The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer.

A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients

Ramella S;Fiore M;Greco C
;
Cordelli E;Sicilia R;Merone M;Ippolito E;Iannello G;Soda P
2018-01-01

Abstract

The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/11277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact