This paper presents a theoretical and experimental study of cavitation as an advanced oxidation process. The degradation rate of p-nitrophenol (PNP) was experimentally investigated and used as an estimator of the sonochemical effect in hydrodynamic cavitation. The PNP initial concentration was varied in the range 0.1-1 g L-1 and the pressure in the range 0.2-0.7 MPa, with a corresponding flow rate of 3.5-6.9 L min(-1). In terms of removal rate and energy efficiency, an optimal inlet pressure value was found close to 0.4 MPa and cavitation number of 0.25. The calculated first-order kinetic constant values show the existence of an optimal configuration: k = 1.13 x 10(-2) min(-1) at 0.45 MPa with a value for the electrical energy per order E-EO = 66.7 kWh m(-3). Moreover, the kinetic data was purged from the influence of the experimental apparatus configuration, allowing for the evaluation of an intrinsic kinetic constant. The physical-chemical behavior of hydrodynamic cavitation is discussed on the basis of single bubble dynamics. The numerical simulations, at different inlet pressures, provided a good explanation of the values observed. Furthermore, a simple energy balance on cavitating bubbles, taking into account for the actual production of cavitating events, gave a further confirmation of the experimental trends. (C) 2014 Elsevier B.V. All rights reserved.

Hydrodynamic cavitation of p-nitrophenol: A theoretical and experimental insight

Capocelli M;
2014-01-01

Abstract

This paper presents a theoretical and experimental study of cavitation as an advanced oxidation process. The degradation rate of p-nitrophenol (PNP) was experimentally investigated and used as an estimator of the sonochemical effect in hydrodynamic cavitation. The PNP initial concentration was varied in the range 0.1-1 g L-1 and the pressure in the range 0.2-0.7 MPa, with a corresponding flow rate of 3.5-6.9 L min(-1). In terms of removal rate and energy efficiency, an optimal inlet pressure value was found close to 0.4 MPa and cavitation number of 0.25. The calculated first-order kinetic constant values show the existence of an optimal configuration: k = 1.13 x 10(-2) min(-1) at 0.45 MPa with a value for the electrical energy per order E-EO = 66.7 kWh m(-3). Moreover, the kinetic data was purged from the influence of the experimental apparatus configuration, allowing for the evaluation of an intrinsic kinetic constant. The physical-chemical behavior of hydrodynamic cavitation is discussed on the basis of single bubble dynamics. The numerical simulations, at different inlet pressures, provided a good explanation of the values observed. Furthermore, a simple energy balance on cavitating bubbles, taking into account for the actual production of cavitating events, gave a further confirmation of the experimental trends. (C) 2014 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/10627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 77
social impact