Due to the nature of articular cartilage of being poorly vascularized the capabilities of self repair are limited. Mesenchymal stem cells transplantation is a modern technique which has been developed after the high success rates obtained by microfracturing and drilling techniques which promote the release of growth factors and the infiltration of bone marrow derived cells in the lesion. In order to increase the concentration of bone marrow derived cells appropriate devices, the scaffolds, are necessary. These three dimensional constructs mimic the physiological ambient of chondrogenesis.The race for new scaffold materials, which will show high biocompatibility to prevent inflammatory response, high cellular adhesion properties with three dimensional architecture, high bioactivity to deliver growth factor appropriately and possibly high biodegrability has just begun. New studies will concentrate on the role, on the interaction and on the temporal sequence of growth factors to improve ostheocondral differentiation, but the necessity to increase the number of clinical studies with more patients and longer follow ups seems mandatory. The aim of this review is to update and summarise the evidence-based knowledge of treatment of talus chondral defect with new tissue engineering techniques.

Current strategies of tissue engineering in talus chondral defects

Longo UG;Marinozzi Andrea;Denaro Vincenzo
2013-01-01

Abstract

Due to the nature of articular cartilage of being poorly vascularized the capabilities of self repair are limited. Mesenchymal stem cells transplantation is a modern technique which has been developed after the high success rates obtained by microfracturing and drilling techniques which promote the release of growth factors and the infiltration of bone marrow derived cells in the lesion. In order to increase the concentration of bone marrow derived cells appropriate devices, the scaffolds, are necessary. These three dimensional constructs mimic the physiological ambient of chondrogenesis.The race for new scaffold materials, which will show high biocompatibility to prevent inflammatory response, high cellular adhesion properties with three dimensional architecture, high bioactivity to deliver growth factor appropriately and possibly high biodegrability has just begun. New studies will concentrate on the role, on the interaction and on the temporal sequence of growth factors to improve ostheocondral differentiation, but the necessity to increase the number of clinical studies with more patients and longer follow ups seems mandatory. The aim of this review is to update and summarise the evidence-based knowledge of treatment of talus chondral defect with new tissue engineering techniques.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/10697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact