This paper studies the problem of recursive state estimation of stochastic linear systems with nonlinear measurements. The main idea is to rewrite the measurement map in a linear form by considering, as system output, a vector of “virtual” measurements. The result is a linear system with a non-Gaussian and non-stationary output noise. State estimation is therefore obtained using a Kalman filter or, alternatively, a quadratic filter, suitably designed for non-Gaussian systems. This work provides two sufficient conditions for the application of the virtual measurement approach andshows its effectiveness in the case of the maneuvering target tracking problem.

Filtering of systems with nonlinear measurements with an application to target tracking

CACACE F.
;
CONTE F.;
2019-01-01

Abstract

This paper studies the problem of recursive state estimation of stochastic linear systems with nonlinear measurements. The main idea is to rewrite the measurement map in a linear form by considering, as system output, a vector of “virtual” measurements. The result is a linear system with a non-Gaussian and non-stationary output noise. State estimation is therefore obtained using a Kalman filter or, alternatively, a quadratic filter, suitably designed for non-Gaussian systems. This work provides two sufficient conditions for the application of the virtual measurement approach andshows its effectiveness in the case of the maneuvering target tracking problem.
2019
Nonlinear filtering, State estimation, Target tracking
File in questo prodotto:
File Dimensione Formato  
FilteringOfSystemswithNonlinearMeasurements_published_version.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 814.18 kB
Formato Adobe PDF
814.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/3719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact