In this paper we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuities density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of nonnegative solutions – the latter in the case of small (in the L1-norm) initial data – as well as their uniqueness.

Local and Global Solutions for a Hyperbolic-Elliptic Model of Chemotaxis on a Network

Papi M;Smarrazzo F;
2019-01-01

Abstract

In this paper we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuities density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of nonnegative solutions – the latter in the case of small (in the L1-norm) initial data – as well as their uniqueness.
2019
hyperbolic-elliptic; networks; transmission conditions
File in questo prodotto:
File Dimensione Formato  
GuPaSm_final.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 482.3 kB
Formato Adobe PDF
482.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Accettazione.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 160.08 kB
Formato Adobe PDF
160.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/3982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact