In this paper we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuities density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of nonnegative solutions – the latter in the case of small (in the L1-norm) initial data – as well as their uniqueness.
Local and Global Solutions for a Hyperbolic-Elliptic Model of Chemotaxis on a Network
Papi M;Smarrazzo F;
2019-01-01
Abstract
In this paper we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuities density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of nonnegative solutions – the latter in the case of small (in the L1-norm) initial data – as well as their uniqueness.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GuPaSm_final.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
482.3 kB
Formato
Adobe PDF
|
482.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Accettazione.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
160.08 kB
Formato
Adobe PDF
|
160.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.