, mainly
texture features, were used for radiomics analysis. van Rossum et al. deepened the
reproducibility of the features and suggested using only a limited number of re-
producible features. Even if the definition of reproducible features is still an issue,
the authors conclude that GLCM features are the most reproducible. As for the
other anatomical regions, the main radiomics applications on oesophagal cancer are
overall survival prediction and Pathologic response analysis. The second analysed
review compared articles separately using PET/CT and CT images of oesophagal
and gastric cancer. No studies using PET/CT studies have been performed on gas-
tric cancer. Analysed papers regarding oesophagal cancer using PET/CT images

focused on the treatment response, distinguishing responders or non-responders, or

g JATY



Tesi di dottorato in Scienze e Ingegneria per I'Uomo e I'Ambiente/ Science and Engineering for Humans and the Environment,
di Natascha Claudia D'Amico,

discussa presso I'Universita Campus Bio-Medico di Roma in data 04/04/2022.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,

a condizione che ne venga citata la fonte.

the outcome prognosis. The authors subsequently analysed papers that focused
on using CT images for both problems, oesophagal and gastric cancer. For both
clinical problems, papers addressed three main problems: classification, response
prediction, and overall survival prediction. For oesophagal cancer, studies have fo-
cused on the response prediction or prognosis and found a higher heterogeneity in
non-responders. Regarding gastric cancer, three of the analysed papers focused on
the classification problem, finding that first and second-order features could help
in the tumour classification. None of the included papers addressed the patient

prognosis or the response to therapy for gastric cancer.

Table 2.4: Overview of cited reviews focusing on radiomics applications on

esophageal and gastric cancer

Technical evaluation and summary  Clinical Applications

Texture feature analysis: Reproducibility, . L
. L Tumour staging, Prediction of treatment
van Rossum et al.|[(7] Influence of smoothing, Quantisation o .
. response, Prediction of survival
and Segmentation

Sah et al.|[78] Imaging Staging, Treatment response, Outcome prognosis

2.2.4 Hepatic cancer

Focusing on radiomics application on hepatic cancer, four reviews were included and
considered for this section. The first written by |Jeong et al.| [79] analysed papers
that focused on radiomics and radiogenomic applications on primary liver cancers;
hepatocellular carcinoma (HCC), and intrahepatic cholangiocarcinoma (ICC). The
authors found that most of the studies have been based on CT images and that
the usually addressed outcomes regard the diagnosis, the prognosis and the treat-
ment response assessment. All included articles found valid radiomics signatures
to solve the addressed problem. The authors conclude that non-invasive diagnostic
tests should be further investigated and used due to the correlation between imaging
features and molecular genomic data. The second introduced review was written
by |Wakabayashi et al. [80]. The authors included 23 studies in the review. Four-
teen articles used CT images, 7 used MRI images, and two PET/CT images. The
included articles focused on prediction problems (pathological grading or microvas-
cular invasion), Overall Survival and Progression or Disease-Free Survival, Diagnosis
and recurrence prediction. Finally, the authors evaluated all articles based on the
Radiomics Quality Score (RQS) introduced by |[Lambin et al.| [27] finding that the
overall scores are relatively low.

The third introduced review written by Fiz et al.| [81], focused on radiomics ap-
plications on liver metastases. The authors included 32 studies in the qualitative
analysis. Considering the included articles, the authors found that 60% of the arti-
cles analysed CT images, 25% used MRI images, 9% used PET/CT images, and the
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others used two multiple imaging modalities. The most common scope analysed by
the selected studies was the analysis of technical aspects, such as the influence of ac-
quisition or reconstruction parameters on the values of texture analysis indices. The
second most common scopes was the prognosis and the therapy response assessment
of metastasis given by colorectal cancer. The authors conclude that radiomics allows,
in general, the non-invasive differential diagnosis, for example, between metastases
from benign lesions and primary tumours. Moreover, the authors reported that
liver metastases with higher entropy and lower homogeneity at diagnosis had been
associated with a better prognosis and response to therapy.

The last review that focused on radiomics applications on hepatic cancer was
written by Park et al. [82]. |Park et al|initially introduced articles that used ra-
diomics methods describing the main clinical scopes and results, for example, the
chronic liver disease analysis or the malignant tumour prognosis. After the clinical
applications, the authors address the radiomics pitfalls, focusing on the standardisa-
tion problems of the imaging protocol, the VOI selection and the feature extraction
methods. The result, in their opinion, is to use deep learning methods instead of
radiomics. The authors included nine studies that used deep learning methods on
liver diseases. The included tasks were tumour segmentation, liver fibrosis staging,
classification of liver tumours, MRI reconstruction and motion artefact reduction.
All included articles obtained good and promising results. The authors conclude

that both radiomics and deep learning are good liver disease assessment techniques.
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Table 2.5: Overview of cited reviews focusing on radiomics applications on liver

cancer

Technical evaluation and summary

Clinical Applications

Comparison between quantitative
Jeong et al.|[79] . :
and qualitative analysis

Survival, Recurrence, and Treatment
response after chemotherapy, Relationship
between the genomic signatures and
imaging findings, HCC,

intrahepatic cholangiocarcinoma,

Wakabayashi et al.|[80] Radiomics workflow analysis

Tumour characterisation, Radiomics
applications on HCC, prediction problems,
Overall Survival and Progression or
Disease-Free Survival, Diagnosis and

Recurrence prediction

Influence of acquisition or reconstruction

. parameters on the values of texture analysis

Fiz et al.||81] o
indices, Influence of features on

radiomics analysis

Liver metastasis from colorectal cancer:
Survival prediction, Chemotherapy
response prediction, Pathology data
prediction, Radiomics applications

on non colorectal cancer metastasis

Radiomics features, Feature selection,
Park et al.|[82] Model development, Deep learning

models: CNN; training of DL models

chronic liver disease, prognosis
of malignant liver tumours,

DL applications: segmentation
using DL, liver fibrosis staging,

diagnosis of fatty liver, detection

and classification of tumours, image

quality improvement

2.2.5 Kidney and Rectal cancer

An attempt to resume the literature of radiomics application on kidney cancer was
made by |de Leon et al| [83]. The authors found articles focused on the radiomics
analysis of pre-and post-treatment assessment of renal masses. The analysed tasks
were the renal masses subtyping and the tumour biology prediction regarding the
pretreatment assessment. Most articles focused on the response prediction after
treatments for the post-treatment task.

Regarding the Rectal Cancer a review was written by |[Dinapoli et al.| [84]. The
authors found that different radiomics studies focusing on the pathological charac-
terisation, the primary tumour characterisation, the prediction of histopathological
tumour response could be found. Furthermore, studies focusing on lymph nodes and

distant metastases were summarised.
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Table 2.6: Overview of cited reviews focusing on radiomics applications on kidney

and rectal cancer

Technical evaluation and summary Clinical Applications

Subtyping of renal masses, Radiomics
Radiomics overview: Segmentation, for prediction of tumour biology,
de Leon et al.|[83] .
Feature extraction Posttreatment assessment of renal

cell carcinoma

Primary tumour and Treatment monitoring,
Dinapoli et al.|[84] Definition of primary lymph nodes

and Distant metastases

2.2.6 Breast Cancer

As shown by [Sollini et al.| another clinical area usually studied is the breast. Four
recent and often cited reviews will be discussed, to sum up, the literature. The first
reviews done by [Valdora et al.| [85] and (Crivelli et al|[86] summarised the dedicated
literature comparing 17 studies and 19 studies, respectively. Both reviews showed
that almost all compared papers, except for one, were retrospective papers, and in
most of the analysed papers of both reviews, the diagnostic modality used was the
MRI followed by Mammography, ultrasound and FDG PET/CT. The most common
aim of the summarised papers was for both reviews the prognosis, the molecular sub-
type distinction and the malignancy detection. In all papers, the best AUC value
found was 0.87, while the worst was 0.56. |Reig et al. [87] deepened the comparison
of the segmentation method, finding that the most common segmentation method
was to include the anatomic region or the fibroglandular tissue. Only one of the
considered papers segmented the background parenchymal enhancement. Further-
more, the review shows that commonly radiomics paper focused on breast cancer
studies the prediction of occult invasive Cancer in ductal carcinoma in situ, the
lymph node status and the marker of aggressiveness and the prognosis prediction
and the recurrence likelihood. Also, this review found results of AUC going from
0.78 to 0.96 the best. The last found review written by (Chitalia and Kontos| [8§]
analysed the literature from a texture analysis point of view, comparing the features
extracted from the literature for the different clinical needs. The review showed that
the most common extracted features are the grey level histogram features and the
grey level co-occurrence matrix features. These features were commonly used for
diagnostic applications, histopathological and molecular subtype classification and

breast cancer prognosis.
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Table 2.7: Overview of cited reviews focusing on radiomics applications on breast

cancer

Technical evaluation and summary Clinical Applications

Prognosis, the molecular sub-type
Valdora et al.||85] ) g, o ) P )
distinction and the malignancy detection

Classifications task using MRI or US,
Predict treatment response, Prognostic
o factors: lymph node metastasis,
Crivelli et al.|[86) . i . .
peritumoural fat, Ki67. Predict breast
cancers molecular profile, Cancer

recurrence prediction

Lesion classification, Predicting Occult

. . . Invasive Cancer in DCIS, Lymph Node
Machine learning methods: Supervised, .
U sed 1 e Deep | . Status and Markers of Aggressiveness,
. nsupervised learning, Deep learning o . o
Reig et al.|[87] P & p . & Predicting Prognosis and Likelihood of
methods, Breast segmentation, Lesion . .
. K Recurrence. Radiogenomics: molecular
segmentation, Texture analysis . . .
subtypes analysis, genomic predictor

recurrence, chemotherapy response prediction

Applications in Breast Computer-
Aided Diagnosis, Histopatologic and

Chitalia and Kontos|[88] Feature analysis Molecular subtype classification,
Breast cancer prognosis, Therapy
response prediction

2.2.7 Prostate cancer

Prostate cancer is the most frequent male tumour and, therefore, one of the most
analysed cancers with a radiomics approach. Four reviews that summarised the ex-
isting literature were found and introduced here. The first review, written by |Cuo-
colo et al.| [89] focused on the radiomics and machine learning applications for gland
segmentation, prostate cancer detection, local staging, lesion aggressiveness assess-
ment and the pretreatment assessment and follow-up. The authors conclude that
machine learning applications can expand the role of prostate MRI and improve
diagnostic performance. Moreover, |(Cuocolo et al.| highlighted that the dynamic
contrast-enhanced sequence was not always used. Thereby machine learning meth-
ods could avoid the systematic usage of contrast agents since good results have
been obtained with and without the sequence. Finally, the authors underlined that
further work is necessary to validate the process.

Both reviews, written by Sun et al.| [90] and by [Stoyanova et al.| [91] focused on
similar aspects. [Sun et al|[90] initially reviewed multiparametric MRI and its role in
Prostate Cancer detection, staging and management and [Stoyanova et al.| included
papers that analysed prostate cancer aggressiveness. Both reviews described that
the majority of the articles focused on the task of cancer detection, and [Sun et al.
classified radiomics as an evolution of a computer-aided detection system.

Subsequently, both reviews summarised the steps of the radiomics workflow,
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such as segmentation, registration, feature extraction and selection, and the most
frequently used classifiers, focusing on the advantages and disadvantages of each
step. Finally, the authors describe the future perspectives, especially the correla-
tion between imaging and genetic data, defined as radiogenomics, and its possible
applications.

The last included review was written by Stanzione et al.| [92]. These authors
included 73 studies in this review regarding radiomics application on prostate can-
cer. All studies were classified according to the Radiomics Quality Score [27]. The
authors found that the mean Radiomics Quality Score was 7.93 £+ 5.13 on a max-
imum of 36 points finding the post-critical points as the lack of feature robustness
and the missing external validation. The authors conclude that the lack of quality,

as described by the Radiomics Quality score, should be addressed in future.

Table 2.8: Overview of cited reviews focusing on radiomics applications on

prostate cancer

Technical evaluation and summary Clinical Applications

. . cancer detection, Assessment of lesion
types of ML algorithms: supervised, . .
) . . . aggressiveness,Local staging and
Cuocolo et al.|[89] unsupervised, reinforcement learning,
. . pre-treatment assessment,
segmentation analysis, . .
Biochemical recurrence

multiparametric MRI: t2, DWI,

dynamic MRI, MR spectroscopy, detection of prostate cancer,
Sun et al.|[90] Blood oxygen level dependent MRI, segmentation and registration,
feature extraction and selection, Assessment of aggressiveness and staging,

classifier training

prostate cancer diagnosis,
Prostate cancer aggressiveness,
Radiogenomics: MRI-US
Stoyanova et al.|[01] radiomics pipeline analysis, . 8 o .
guided fusion biopsy, RNA
extraction and microarray

hybridisation, radiomics features,

Stanzione et al.|[92] RQS

2.3 Learning methods

2.3.1 Machine Learning

In this section review analysing the literature deepening the technical aspects were
reported and summed up.

The reviews written by |Avanzo et al| [15], |Larue et al.| [93], (Cook et al.| [94],
Lambin et al| [27], [Rizzo et al|[16] and |Aerts| [05] focused their reviews on the
technical side of the literature that concerns radiomics applications using machine

learning methods (Table 2.9 Table Table 2.11)). |Avanzo et al.| introduced the
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review with an overview of the clinical areas of application, confirming that the most
common studies organs were the lung, especially regarding the NSCLC, the breast,
the prostate, the renal cell carcinoma and the head and neck cancer. All considered
reviews, except for [Cook et al| who deepened PET applications, considered articles
that analysed CT, MRI, PET and ultrasound images. |Avanzo et al. focused on
the advantages of every single imaging technique, summarising that CT images are
most commonly used for radiomics applications due to the ability to describe tissue
density, shape and texture of tumours. On the other side, MRI provides structural
and functional information of the soft tissues and, when combined with contrast
agents, characterises the concentration of an injected gadolinium contrast agent
over time. Finally, PET images give functional information about the studied area

and are usually acquired using the radiotracer 18F-fluorodeoxyglucose (18F-FDG).

SEGMENTATION METHODS In the literature, three different types of segmentation
were applied to medical images; manual segmentation, semi-automatic and auto-
matic segmentation. [Lambin et al|evidenced In general, a key condition of the
segmentation method choice is how the segmentation is performed and how sensi-
tive the features and the following analysis are to the different segmentations [27].
The first introduced segmentation is manual segmentation, defined as a straightfor-
ward solution and as the ground truth when performed by expert readers. Despite
that, they suffer from high inter-reader variability and are time-consuming [15] [16].
Semi-automatic and automatic segmentations are being studied and investigated to
minimise the manual input and the inter-reader variability and to fasten the pro-
cess [I5]. The most commonly used semi-automatic method in clinical practice is the
region-growing method. However, it works very good only for homogeneous regions
and worse for inhomogeneous regions [16, O3]. Moreover, |Aerts [95] reported that
automatic segmentations were already introduced especially for breast cancer, where
computer-aided detection systems are reliable for identifying tumours or nodular le-
sions. Finally,|Vial et al.| [56] reported that deep-learning methods as a segmentation

tool are being developed, but further researches are necessary.

FEATURE EXTRACTION AND CLASSIFICATION METHODS After the description of
the segmentation methods used, all reviews focused on the extracted features and
classification methods. |Aerts introduced that initially, semantic annotations were
obtained from the expert radiologist who used their experience to determine non-
standardised lexicon. However, these semantic features suffer from intra- and inter-
reader variability, and therefore quantitative features have been introduced. Ex-
tracted features can be classified into four main groups: shape/size, first and second
order histogram and texture features [I5] 16, 27, 03] [04]. Besides the standard used
features, when using different imaging techniques, new features can be included,
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such as the SUV metric when using PET images or the wash-in, wash-out curve in
dynamic MRI images [I5]. Image pre-processing or reconstruction affect features
values and therefore must be considered for future evaluations [27]. The most com-
mon used pre-processing is the wavelet decomposition of the original image, which
has been widely used to extract textures from different frequency bands [93]. More-
over, |Cook et al.|evidenced that varying the acquisition methods or the matrix size
changes the values of the features.

The first step before the classification algorithm is implementing a feature se-
lection step as mentioned by all included reviews. |Avanzo et all| defined feature
selection as an algorithm that selects relevant features for a given task. Features
can be selected either by grouping highly correlated features obtained by cluster-
ing [16], 27] or using Principal Component Analysis (PCA) [16], 03] that can highlight
outliers or features that were stable during a test /retest analysis [I5]. Besides these
feature selection techniques, alternative methods used in radiomics studies are the
filter based selection of univariate type or the wrapper selection [93]. Finally, the
last step analysed by the reviews was the classification task. [Larue et al. summed
up in their review that machine learning methods can be distinguished into unsu-
pervised and supervised algorithms and that the choice of the classification is the
dominant source of performance variation. [Avanzo et al. sums up that in radiomics
the most used classifiers are the logistic regression and the random forest, which is
based on the decision trees. Finally, SVM is also frequently used and mainly used
for CAD systems since it is a discriminative supervised machine learning technique.

All reviews concluded reporting similar limitations found in the radiomics liter-
ature. The lack of reproducibility, the variability of medical scanners and the used
parameters, the small sample size and the missing independent validation cohort
are important limitations of the analysed studies since they make it difficult or im-
possible to reproduce the result with external datasets. Finally, |[Lambin et al.| [27]
proposed a radiomics Quality Score (RQS) to assess the quality of the radiomics
literature. The authors believed that the quality of the reported radiomics study is
poor and that clear and complete reporting is required to enhance the usefulness of
the models. To classify the whole literature, the score can be applied to both past
and future works. Following this score, publications should report the study design,
the protocols, the process and the standard operating procedures to make external
validations possible. Moreover, publications should clearly describe the identified
exigent unmet need. Totally, the score that can be assigned to each article is 36

points analysing 16 criteria.
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2.3.2 Deep Learning

The use of Deep Learning applications for radiomics studies has started a few years
after the radiomics introduction with the first workEl written by Huynh et al.| [96].
Since this first article, many more works have been published focusing on radiomics
applications using deep learning techniques. These articles where summarised by
the four following reviews written by Parekh and Jacobs [57], Boldrini et al.| [97],
Suzuki [98] and |Vial et al.| [56].

The first introduced review was written by |Parekh and Jacobs [57]. The au-
thors summarised three types of deep neural networks usually used for medical
applications; Discriminative deep learning models, Generative deep learning models
and Deep reinforcement learning. Moreover, the authors described some attempts
to open black box such as the activation maximisation or the deconvolutional net-
work. Following, the authors analysed the concept of multiparametric radiomics
where radiomics applications were applied to multiple different image sequences or
images type obtaining, for example, better tissue segmentations. Moreover, the
interpretability of radiomics features was analysed, finding that these were not stan-
dardised, and describing the difficulty in finding a relationship between the features
and the underlying biology.

Boldrini et al. [97] and [Suzuki| [98] both focused their reviews on the clinical
applications which were focused on using radiomics with DL. Both resumed that
most articles focused on lesion segmentation and detection and lesion classification.
Boldrini et al|additionally found that part of the included 43 studies focused on the
clinical outcome prediction, on the images dose quantification and the dose-response
modelling and adaptation. Furthermore, Suzuki focused also on the task of the bone
and soft tissue separation in CXR images, since studies evidenced that around 90%
of missed lung cancers were partly obscured by ribs or clavicle. The last included
review, written by Vial et al.| [56] focused on the main used DL techniques such as
CNN, Deep Belief Networks (DBN) and Deep Autoencoders, which are commonly
used due to their ability in the image texture detection.

Boldrini et al.| [Suzukiland [Vial et al. reported that the usage of small datasets is
an important limitation of the literature since it causes overfitting problems. More-
over, Suzuki reported that a high computational cost for training is necessary. [Vial
et al.| underlined that to apply deep learning systems to medical images, expertise
in biology and computer science is necessary to avoid the black box effect that could
lead to high accuracy results without any medical reason.

Vial et al. and [Parekh and Jacobs both conclude that the combination of ra-
diomics and deep learning has the potential to strengthen the role of radiology

and personalised medicine. Furthermore, Parekh and Jacobs reports that especially

4First published article found with scopus using as keyword radiomics and deep learning
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CNN methods can capture textural information contained in medical images in the

initial convolutional layers. [Boldrini et al.| [97] concluded that promising results

have shown how deep learning systems could help clinicians in the daily practice,
supporting in the segmentation or the prediction of treatment outcomes. Finally,
[98] concluded that they expect that machine learning and deep learning
systems will be the mainstream technology in medical imaging in the future.
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Table 2.9: Overview and summary of references cited in section m (Clinical
Areas of Applications, Images, Segmentation)

Reference

‘ Clinical Areas of Applications

Images

Segmentation

Avanzo et al.[T5]

Lung: Lung NSCLC is the tumor which
has been most extensively studied and
characterized , Breast, Prostate:
Radiomic features, derived primarily
from T2-w and ADC MRI scanning,
correlate with Gleason score, which is
probably the most powerful prognostic
factor for prostate cancer, GBM,

Renal cell carcinoma, Head and Neck,
soft tissue carcinoma, rectal

CT The most widely used imaging
modality in radiomics studies is CT,
which assesses tissue density, shape
and texture of tumor and lymph-nodes
PET is used for detecting and staging
cancer, most commonly with the
radiotracer 18F-fluorodeoxyglucose
(18F-FDG), MRI provides high-
contrast structural and functional
information to characterize soft

tissue Dynamic contrast-enhanced
(DCE) MRI characterizes the
concentration of an injected gadolinium

contrast agent over time

automatic or semi-automatic
segmentation. Region growing
is a semiautomatic method
often applied to the
segmentation of masses,
2)watershed method Automati
¢ segmentation has been

used in breast, brain has been
developed

Larue et al.[93]

widely used CT, MRI and PET,
also used : ultrasound, Quantitative
features retrieved from ultrasound
(US) images mainly have shown to
be useful to discriminate between

normal, malignant and benign tissue

manual segmentation: Manual
delineation is a straightforward
solution, but can also be very
time-consuming and is susceptible
to inter-observer variability,
Automatic or semi-automatic
segmentation methods currently

are investigated extensively to
minimize manual input and increase
consistency in delineating the

regions of interest

Cook et al.[04]

Characterisation and segmentation,

Prediction and prognosis

PET

Lambin et al.27]

VOIs are segmented manually or
(semi-) automatically, Key
considerations are how the
segmentation was performed,
and how sensitive the radiomics
analysis is to different

segmentation methods

Rizzo et al.[16]

computed tomography (CT),
positron emission tomography (PET),

and magnetic resonance imaging (MRI)

Indeed, many authors consider
manual segmentation by

expert readers the ground truth
despite high inter-reader
variability. Automatic and semi
-automatic segmentation methods
have been developed across
imaging modalities and different
anatomical regions: Some
segmentation algorithms rely on
region-growing methods that
require an operator to select a
seed point within the volume of
interest (works well for homegeous
regions and not well for

inhomogeneous regions

Aerts

The first step of image-based
phenotyping involves data acquisition.
The quality of the imaging data
depends on the reliability of the
acquisition protocols used in clinical

centers

Automated tumour detection
and segmentation methods
have also been introduced into
clinical practice. Computer-
aided detection systems are
reliable for identifying tumors
or nodular lesions. The
largest successes have been

observed in breast cancer

36

o



Tesi di dottorato in Scienze e Ingegneria per I'Uomo e I'Ambiente/ Science and Engineering for Humans and the Environment,

di Natascha Claudia D'Amico,
discussa presso I'Universita Campus Bio-Medico di Roma in data 04/04/2022.

La disseminazione e la riproduzione di questo documento sono consentite per scopi di didattica e ricerca,

a condizione che ne venga citata la fonte.

Table 2.10: Overview and summary of references cited in section (Features,

Classification)

Reference

Features

Classification

Avanzo et al.[T5]

Radiomic features can be divided into: shape/size,
first order histograms or global statistics, second
order histograms or textural (see below).SUV
metrics in PET. dynamic MRI: Its peak value or
“maximum uptake”, the time frame index at

which the maximum, gray-level cooccurrence

matrix (GLCM), gray level run-length matrix (GLRLM),

Gray Level Size Zone Matrix (GLSZM),
neighborhood gray-tone difference matrix (NGTDM),
uptake occurs or “peak location”, uptake rate
(maximum uptake/- peak location), and washout
rate can then be used as descriptors

By feature selection we intend an algorithm used to select
“effective” features for a given task, i.e. those

features who are relevant to explain a given output

as a function of a group of features, univariate predictors
vs multivaraite, most stable radiomic features based

on test/retest analysis [56] and choosing the single feature
with the highest performance for each category
CLASSIFIER : most used logistic regression, Random
forest [27,34,45,53,54,78] is based on decision trees,

a popular concept in machine learning especially in the
field of medicine,SVM is a discriminative supervised
machine learning technique previously used for CAD

Larue et al.[93]

First-order statistics , Texture or gray scale variation
features, Wavelet decomposition of the original image
has been employed to extract intensity and texture
features from different frequency bands, Shape-

based features

Feature selection methods:Filter-based selection
techniques of the univariate type, Wrapper selection
techniques, Principal component analysis performs a
transformation for dimensionality reduction and can
highlight outliers ML: Unsupervised and supervised ML:
the choice of classification method was found to be the

dominant source of performance variation.

Cook et al.[94]

The methods for measuring image spatial
heterogeneity can be divided into global, regional

or local parameters representing the relationships
between voxel intensities. The most commonly

used statistical methods include firstorder (one voxel)
, second-order (two voxels) and highorder

(three of more voxels) parameters, but other methods
exist, such as model-based, e.g. fractal analysis,

or transform- based ones

Lambin et al. 27]

Feature values are dependent upon factors
that can include image pre-processing (for
example, filtering, or intensity discretization)

and reconstruction

Groups of highly correlated radiomics features can be
identified via clustering, and these features can

be reduced to sing. Radiomic modelling involves three
major aspects: feature selection, modelling methodology,
and validationle archetypal features per cluster

Rizzo et al.|[I6]

Quantitative features are descriptors extracted
from the images by software implementing
mathematical algorithms [4]. They exhibit
different levels of complexity and express
properties firstly of the lesion shape and the
voxel intensity histogram, secondarily of the
spatial arrangement of the intensity values at
voxel level

methods for data analysis strictly depend on the number

of input variables, possibly affecting the final result.

One possible approach is to start from all the features
provided by the calculation tool, and to perform a preliminary
analysis to select the most repeatable and reproducible
parameters; to subsequently reduce them by correlation

and redundancy analysis. Radiomics’ analysis usually includes
two main steps: 1. Dimensionality reduction and feature
selection, usually obtained via unsupervised approaches;

and 2. Association analysis with one or more specific
outcome(s) via supervised approaches.Different methods

of dimensionality reduction/feature selection and model
classification have been compared [13, 14]. The two most
commonly used unsupervised approaches are cluster analysis
[7, 14, 15] and principal component analysis (PCA).
Supervised multivariate analysis consists of building

a mathematical model to predict an outcome or response

Aerts|05)

Semantic annotation refers to the manual assessment

of the tumor phenotype by an expert radiologist. In
current clinical practice, this assessment is often made

in a qualitative manner using a nonstandardized lexicon.
However, there are also disadvantages with semantic
annotations. Large intrareader (same reader) and interreader
(different reader) variability exists. The process of
automated phenotype quantification is also referred

to as radiomics. Semantic and radiomic feature
representations often provide complementary information
about the tumor phenotype. To take advantage of this
scenario, the radiomic workflow includes an interactive
component in the quantification phase
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Table 2.11: Overview and summary of references cited in section

(Conclusion /Limitations, RQS)

Reference ‘ Conclusion /Limitations RQS

Reproducibility: Reproducibility or robustness,
in contrast, is measured when measuring system
or parameters differ. The major sources for
variability of radiomic features are the imaging
scanners, the parameters of acquisition and
reconstruction of the image, and delineation

of ROIL Sample size and statistical power:

Most radiomics studies do not report sufficient
Avanzo et al.[I5] | validations in independent cohorts, thereby
limiting generalizability to additional

patient populations, Standardization and
benchmarking: standardized acquisition and
reconstruction protocol will be needed to
smooth out input data variability PITFALS. The
main criticisms to radiomics is that the link

between the imaged properties of tumors and

tumor biology is not straightforward.

Standardization or calibration: of
standardization/harmonization or at
least a correlation between radiomic
Larue et al. (T3] features acquired in diﬁ(-)rcnt sct.ting-s
(e.g. scanner type, hospital, radiomics
software) makes it difficult to directly
compare different studies and

extracted feature

Indeed, different textural features have
been found to show different variability
when varying the acquisition method
(2D vs. 3D), matrix size
reconstruction algorithm and

Cook et al.[04]

post-reconstruction filter

Validation is the first step towards We propose the radiomics quality
a model being accepted in both the score (RQS) to aid assessment of
scientific and clinical communities. both past and future radiomic
Independent verification of the results is studies.Publications should

Lambin et al.[27] a necessary additional step. Replication extensively report study-design
means independent verification of ,protocols, detailed quality assurance
the results by independent researchers processes, and standard operating
repeating the analysis using the same procedures.Overwhelming evidence
technique and different (but shows that the quality of reporting of
appropriately selected) datasets prediction model studies is currently poor

As shown, there is still no universal
segmentation algorithm for all image
applications, and new algorithms are
Rizzo et al.[T6] under evaluation to overcome these
limitations [56-58]. Indeed, some
features may show stability and
reproducibility using one segmentation

method, but not another.
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Chapter 3

Insights into radiomics workflow

steps

This thesis aims to analyse different aspects of the radiomics workflow to find new
techniques that could improve the results and stability of this approach. Different
aspects were investigated: the development and introduction of new features (section
, available solution to cope with imbalanced learning (section , the combina-
tion of deep learning and machine learning techniques (section and finally, how
the segmentation influence model performance (section .

3.1 Development and evaluation of new features

3.1.1 Feature maps

An alternative to the conventional features extracted during a radiomics workflow is
the generation of feature maps, also referred to as parametric maps. Conventional
features represent a mean value for the whole segmented area and produce a single
value for each included feature. Conversely, the feature maps represent the value
of the chosen feature for each pixel of the ROI/VOI. Parekh and Jacobs [99] pub-
lished an article where they presented a radiomics feature mapping framework to
generate radiomics MRI texture image representations called the radiomics feature
maps (RFM). These maps correlated with quantitative texture values extracted from
MRI and breast tissue biology to classify benign from malignant tumours. Moreover,
Gonzalez and Alberich Bayarri [T00] published on the 19"" of February 2020, a blog
where the process behind a COVID-19 detection and follow-up tool using Artificial
Intelligence and radiomics applied to X-Ray and Computed Tomography was de-
scribed. This tool calculated features maps of lungs and extracted seven statistical
values of each map.

In our application, parametric maps, as an alternative to standard radiomics

features, were applied on a COVID-19 positive X-Ray dataset. Parametric maps
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were used for this study because since the segmented areas were extensive and
nonhomogeneous, standard radiomics features would not be able to detect relevant
features.

This work investigated whether artificial intelligence working with chest X-Ray
scans and clinical data could be used as a possible tool for the early identification
of patients at risk of severe outcome. The developed learning approaches were
specifically designed to use image-based features together with clinical data.

To obtain this goal, three learning approaches were developed and compared to
predict clinical outcome. Indeed, in addition to clinical information consisting of
general information, laboratory data and comorbidities, such approaches use quan-
titative information extracted from the CXR images, which are also referred to as
image features or quantitative biomarkers in the following. The first approach, re-
ferred to as Handcrafted approach, computes handcrafted texture features used by a
shallow classifier; together with clinical data, the second approach, called the Hybrid
Approach, automatically extracts image descriptors by using a CNN, that, again, are
used by a shallow learner together with clinical data. The third approach, referred

to as End-To-End Approach, is fully based on DNNs, processing both clinical and
image data (Figure [3.1).

Data: 820 COVID-19 positive patients Analysis: three Al-based approaches

demographics handcrafted approach

blood analysis . ML Classifiers:

oxygen saturation . SUM

therapie_s . " - + Random forest —* outcome
co-morbidities |‘ \‘ B Handcrafted Bl « Log. regression

severe/mild outcome

L. hybrid approach
Clinical Data

+ ML Classifiers:
« SVM

+ Random forest — outcome

-
real-world images |‘\‘ _,__, + Log. regression

different devices

standing/at bed end-to-end deep learning

+ I — outcome
A EEDIN .

Figure 3.1: Overview of the method for automatic prognosis of COVID-19 in two
classes, namely mild and severe.

Our works includes data collected in 6 independent cohorts, resulting in 820 COVID-19
patients. For each, we collected several clinical attributes, combined with quantitative

imaging biomarkers computed by handcrafted features or automatically computed by
CNNs.

This section presents, the dataset, the preprocessing steps and the learning al-
gorithms.

In particular, we deepen now, the Handcrafted Approach, while the Hybrid Ap-
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Table 3.1: Patient distribution across the hospitals where the data were collected.

Hospital | Number of patients | Mild class prior probability Anterior Posterior (AP)
projection prior probability
A 120 29.2% 81.67%
B 104 56.7 % 97.12%
C 31 25.8 % 90.32%
D 139 54.7 % 38.85%
E 101 54.5% 87.13%
F 325 46.5% 98.46%
Total 820 46.8% 83.72%

proach will be deepened in section [B.3] The End-to-End Approach is not presented

in here as I parially contributed to its development.

3.1.1.1 The AIforCOVID dataset

The AlforCovid dataset includes the images and clinical data collected in six Italian
hospitals during the hospitalization of symptomatic patients with COVID-19 dur-
ing the first wave of emergency in the country (March-June 2020). Such data was
generated during the clinical activity with the primary purpose of managing COVID-
19 patients within the daily practice, and they were retrospectively reviewed and
collected after patients’ anonymization. Ethics Committee approval was obtained
(Trial-ID: 1507; Approval date: April 7th, 2020), and all data were managed follow-
ing the GDPR. Furthermore, we randomly assigned to each centre a symbolic label,
from A up to F.

The 820 CXR examinations reviewed in this study were performed in COVID-
19-positive adult patients at the time of hospital admission (Table : all the
patients resulted positive for SARS-CoV-2 infection at the RT-PCR test [I01]. In
5% of such cases, the positivity to the swab was obtained only at the second RT-
PCR examination. In the different centres, CXR examinations were performed using
different analogue and digital units. Furthermore, the execution parameters were
settled according to the patient conditions. Paired with CXR examinations, we also
collected relevant clinical parameters listed in Table

According to the clinical outcome, each patient was assigned to the mild or the
severe group. The former contains the patients sent back to domiciliary isolation or
hospitalised without ventilatory support, whereas the latter is composed of patients
who required non-invasive ventilation support, intensive care unit (ICU) and de-
ceased patients. Figure [3.2] shows four difficult examples of CXR images within the
dataset: indeed, panels A and B show two images of patients with severe outcome
whilst the radiological visual inspection may suggest severe and mild prognoses, re-
spectively. Similarly, panels C and D show two images of patients with mild outcome
whilst a radiologist may report severe and mild prognoses, respectively.

During an initial data quality cleaning, we double-checked with the clinical part-
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Table 3.2: Description of the clinical data available within the repository.

First and second columns report variables label and description. Summary statistics for

the overall population and for the two patients groups are reported in the following

columns. For continuous variables median and interquartile range are reported, for

categorical variables proportions are reported. Feature names followed by '+’ were not

used for the analysis described in this work.P—values lower than 0.05 were considered

significant. *Mann—Whitney U test. t z—test for proportions with Yates continuity

correction. T Fisher exact test.
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Figure 3.2: Examples of CRX images of patients with COVID-19 available within

the dataset.

Panels A and B show two images of patients with severe outcome whilst the radiological
visual inspection may suggest severe and mild prognoses, respectively. Similarly, panels

C and D show two images of patients with mild outcome whilst a radiologist may

suggest severe and mild prognosis, respectively, based on the visual interpretation.

ners the anomalous data and the outliers, i.e. those values lying outside the expected
clinical range or identified applying the interquartile range method, which were then
corrected when needed. Categorical variables values were homogenized to a coher-
ent coding, such as 0 and 1 values for binary variables like comorbidities and sex,
and we adopted the string “NaN” to denote missing data. No exclusion rules were
applied for images based on device type or brand (e.g. digital or analogue devices)
or patient positions (standing or at bed), whereas X-ray images taken with lateral
projection were excluded because they were not available for patients whose images
were acquired in the lying position. In the case of multiple CXR images delivered for
the same patient, the dataset contains only the first one. It is worth noting that the
presence of missing entries in the clinical data mostly depends upon the procedures
carried out in the individual hospitals and the pressure due to the overwhelming
number of patients hospitalized during the COVID-19 emergency. For the sake of
completeness, the rate of missing data is reported in the last column of Table |3.2]

CXR images were collected in DICOM format and, for anonymization con-
straints, all the fields but a set of selected metadata related to acquisition parameters
were blanked in the DICOM header (e.g. image modality, allocated bits, pixel spac-
ing, etc.).

All the images in the repository are currently stored using 16 bits, while acqui-
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sition precision varies: 13.5% were acquired at 10 bits precision, 35.4% at 12 bits,
46.6% at 14 bits and 4.5% using the full 16 bits precision. Furthermore, all the
images were acquired with isotropic pixel spacing ranging from 0.1 mm to 0.2 mm.
The most common pixel spacing is 0.15 mm, 0.1 mm and 0.16 mm for 43.9%, 13.7%
and 13.6% of images, respectively. Image sizes, in pixels, are distributed as follows:
33.4% of the images have 2336 x 2836 pixels, 13.5% of images have 3520x 4280 pixels,
and 10.1% of the images have 3480x4240 pixels. The other images had a number of
rows ranging from 1396 up to 4280, whilst the number of columns ranges from 1676
up to 4280.

3.1.1.2 Methods

The Handcrafted approach deepened in this section employs first order and texture
features computed from images, which were mined together with the clinical data
feeding a supervised learner. Moreover, it first computes parametric maps of the
lungs segmented in the CXR image; second, it extracts several features that were

then provided with the clinical data to a supervised learner.

3.1.1.2.1 Images standardisation

CXR images collected for this study were acquired with different devices and acqui-
sition conditions, as mentioned in section [3.1.1.1} For this reason, we applied image
normalisation that, to a large extent, was the same for all three methods. Indeed,
for the handcrafted approach, pixels values were normalised to have zero mean and
unit standard deviation, whilst the images were resized to 1024 x1024 pixels using

bilinear interpolation.

3.1.1.2.2 Lung segmentation

When needed, to segment the lung, we apply a semi-automatic approach that ini-
tially delineates the lung borders using a U-Net, which is a convolutional neural net-
work architecture for fast and precise segmentation of images. In this respect, it is
well known that the semantic segmentation provided by this deep network has proven
to have very satisfactory performance when using medical images [35], [102], [103]. The

implementation of the segmentation with U-Net is described in section [3.4.1

3.1.1.2.3 Feature selection and classifiers

In general, we had a large number of descriptors that suggested applying a feature
selection stage, which was set up in two steps. The first is a coarse step that
runs univariate filtering based on mutual information as a score function to pre-
select a reduced set of image descriptors, whatever the approach used for their

computation. The calculation of mutual information between continuous features
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with the discrete class variable was addressed by estimating the entropy from the
k-nearest neighbours’ distances [104]. The second feature selection step merges
the pre-selected imaging features with the clinical data. To this end, we applied a
wrapper approach, namely the Recursive Feature Elimination and Cross-Validated
selection (RFECV) method [49], which receives as input the pre-selected imaging
descriptors and the 34 clinical features. Indeed, the RFECYV is fed by an increasing
number of pre-selected imaging descriptors (D,,): fine-grained sampling was carried
out for D, < 10 applying a step of 2; for 10 < D,, < 50, D,, was sampled with
step of 5; finally, RFECV was fed with all the image features. RFECV applies a
pruning procedure that starts considering all features in the dataset and recursively
eliminates the less important according to a feature’s importance score calculated
using a classifier. Note that the optimal number of features is selected by RFECV
using nested 5-fold cross-validation on the training set.

Regarding the base learner, we evaluated three different computational paradigms:
Logistic Regression (LGR); Support Vector Machines with a linear kernel (SVM);
and Random Forests (RF). For all parameters in the adopted models, we used the
default values provided by the libraries without any fine-tuning. Indeed, we were
not interested in the best absolute performance. Moreover, [Arcuri and Fraser| [105]
empirically observed that in many cases the use of tuned parameters cannot signif-

icantly outperform the default values of a classifier suggested in the literature.

3.1.1.2.4 Models validation

Model validation for the three tested methods consists of k-fold and leave-one-centre-
out cross validation. For each cross-validation run, the training fold was used for
data normalization, parameters’ estimation and/or features " selection depending on
the applied method. Classification performance assessment was carried out using
testing fold data only; k-fold cross-validation was repeated with k equal to 3 and
10 with 20 repetitions. In leave-one-centre-out (LOCO) cross-validation, in each
run, the test set is composed of all the samples belonging to one centre only, while
the others were assigned to the training set. When needed, the validation set was
extracted from the training set using any policies (such as random selection, hold-
out, nested cross-validation, etc.), and considering also the computational burden.
Performance of the learning models was measured in terms of accuracy, sensitiv-
ity and specificity, reporting the average and standard deviation of each experiment.
When needed, we ran the pairwise two-sided Mann Whitney U test to compare the
results provided by two methods, whereas we performed the Kruskal-Wallis test fol-
lowed by the Dunn’s test with Bonferroni correction for multiple comparisons. In
the rest of the manuscript, we assume that the pairwise two-sided Mann Whitney

U test was performed by default, otherwise, we will specify the test used.
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3.1.1.2.5 Handcrafted Approach

As introduced in section [3.1.1.2] in the current section, the developed approach is
presented. The first step was the lung segmentation, which was done applying the
approach presented in section but, as mentioned there, we deem that the
segmentation performance is not satisfactory for exact lung delineation. For this
reason, the lung masks are then reviewed by expert radiologists and then used to
compute the handcrafted features as follows.

From the segmented lungs, we computed the parametric maps using a pixel-
based approach as proposed by [Penny et al.| [T06]. Pixels values of the parametric
maps were obtained by computing first- and second-order radiomics features on a
21x21 sliding window running over each pixel of the entire lung region. First-order
measures describe the statistical distribution of tissue density inside the kernel;
from its grey levels’ histogram, we extracted 18 descriptors: Energy, Total Energy,
Entropy, Minimum, Maximum, Mean, Median, Interquartile Range, Range, Mean
Absolute Deviation, Robust Mean Absolute Deviation, Root Mean Squared, Skew-
ness, Kurtosis, Variance and Uniformity. Second-order descriptors are based on the
Grey Level Co-occurrence Matrix (GLCM): at each location, we got a GLCM im-
age, where we computed 24 Haralick descriptors [I1]: Sum Squares, Sum Entropy,
Sum Average, MCC (Maximal Correlation Coefficient), Maximum Probability, Joint
Entropy, Joint Energy, Joint Average, Inverse Variance, IMC (Informational Mea-
sure of Correlation) 2, IMC (Informational Measure of Correlation) 1, IDN (Inverse
Difference Normalized), IDM (Inverse Difference Moment), ID (Inverse Difference),
Difference Variance, Difference Entropy, Difference Average, Correlation, Contrast,
Cluster Tendency, Cluster Shade and Cluster Prominence. All features equations
were reported in Table [3.3] and Table respectively. This procedure returned
42 parametric images (18 First-order + 24 GLCM) for each CXR image, where we
finally computed seven statistics, namely: mean, median, variance, skewness, kur-
tosis, energy and entropy. This resulted in 294 image features (i.e. 7 statistics by

42 parametric maps).
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di Roma in data 04/04/2022.

Table 3.3: Definition of the first-order statistical measures. Notation: X is a set of
N, pixel in a ROI; S(¢) is the first order histogram of the ROI using N, discrete

intensity levels, equally spaced from 0 with a defined width of 0.1; s(i) =

530

N, 1S

the normalized first order histogram; Ve is the volume of a pixel in mm; X is

the 10" percentile of X; Xg is the 90" percentile of X; X;g_g is the image array

with gray levels in between, or equal to the 10" and 90*" percentile of X; X is the

mean value of the image array.

Feature

‘ Definition

Energy

| S X (i)

Total Energy

‘ Vpirt” : ZzN—po X(i)Q

Entropy | = s(i) - log[s(i)]. for s(i) > 0
Minimum ‘ min(X)

Maximum ‘ max(X)

Mean ‘ N% S X (4)

Median ‘ median grey level intensity

Interquartile Range

| Xo5 — Xas

Range ‘ maz(X) — min(X)
Mean Absolute Deviation ‘ N%) S X () — X
Robust Mean Absolute Deviation Nm{w . va“) % | X10_90(%) — X10_00]
Root Mean Squared (N%, : ZZV:ZH X(i)?)
1 Np X)3
Skewness Rl
<\/Np S (X ()-X)2)?

. i‘zszl (X( Z)7X)4
Kurtosis (Ni:mw
Variance ‘ ﬁ prl X(1) - X)?
Uniformity ‘ Z
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Table 3.4: Definition of the second-order statistical measures. Notation: P(i,j)
co-occurence matrix with a defined distance (0= 1) and angle (§=0);

p(i,j) = 5 gdz)] is the normalized co-occurence matrix; p,(i) = iji’l P(i,j) and

py(1) = Zi=1 P(i,j) are the marginal probabilities per row and per column,
respectively; 1, and p, are the mean grey level intensities, defined as Joined
Average, of p, and p, respectively. If P(i, j) is symmetrical p, = py; o, and o, are
the standard deviations of p, and p, respectively; p, 4, (k) = ZNQ i p(z 7),
where i +j =k, and k = 2,3, ..,2N,; py—y (k) = N Ej»v:gl p(i, ), where

li —j|=k,and k=0,1,..,N, — 1; HX, HY and HXY are the entropy of p,, p,
and p(7, j), respectively. HXY1 = — Zngl Z;Vglp(i 7) - log[p.(i)p,(j)] is an
auxiliary quantity; HXY?2 = — Y0 s 21 D2 (1)py(7) - log[p(i)py(j)] is an auxiliary
quantity; DA is the Difference Average used to obtain the Difference Variance.

Feature ‘ Definition

Sum Squares ‘ Z?[:gl Z}V:gl(i — i) - p(i, )

Sum Entropy ‘ Zifé Daty(k) - 108Dy ()], for priy(k) >0

Sum Average ‘ Zfi’; Doty (k)k

MCC (Maximal Correlation Coefficient) ‘ V/second largest eigenvalue of Q, where Q(i,7) = Zzyyo I”J(:(’:)isl If))
Maximum Probability ‘ max(p(i, j))

Joint Entropy ‘ Zz{v:ﬁ ;V:gl (4, 5) log[p(4, 5)] , for p(i,5) > 0

Joint Energy ‘ PO ?ﬁﬂ[’(@j))z

Joint Average ‘ Z?ﬁ] Z;V;G p(i,5)i

Inverse Variance ‘ Zivia ! pl;iqﬁ(k)

IMC (Informational Measure of Correlation) 2 ‘ V1 — e 2HXY2-HXY)

IMC (Informational Measure of Correlation) 1 ‘ %

IDN (Inverse Difference Normalized) ‘ ZN" ! 1171 ykk;

IDM (Inverse Difference Moment) ‘ Zk o B +”,\zk )

ID (Inverse Difference) ‘ Zﬁio ! qufﬁik)

Difference Variance ‘ foial(k — DA)? - ppy(k)
Difference Entropy ‘ z;ﬁ’ﬂgl k- py_y(k)log[ps—y (k)] , for p,—y(k) >0
Difference Average ‘ ZM Ykpas y(k)

Correlation ‘ P Ey?:ij)” dia

Contrast ‘ Zi:l Zjﬂ(l —§)*p(i,4)

Cluster Tendency ‘ 2?21 247 = e — py)® - 03, 7)
Cluster Shade ‘ S S (i — e — ) (i, 5)
Cluster Prominence ‘ Z =1 Z 145 = pe = py)* - p(3, 5)

To cope with the large number of descriptors, we proceeded as described in
section [3.1.1.2.3] adopting the base learners already described there. Then, for each
tested classifier, given the set and number of descriptors selected by the wrapper

approach in the nested cross-validation fashion, we trained the same classifier on
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the whole training fold and measured recognition performance on the test fold.

3.1.1.3 Results

This section reports the results attained using the described approach in staging the
patients with COVID-19 in severe and mild classes. The goal is to provide a baseline
characterisation of the performance achieved by integrating quantitative image data
with clinical information using state-of-the-art approaches.

Table [3.5] and Table presents all recognition performance attained by the
learning methods when the experiments were executed according to the 10-fold and
LOCO cross validation, respectively (see section for further details). In the
former case, the results are averaged over the 20 repetitions.

Furthermore, to see if there exists a statistically significant difference between
the various performance, we ran the Kruskal-Wallis and the Dunn test with Bon-
ferroni correction for multiple comparisons (p < 0.05): the results were reported in
Figure [3.3] The statistical analysis shows that in almost all the experiments, the
results achieved by the three learners (LGR, SVM and RF) are not different at the

given significance level.

Table 3.5: Recognition performance of the handcrafted approach achieved by all
the learners considered, and specified in the last column of the table, when the

experiments were executed according to the 10-fold cross-validation (20

repetitions).

Input Data Accuracy Sensitivity Specificity Learner
608 £.06  .676 £.077  .639 £ .088 LGR

CXR images 603 £.053 .658£.073  .648 £ .083 SVM
603 £.054 .667 £ .082 .64 £+ .081 RF
755 £.047 761 £.064  .749 £ .069 LGR

Clinical data and CXR images .756 £.045 .759+£.069  .753 £ .067 SVM
751 £.047 .75 £ .067 755 £ .075 RF
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Table 3.6: Recognition performance of the handcrafted approach achieved by all

the learners considered, and specified in the last column of the table, when the

experiments were executed according to the LOCO cross-validation.

Input Data Accuracy Sensitivity Specificity Learner
619+ .07  .644 + .142 .62 £+ .191 LGR
CXR images 625+ .083 .641 +.159 644 + .12 SVM
622+ .066 .619+.107  .652 4+ .139 RF
752+ .067 711 +£.165  .824 4+ .154 LGR
Clinical data and CXR images .746 + .03  .741+.122  .757+.129 SVM
691 +£.056 .705+£.159  .754 4+ .196 RF
Handcrafted approach
10-fold LOCO
LGR LGR |
0 @ @
o % RF % RF |
® — —
&
o SVM SVM
o
O 20 25 30 35 40 45 4 6 8 10 12 14
Mean rank Mean rank
() (b)
LGR LGR | —_—
wn
o %)o o @
- © £ £ |
-g g E RF E RF
® o
2 'X: SVM — SVM
£0
O Fg 15 éO 2‘5 36 3‘5 4I0 45 0 1‘0 15
s} Mean rank Mean rank

(c)

(d)

Figure 3.3: Mean rank results of the learners used in the the handcrafted

approach.

In blue the learner which gave the best result reported in Tables and
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Figure 3.4: Importance of clinical and handcrafted measured as the rate each

descriptor was selected by the RFECV wrapper

during the 10-fold and LOCO cross-validation experiments considering all the three

E3 or a

classifiers employed. The y axis scale is normalized to one. Moreover, we add a
“4+” before each feature name if it is included in the feature set used to get the best

handcrafted results reported in the last section of Table and respectively.

Furthermore, Figure [3.4] shows the feature importance of the 40 most selected
handcrafted descriptors by the RFECV wrapper during the experiments in 10-fold
and LOCO cross-validation. The feature relevance is computed as the number of
times a feature is included in the selected subset during all the experiments per-
formed using all learners, and for the sake of clarity, values are normalized in [0,1].
The plot shows that the top-five descriptors most frequently detected as discrim-
inative are clinical measures, followed by several texture measures almost equally
distributed between the first- and second-order measures. For the sake of complete-
ness, in this figure on the x-axis we add a “*” or a “4” before each feature name
when it is included in the feature set used to get the best results by combining hand-
crafted measures from CXR images and clinical data, reported in Table [3.5 and [3.6]

respectively.
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Figure 3.5: Variation of the average classification accuracy (blue bars) with the
number of features feeding the RFECV wrapper.

The red and green curves show the number of clinical and texture features selected by
the RFECV wrapper, respectively. The experiments plotted here refer to the best
results shown in Table [3.9] integrating clinical and imaging features for the handcrafted

approach.

Table 3.7: Recognition performance of the handcrafted approach achieved by all
the learners considered, and specified in the last column of the table, when the
experiments were executed using only clinical data and according to the 10-fold

cross-validation (20 repetitions) and the LOCO cross-validation.

Validation Accuracy Sensitivity Specificity Learner

755 +£.049 757 £.063  .755 £ .076 LGR
10-fold 757+ .045 761 £.063 755 £ .073 SVM
750 £.041 755 £.061 748 £ .068 RF

707 £.045 677 £.172 778 £.150 LGR
LOCO 734 £.044 699 £.158 795 £ .136 SVM
656 £.073 .666 £.226  .739 £ .231 RF

We now analyse how the performance of the handcrafted approach varies with
the number of features selected by the coarse step, which fed the fine selection based
on the RFECV method, as described in section [3.1.1.2.5} To this end, Figure [3.5
reports on the x-axis the number of features in input to the RFECV, which ranges
from 36 (i.e. 34 clinical plus 2 texture measures) up to 84 (i.e. 34 clinical plus 50

texture measures), plus the last value where the RFECV received all the clinical and
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all the image featuresﬂ The bars show the average classification accuracy (y-axis,
left side), while the curves in red and green show the average number of clinical
and handcrafted texture features selected by the RFECV, respectively (y-axis, right
side).

Furthermore, to analyse the added value of the handcrafted features, performance
in discriminating between patients with mild and severe prognosis attained using
clinical data only was analysed and reported in Table In this respect, the table
shows the best performance achieved by the RFECV and by the learners described
in the last part of section In the case of experiments performed in 10-
fold cross-validation (Table , the best accuracy is up to 75.7%, it is attained
by an SVM retaining on average 11 clinical features, and the sensitivity and the
specificity are almost balanced. This latter observation can be expected since the
a-priori class distribution is not skewed. The same observations also hold in the
case of the experiments performed in a LOCO modality, and it is worth noticing the
performance drops. This can be due to the variation of data distribution among the
centres, limiting the generalisation capability of the learners.

Finally, Figure |3.6| shows the rate each clinical descriptor was included in the
selected feature subset by the RFECV wrapper, distinguishing also per classifier
used, using a normalised unitary scale. The figure shows the cumulative results
observed running both the 10-fold and LOCO cross validation experiments. We
opted for this cumulative representation since the trend is very similar in both the
experiments. Furthermore, also the set of biomarkers providing the best performance
shown in the first section of Table|3.5/and which are denoted by reporting before
an “*” or a “+” for 10-fold and LOCO cross validation experiments are reported,
respectively. Interestingly, Figure |3.6[ shows that age, LDH and Os, were chosen in
every fold for all the classifiers. If we used only such three descriptors, the average
classification accuracy attained by learners in 10-fold and LOCO cross validation
is equal to 0.74 £ 0.05 and to 0.70 £ 0.10, respectively. Moreover, sex, dyspnoea
and WBC were always selected by the wrapper with the SVM and RF, whereas
the D-dimer was always selected by the logistic regressor and by SVM. Oppositely,
heart failure and cough were scarcely selected. Notably, some features such as LDH,
D-dimer and SaO, were selected very frequently despite a high fraction of data was
obtained by imputation (see Table . We deem that is mostly related to the
strong differences in the distributions of these features between the two classes.

As already noticed in Table the use of texture measures do not improve
the performance attained using the clinical descriptors reported in Table 3.7 this
is also confirmed by observing that, as the number of input features increases, the

wrapper tends to select more imaging biomarkers than clinical ones, dropping the

IThe experiments plotted in Figure refer to the best results shown in Table integrat-
ing clinical and imaging features by the handcrafted approach.
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Figure 3.6: Clinical feature importance represented by the rate each descriptor
was selected by the RFECV wrapper during both the 10-fold and LOCO cross
validation experiments using the three classifiers (LGR, SVM and RF series).
The DL series represents feature importance estimated as the maximum absolute value
of weights in the first layer of the perceptron of the DL network, after averaging over
folds and repetitions and rescaling in the [0,1] interval. Moreover, the “*” or a “+”
reported before each feature name means that it is included in the feature set used to
get the best handcrafted results reported in Table

performance. This may remark the importance of using both clinical and imaging
biomarkers since they may provide complementary information: while the former,
and especially comorbidities, refers to the functional reserve of the patient, the
latter may quantify the actual impact on the lungs. Indeed, fit patients with severe
infection and damage are as likely as unfit patients with less severe infections to have
a poor prognosis. Although not reported, similar considerations can be derived in
the case of LOCO cross-validation, where we noticed that the best performances are
attained by an almost balanced number of clinical and imaging features.

The approach that computes handcrafted features from the images also un-
favourably compares with those using CNNs. Indeed, comparing with the hybrid
and the end-to-end DL approaches, we found that the performances are statistically
different in both the 10-fold and LOCO cross-validation tests, as we always got p <
0.05.

Finally, a comparison of the handcrafted approach using Clinical data and CXR
images was done comparing the following validations methods: 10-fold cross vali-
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dation, 3-fold cross validation, 10 fold Shufflesplit validation and 3-fold Shufflesplit
validation. Results are shown in the following table, were the best mean accuracy
and mean Balanced accuracy were found using the 10-fold cross validation, confirm-

ing the choice of the manuscipt.

Table 3.8: Comparison of four different validation methods using both Clinical
data and CXR images analysed with the handcrafted method.

3 Fold 10 Fold
typefold Classifier Average of Average of Average of Average of
Accuracy Balanced Accuracy Accuracy Balanced Accuracy

LGR 0.7405 0.7400 0.7497 0.7495
RepeatedKFold RF 0.7285 0.7299 0.7349 0.7364

SVM 0.7314 0.7316 0.7409 0.7410

LGR 0.7320 0.7324 0.7385 0.7390
Shufflesplit RF 0.7444 0.7469 0.7355 0.7382

SVM 0.7311 0.7311 0.7361 0.7366

3.1.2 Local Binary Patterns (LBP)

In general, the introduction and implementation of new 2D texture features could
give further information than the features usually implemented for radiomics appli-
cations developed by [Haralick et al|[II]. In training and testing approaches, it is
essential to consider that textures in the test set could be different in respect to the
training set under various aspects, the spatial scale, the orientation or the grey-scale
properties as introduced by [Ojala et al. [I07]. This has inspired the development of a
new category of features referred to as Local Binary Patterns (LBP) and developed
by |Ojala et al.. These features are supposed to be grey-scale and rotation invariant

and computationally simple to achieve.

3.1.2.1 Local Binary Patterns

The LBP features are developed to find features capable of describing the local
properties of an image to identify the local pattern of each part of the image. The
idea behind the features is to use binary codes to represent the local pattern of the
image. Due to this idea, LBP features can detect microstructures such as spots,

lines and edges.

3.1.2.1.1 LBP construction

For the LBP construction, considering a bi-dimensional image I, the intensity I, of
each pixel p is compared with the intensity I; of the neighbourhood of the given pixel
in the pixel connectivity theory where the distance D between the given pixel and

the neighbours is given by r. In the example of Figure[3.7]the parameters used where
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r=1and p=_8. If I; > I,, the jth pixel is set to 1, 0 otherwise. Next, it is possible
to process all p’s neighbours in a circular direction, interpreting the sequence of Os
and 1s as a binary string and setting the value of p to the equivalent decimal value.
This procedure was then repeated until the corresponding decimal value replaced
all original image values. The number of patterns for this 2D implementation is 2%,
with P denoting the number of neighbouring local points around the central point.

Proceeding as described through all of the pixels of I, we obtain a new image
encoding the intensity distribution of each pixel with respect to its neighbours that
can describe the texture of the original image.

202 60 1 1 0

87 40 —» 1 87 0 — 11001101 ——» 205

110 | 120 0 1 1

Figure 3.7: LBP construction

Starting from the obtained LBP image all values were then reported on a his-
togram containing the distribution of the values in the image. From this histogram,
features were extracted.

Based on the standard LBP construction, a few variations have been developed

to obtain rotation invariant and grey-scale invariant features.

GREY-SCALE INVARIANCE The first step to achieve grey-scale invariance is to
subtract the value of the central pixel from all surrounding pixels. A grey-scale
invariance can be obtained by considering only the sign of the difference instead
of the exact values. The second step is to replace all negative values with 0 and
positive values and zeros to 1. The obtained LBP value, given by the binary value

obtained from the string of zeros and ones, is no longer affected by the grey-scale.

RoTATION INVARIANCE The rotation invariance is a second import aspect of the
LBP construction since the same pixel distribution rotated along the perimeter of
a circle around the central point gives a different LBP value. The pattern where
the surrounding points only give zeros or ones were not affected by the rotation.
The solution was to rotate all pixels clockwise until the maximal number of most
relevant bits were 0.

3.1.2.1.2  Volume Local Binary Patterns (VLBP)

To extend a 2D LBP to the 3D environment, a first solution consists in considering a
helix neighbourhood of each voxel [I08]. However, to avoid the high increase of the

computational burden, associated with the very large number of patterns for volume
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Figure 3.8: Visual representation of a TOP-LBP example
In this Figure each ellipsoid shows a planar LBP calculated on a specific orthogonal

plane.

LBP, when P increases, as 23°+2_another 3D implementation of LBP transformation
that was also shown to work fine [I08] was developed and referred to as TOP-LBP.

TOP-LBP The first idea was to apply the 2D LBP to the three orthogonal planes
which go through the central point. The single histograms obtained for the three
orthogonal planes were then concatenated, and subsequently, features were extracted
from the entire histogram. It considers the co-occurrence on three orthogonal planes

crossing the centre of the analysed volume, as depicted in Figure |3.8

VLBP |Zhao and Pietikainen| [I08] developed the idea to use instead of a single

slice, a small volume around the central point with a number of slices depending

on the value . As represented in Figure [3.9| points around the central point were
chosen and a spiral, crossing all points was created. Considering p = 4, in total 14
points were chosen, 5 in the two external slices and 4 for the middle slice. After the
comparison of the considered values with the central point, a string containing all

binary values was finally obtained and a decimal value was calculated.

3.1.2.2 Application of LBP to clinical problem

LBP is a texture measure successfully used in computer vision but was barely used
for medical applications. To evidence the value of these features also in medical
applications, we extended the set of texture features typically used in the radiomics
literature, which are based on the two-dimensional and 3D second-order joint prob-
ability functions and their derivatives (introduced in section with 3D LBP
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Figure 3.9: VLBP procedure, developed by |Zhao and Pietikainenl[[ﬂB]] for volume
LBP.

features. Furthermore, to deepen the analysis, the approach developed was com-
pared to a deep approach, where features were automatically computed, as well as
to the signature proposed by [8], which is the most cited at the state-of-
the-art. The study aimed to predict the overall survival (OS) time of the included
patients affected by Non-small cell lung cancer (NSCLC).

3.1.2.2.1 Material and Methods

DATASET The developed work studied 97 patients with NSCLC stage III treated
with definitive concurrent chemoradiotherapy. The enrollment protocol was ap-
proved by the Ethical Committee of Campus Bio-Medico University on 30 Oc-
tober 2012 and registered at ClinicalTrials.gov on 12 July 2018 with Identifier
NCT03583723 after an initial exploratory phase. The Institutional review board
approved this analysis and written informed consent was collected from all the pa-
tients. For each patient, the simulation C'T images were acquired before the treat-
ment using a Siemens Somatom Emotion, with 140 Kv, 80 mAs, and 3 mm for slice
thickness. Subsequently, all images were preprocessed using a lung filter (kernel
B70) and a mediastinum filter (kernel B31). The patients were then clinically fol-
lowed, for a median follow-up of 18.55 months after that, it was possible to divide
patients into two classes: 53 dead (class 0) and 44 alive (class 1). The patients had

a mean Overall Survival (OS) time of 28.7 £+ 26.4 months (min 4.8 months, max

142.6 months).
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In this study, we considered three different VOIs for each patient, the Gross Tu-
mour Volume (GTV), the Clinical Target Volume (CTV), and the Planning Target
Volume (PTV) segmented by radiation oncologists. The results obtained for the
different used segmentation will be deepened in section [3.4

FEATURE COMPUTATION Besides the LBP features, the first-order statistical fea-
tures and the 3D Grey level co-occurrence matrix features were obtained. The
features were computed using an in-house software tool coded in MATLAB R2019a
(The MathWorks, Inc., Natick, Massachusetts, United States) that calculates the
first-order statistical features and two families of textural features: 3D Grey Level
Co-occurrence Matrix (GLCM) and Three Orthogonal Planes-Local Binary Patterns
(TOP-LBP) (section

The First-order features were computed from the grey levels’ histogram of an
ROI and therefore described the statistical distribution of tissue’s density inside
the volume. From such histograms, we extracted 12 descriptors, which were the
moments from first to fourth-order, namely the mean, the standard deviation, the
skewness and the kurtosis, the histogram width, the energy, the entropy, the value of
the histogram absolute maximum and the corresponding grey-level value, the energy
around such maximum, and the number of relative maxima in the histogram and
their energy. The healthy and the cancerous tissues usually present different struc-
tural patterns and for this reason, we go beyond the distribution of the grey levels
of the VOIs voxels performing additional textural analysis. In this respect, we com-
puted the 3D Grey Level Co-occurrence Matrix, which generalises the 2D GLCM to
the third dimension, catching the differences of the tissues at the micro-scale. Fi-
nally, from each GLCM3, we extract seven second-order statistical features, referred
to as Haralick descriptors [11]. Namely, the autocorrelation, the homogeneity, the
entropy, the energy, the covariance, the inertia, and the absolute contrast. Concate-
nating such measures for each GLCM3 we get 13 x 7 = 91 textural descriptors per
patient.

As previously introduced, the TOP-LBP features were implemented. These fea-
tures are based on the computation of three 2D LBPs, each derived from each
of the three planes; their histograms are then computed and concatenated to ob-
tain a unique histogram for the specific volume. This conspicuously alleviates the
computational load since the number of patterns for TOP-LBP is 3 x 2F. Further-
more, in our LBP implementation, we consider two more variants to cope with the
other two issues of 2D LBP definition. First, we computed rotation invariant LBP,
i.e., all of the binary strings obtained as the circular shift of a fundamental string
are considered the same. Second, we implemented a uniform version of LBP, i.e., all
binary strings containing more than two crossings from 0 to 1 or from 1 to 0 are

considered not uniform and coded with a specific string. In this case, setting P = 8,
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we get 48 features by computing first-order measures from each of the three 2D LBP.
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Figure 3.10: Graphical representation of the method, where the different colours
refer to different steps of the pipeline.

List of abbreviations: VOI: Volume of Interest, LOO: Leave-One-Out, RFE: Recursive
Feature Elimination, N: number of patients, GTV: Gross Tumour Volume, CTV:
Clinical Target Volume, PTV: Planning Target Volume.

FEATURES SELECTION AND CLASSIFICATION An important step during a ra-
diomics approach is the features selection step: it helps in reducing the dimension-
ality of the problem, lowering the curse of dimensionality and the risk of overfitting,
and it helps finding the most informative set of descriptors for the problem at hand.

The feature selection pipeline, represented in the blue, purple and red blocks
of Figure [3.10] consists of a wrapper-based approach, which searches and evaluates
the best subset of features maximising the performance of a given classification
algorithm. To avoid any bias, features are normalised before each step, using a
standard scaler, as represented in Figure [3.10l This approach scales features using
the following equation: z = (z — u)/o, with x4 mean value, o standard deviation,
and x and z as the original feature and the scaled feature, respectively.

Starting from the blue box in Figure the feature set was analysed by the
Recursive Feature Elimination (RFE) approach [49], making use of four different
classification algorithms, namely AdaBoost, CART Decision Tree (DT), Random
Forest (RF), and XGBoost (XGB) [109].

The goal of the RFE is to select a feature subgroup by initially considering all of
the features and recursively examining a smaller and smaller dataset according to

an assigned feature importance attribute. During this process, the selected classifier
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is trained on the standardised descriptor set to compute the feature importance
attribute based on the accuracy level of the model. The feature with the lowest
attribute is excluded from further analysis. This recursive analysis is performed
until the best feature is found, resulting in a final descriptor ranking.

To avoid any bias during the features selection approach, the RFE step was
applied according to a nested leave-one-out (LOO) procedure: indeed, referring
to Figure [3.10] there is an outer grey loop for final performance computation and
an inner blue loop for RFE application. This means that this analysis was repeated
N — 1 times, to obtain a global view of the feature importance. Hence, all of the
N — 1 rankings obtained were summed up to get a final rank of each descriptor.

From this step on, we considered two alternative paths referred to as single
ranking and total ranking, where the ranking procedure was done for the single
segmentation or global for the three segmentation. The differences of these paths
were deepened in section Turning our attention to the purple and red boxes
in Figure these represent the feature evaluation workflow to find the best
subset. We tested different combinations of features subsets whose performance
was evaluated according to a given metric to find out the best descriptors. To this
goal, all features were initially sorted by their rank and, then, the subsets were
sequentially inspected using a cumulative forward selection approach (yellow loop).
The cumulative forward selection search procedure starts from a subset with one
feature with the highest rank position and then incrementally adds descriptors with
lower ranks until the set contains all the descriptors.

To avoid any bias, each subset was then evaluated using a nested LOO config-
uration, where the inner loop (red LOO) evaluates the best subset maximising the
Area Under the ROC Curve (AUC) metric, whereas the outer loop is again the grey
LOO for final performance computation. Hence, the output of the purple box is a
list of N — 1 best subsets found with the nested procedure.

Finally, with this set of descriptors, the outer grey leave-one-out computes the

ultimate performance of the system.

TP+TN
v the

area under the ROC curve (AUC), the precision = % and the recall =

TP . oy
7pipy. oStraightforwardly, TP, TN, P, and N stands for the true positive, true

negative, the total number of positive samples, and the total number of negative

We measured the following performance metrics: accuracy =

samples, respectively. Hereinafter, we also use F'P and FN to denote the false
positive and false negative, respectively. Let us recall that the positive and negative

classes correspond dead and alive patients, respectively.

COMPARATIVE ANALYSIS As reported in section [3.1.2.2] we deepen the analysis
comparing the proposed approach with the state-of-the-art and with an approach

that leverages on image features automatically computed.
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COMPARISON WITH THE STATE-OF-THE-ART As a first point, we compare
our approach with the most cited one at the state-of-the-art, represented by the ra-
diomics signature that was proposed by |Aerts et al.| [§]. This signature includes four
features: (i) the “statistics energy” that describes the overall density of the tumour
volume, (ii) the “shape compactness” quantifying how compact the tumour shape
is, (iii) the “grey level nonuniformity” that measures for intratumour heterogeneity,
and (iv) the “grey level nonuniformity HLH” measuring intratumour heterogene-
ity after decomposing the image in mid-frequencies through wavelet analysis. The
formal definition of such measures in the supplementary material of [§], while their
implementation is available in Python [I10]. We compute this signature on our
dataset and, for a fair comparison, all tests are performed in LOO fashion for all of

the classifier-VOI combinations.

COMPARISON WITH A DEEP LEARNING APPROACH Besides the comparison
with the handcrafted signature at the state-of-the-art, we investigate the possi-
bility to use automatic feature extractors. To this goal, we consider two well-
established deep networks, i.e., the AlexNet [I11] and the ResNet50 [112], and we
train them from scratch on our dataset considering only the CTVs, since they yield
the largest performance in the machine learning pipeline proposed here, as shown
in section [3.1.2.2.2] On the one hand, the AlexNet has a feature extraction step
composed of three consecutive blocks containing two convolutional layers and one
max pooling layer. After each convolutional layer, we included a batch normaliza-
tion layer and a dropout layer, to prevent exploding gradient values and overfitting,
respectively. Subsequently, the classification step is designed with two dense lay-
ers, one with 256 neurons and the other with one neuron, as it is the output layer.
All of the layers implement a LeakyRelu activation function, except for the output
that uses a sigmoid for the final classification. On the other hand, the ResNet50
was designed, as reported by [He et al.| [I12], except for the first max-pooling layer,
which was eliminated to maximally preserve the information contained in the im-
ages, and the output layer that is a dense layer with one neuron with a sigmoid
activation function. In both cases, due to the large computational efforts needed,
the test procedure was conducted in 10-fold cross-validation, with eight folds as
training, one as validation, and one as a test. Here, cross-validation is preferred to
LOO to alleviate the computational burden, while having enough samples in the
training and validation sets. In this case, the CNNs classify each slice and then a
patient label is given by majority voting.

As a further direction of the investigation, we also study what happens using
the CNNs only as feature extractors that feed the same four classifiers that were
used in our approach. In practice, from both networks pretrained on our dataset,
we use as feature set the last layer in the feature extraction blocks: this yields 256
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descriptors from the dense layer of AlexNet and 8192 descriptors from the average
pooling layer of ResNet50. These two feature sets separately fed the four classifiers
used in the proposed pipeline, which were trained to classify each 2D slice. Again,
the patient label is given by majority voting and the performance are computed in

10-fold cross validation

3.1.2.2.2 Results

The main experiment described in the previous section was applied to all possible
combinations of classifiers and VOIs where the features were computed. Further-
more, the experiments were run also using both the single ranking and the total
ranking methods for feature selection. The use of four classifiers, three VOIs, and
two feature selection ranking approaches results in twenty-four experiments, whose
results are presented in Table 3.9

Table 3.9: Performance in all possible combinations with and without LBP

The upper panel refers to the single ranking strategy for feature selection, whereas the
lower panel shows the results considering the total ranking option. System performance
in all possible combinations including and excluding LBP descriptors from the final
feature subset in all possible combinations for single ranking (upper panel) and total
ranking (lower panel). The notation ‘-’ indicates that no feature was left in the final set

after excluding LBP descriptors. The largest performance is highlighted in bold.

AdaBoost Decision Tree Random Forest XGBoost
GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 70.10 83.51 71.13 70.10 60.82 63.92 73.20 7835 77.32 68.04 T71.13 76.29
AUC 70.13 82.78 70.11 70.13 61.06 64.09 7181 7729 76.54 66.70 70.11 75.02
Precision 69.81 90.57 81.13 69.81 5849 6226 86.79 88.68 8491 67.19 7049 73.44
Recall 74.00 81.36 70.49 74.00 6596 68.75 70.77 7581 76.27 81.13 81.13 88.68

Accuracy 76.29 69.07 62.89 71.13 4845 72.16 70.10 69.07 69.07 55.67 69.07 71.13
AUC 75.99 68.22 6275 70.50 47.81 72.02 68.01 66.87 6842 51.71 68.22 69.14
Precision 77.78 69.49 66.67 71.93 52.73 75.00 66.67 65.75 70.18 55.56 69.49 67.61
Recall  79.25 7736 64.15 77.36 54.72 73.58 90.57 90.57 7547 94.34 77.36 90.57

Single Ranking
without LBP | All features

Accuracy 64.95 72.16 68.04 44.33 58.76 6598 7526 77.32 7423 64.95 7216 74.23
AUC 64.84 71.83 67.47 4443 59.18 6559 73.89 75.96 73.33 6252 70.09 72.94

g
2
& <
LSD < | Precision  66.04 7547 7358 4340 5472 69.81 88.68 90.57 83.02 6267 63.06 7188
5 Z| Recall 68.63 74.07 69.64 48.94 6444 6852 7231 73.85 73.33 88.68 9245 86.79
F | & | Accuracy  74.23 7320 5258 6186 - - 7526 7216 7113 5670 3299 67.01
& |2 | AUC 7352 7277 5217 6123 - _ 74.08 7028 68.95 54.97 36.36 64.02
é Precision 74.14 7455 56.60 6429 - - 73.02 6857 67.12 5821 0  62.96
€| Recall 8113 7736 56.60 67.92 - - 86.79 9057 9245 7358 0 96.23

Turning our attention to the newly introduced set of features, i.e., 3D LBPs,
and still focusing on the single ranking approach, these descriptors were always
chosen in the best feature subsets, regardless of the classifier and the VOIs under
consideration. For the sake of brevity, we hereby do not report the full list of features

chosen in each of the 24 experiments. However, to provide a synthetic analysis of
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the best feature sets, the second and the third columns of Table [3.10| show how
many times each feature in the first column (i.e., the radiomics signature of the
best case) was included in the best feature set using the Adaboost with the GTV
and PTV (second column) and the DT, RF, and XGBoost with the CTV (third
column). Note that finding zeros in the occurrences of Table does not exclude
the presence of other LBP features in the best subsets besides those chosen in the

experiment with largest performance.

Table 3.10: Best radiomics signatures.
The fist column lists the feature selected in the best performance. The other two
columns indicate the number of times that each descriptor was selected in the best

feature set. Abbreviations: U—uniform, RI—rotation invariant.

Features Selected #occurrences in AdaBoost #occurrences in DT, RF

for AdaBoost CTV with GTV and PTV and XGBoost with CTV
U 3D LBP kurtosis 0 3
3D LBP energy 0

RI 3D LBP maxAss

3D LBP energy around maxAss 0

RI 3D LBP energy

U 3D LBP energy around maxRel

U 3D LBP skewness

—lw|w |~ |=|~|o|~

0
0
U 3D LBP entropy 1
0
0

inverse GLCM (—1,—1,0)

To deepen the discussion on the effectiveness of 3D LBPs, we excluded them from
each signature selected by our approach and train again each learner. The results

W

are reported in Table [3.9, where indicates that the classifier was not trained,
since the best set included only 3D LBP descriptors. When comparing these results
with the relative panel in Table|3.9| we notice that there is not an evident pattern in
the performance differences between the two experiments. Despite that, the use of
3D LBPs improves the largest accuracy obtained: indeed, without them, the overall
best accuracy score decreases from 83.51% to 76.29% and from 77.32% to 75.26%
for the single ranking and the total ranking, respectively. This trend is also man-
ifested by the other performance measures reported for the best cases, indicating
that LBPs give an important contribution to the classification task at hand. Fur-
thermore, we statistically pairwise compared the results reported in Table [3.9 using
the Wilcoxon signed-rank test. In the case of single ranking, for AdaBoost+CTV,
DT+CTV, RF+CTV, RE+PTV, and XGBoost+GTYV the use of 3D LBPs provides
performance larger and statistically different from those attained excluding these
descriptors (p < 0.1). In the case of total ranking, at the same level of confidence,
the results of the test show that the use of 3D LBP provides larger and statistically
different performance for AdaBoost+PTV and XGBoost+CTV.
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COMPARISON WITH THE-STATE-OF-THE-ART The results were compared against

the signature presented by |Aerts et al.|[8] for OS prediction in NSCLS, as introduced
in section [3.1.2.2] Further, to be one of the most cited works in the state-of-the-art,
such a radiomics signature was also used by [Lambin et al. [7] and Kwan et al.| [I13].

Table[3.11]reports the performance computed with [Aerts et als signature on our
dataset: the largest AUC value was obtained considering the CTV with Random
Forest as a classifier, and it is equal to 76.92%. Using the same VOI our signature
gets an AUC equal to 82.78%, which suggests that the inclusion of the 3D LBP
descriptors boosts the discrimination power and leads to larger performance. Even
though the best results of Table [3.9] and Table |3.11] are obtained with different
classifiers, comparing the corresponding columns of the two tables further validates
the previous assertion. Also note that the best combination in Table is based
on a Random Forest classifier with the CTV, which is also one of the two best
configurations in our experiments: this confirms our results that the CTV is the

most informative volume of interest.

Table 3.11: Performance with the signature presented by Aerts et al. combined
with the classification algorithms used here. The largest performance is
highlighted in bold.

Adaboost Decision Tree Random Forest XGBoost

GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 63.16 67.37 60.00 63.16 66.32 63.16 73.68 77.89 73.68 46.32 46.32