K. pneumoniae isolates carrying blaKPC-3 gene were collected to perform Bayesian phylogenetic and selective pressure analysis and to apply homology modeling to the KPC-3 protein. A dataset of 44 bla(kpc)-3 gene sequences from clinical isolates of K. pneumoniae was used for Bayesian phylogenetic, selective pressure analysis and homology modeling. The mean evolutionary rate for bla(kpc)-3 gene was 2.67 x 10(-3) substitution/site/year (95% HPD: 3.4 x 10(-4)-5.59 x 10(-3)). The root of the Bayesian tree dated back to the year 2011 (95% HPD: 2007-2012). Two main clades (I and II) were identified. The population dynamics analysis showed an exponential growth from 2011 to 2013 and the reaching of a plateau. The phylogeographic reconstruction showed that the root of the tree had a probable common ancestor in the general surgery ward. Selective pressure analysis revealed twelve positively selected sites. Structural analysis of KPC-3 protein predicted that the amino acid mutations are destabilizing for the protein and could alter the substrate specificity. Phylogenetic analysis and homology modeling of blaKPC-3 gene could represent a useful tool to follow KPC spread in nosocomial setting and to evidence amino acid substitutions altering the substrate specificity. (C) 2016 Elsevier B.V. All rights reserved.

K. pneumoniae isolates carrying blaKPC-3 gene were collected to perform Bayesian phylogenetic and selective pressure analysis and to apply homology modeling to the KPC-3 protein. A dataset of 44 blakpc-3 gene sequences from clinical isolates of K. pneumoniae was used for Bayesian phylogenetic, selective pressure analysis and homology modeling. The mean evolutionary rate for blakpc-3 gene was 2.67×10-3 substitution/site/year (95% HPD: 3.4×10-4-5.59×10-3). The root of the Bayesian tree dated back to the year 2011 (95% HPD: 2007-2012). Two main clades (I and II) were identified. The population dynamics analysis showed an exponential growth from 2011 to 2013 and the reaching of a plateau. The phylogeographic reconstruction showed that the root of the tree had a probable common ancestor in the general surgery ward. Selective pressure analysis revealed twelve positively selected sites. Structural analysis of KPC-3 protein predicted that the amino acid mutations are destabilizing for the protein and could alter the substrate specificity. Phylogenetic analysis and homology modeling of blaKPC-3 gene could represent a useful tool to follow KPC spread in nosocomial setting and to evidence amino acid substitutions altering the substrate specificity.

Klebsiella pneumoniae blaKPC-3 nosocomial epidemic: Bayesian and evolutionary analysis

Angeletti S;Fogolari M;De Florio L;Antonelli Incalzi R.;Coppola R;Dicuonzo G;Ciccozzi M
2016-01-01

Abstract

K. pneumoniae isolates carrying blaKPC-3 gene were collected to perform Bayesian phylogenetic and selective pressure analysis and to apply homology modeling to the KPC-3 protein. A dataset of 44 blakpc-3 gene sequences from clinical isolates of K. pneumoniae was used for Bayesian phylogenetic, selective pressure analysis and homology modeling. The mean evolutionary rate for blakpc-3 gene was 2.67×10-3 substitution/site/year (95% HPD: 3.4×10-4-5.59×10-3). The root of the Bayesian tree dated back to the year 2011 (95% HPD: 2007-2012). Two main clades (I and II) were identified. The population dynamics analysis showed an exponential growth from 2011 to 2013 and the reaching of a plateau. The phylogeographic reconstruction showed that the root of the tree had a probable common ancestor in the general surgery ward. Selective pressure analysis revealed twelve positively selected sites. Structural analysis of KPC-3 protein predicted that the amino acid mutations are destabilizing for the protein and could alter the substrate specificity. Phylogenetic analysis and homology modeling of blaKPC-3 gene could represent a useful tool to follow KPC spread in nosocomial setting and to evidence amino acid substitutions altering the substrate specificity.
2016
K. pneumoniae isolates carrying blaKPC-3 gene were collected to perform Bayesian phylogenetic and selective pressure analysis and to apply homology modeling to the KPC-3 protein. A dataset of 44 bla(kpc)-3 gene sequences from clinical isolates of K. pneumoniae was used for Bayesian phylogenetic, selective pressure analysis and homology modeling. The mean evolutionary rate for bla(kpc)-3 gene was 2.67 x 10(-3) substitution/site/year (95% HPD: 3.4 x 10(-4)-5.59 x 10(-3)). The root of the Bayesian tree dated back to the year 2011 (95% HPD: 2007-2012). Two main clades (I and II) were identified. The population dynamics analysis showed an exponential growth from 2011 to 2013 and the reaching of a plateau. The phylogeographic reconstruction showed that the root of the tree had a probable common ancestor in the general surgery ward. Selective pressure analysis revealed twelve positively selected sites. Structural analysis of KPC-3 protein predicted that the amino acid mutations are destabilizing for the protein and could alter the substrate specificity. Phylogenetic analysis and homology modeling of blaKPC-3 gene could represent a useful tool to follow KPC spread in nosocomial setting and to evidence amino acid substitutions altering the substrate specificity. (C) 2016 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
KPC3.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 748.17 kB
Formato Adobe PDF
748.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/1034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact