Allostery is a very important feature of proteins; we propose a mesoscopic approach to allosteric mechanisms elucidation, based on protein contact matrices. The application of graph theory methods to the characterization of the allosteric process and, more broadly, to obtain the conformational changes upon binding, reveals key features of the protein function. The proposed method highlights the leading role played by topological over geometrical changes in allosteric transitions. Topological invariants were able to discriminate between true allosteric motions and generic protein motions upon binding.

Shedding light on protein–ligand binding by graph theory: the topological nature of allostery

Di Paola L
2012-01-01

Abstract

Allostery is a very important feature of proteins; we propose a mesoscopic approach to allosteric mechanisms elucidation, based on protein contact matrices. The application of graph theory methods to the characterization of the allosteric process and, more broadly, to obtain the conformational changes upon binding, reveals key features of the protein function. The proposed method highlights the leading role played by topological over geometrical changes in allosteric transitions. Topological invariants were able to discriminate between true allosteric motions and generic protein motions upon binding.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/4173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 45
social impact