When nanoparticles (NPs) enter a biological environment, proteins bind to their surface forming a protein coating, which alters NP features giving it a biological identity, which controls its physiological response. The NP biological identity (size, charge and aggregation state) does strictly correlate with its physicochemical properties and the nature of the biological environment. While the former relationship has been extensively investigated, whether and how alterations in the physiological environment affect the biological identity of the NPs remains unclear. In this work we enrolled healthy and histologically proven pancreatic cancer patients. A statistically significant reduction in the level of clinically relevant proteins in cancer patients occurred. Positively and negatively charged lipid nanoparticles with two different surface chemistries (plain and PEGylated) were incubated with human plasma from both groups and characterized thoroughly by dynamic light scattering and zeta potential measurements. Only when plain positively charged NPs were tested, significant difference in zeta-potential between healthy and pancreatic cancer groups was found. This result implies that pooling human plasma from healthy volunteers might lead to a bias and thus unpredictable consequences in regard to previously optimized targeting profile.

Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients

Caputo D;Coppola R
2014-01-01

Abstract

When nanoparticles (NPs) enter a biological environment, proteins bind to their surface forming a protein coating, which alters NP features giving it a biological identity, which controls its physiological response. The NP biological identity (size, charge and aggregation state) does strictly correlate with its physicochemical properties and the nature of the biological environment. While the former relationship has been extensively investigated, whether and how alterations in the physiological environment affect the biological identity of the NPs remains unclear. In this work we enrolled healthy and histologically proven pancreatic cancer patients. A statistically significant reduction in the level of clinically relevant proteins in cancer patients occurred. Positively and negatively charged lipid nanoparticles with two different surface chemistries (plain and PEGylated) were incubated with human plasma from both groups and characterized thoroughly by dynamic light scattering and zeta potential measurements. Only when plain positively charged NPs were tested, significant difference in zeta-potential between healthy and pancreatic cancer groups was found. This result implies that pooling human plasma from healthy volunteers might lead to a bias and thus unpredictable consequences in regard to previously optimized targeting profile.
2014
Nanoparticles ; Human Plasma; Pancreatic Cancer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/10799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 64
social impact