Experimental data suggest that exposure to ultraviolet radiation may indirectly induce DNA double-strand breaks.AIM:To investigate the contribution of the non-homologous end-joining repair pathway in basal and squamous cell carcinomas.METHODS:Levels of Ku70 and Ku80 proteins were determined by immunohistochemical analysis and Ku70-Ku80 heterodimer-binding activity by electrophoretic mobility shift assay. Matched pathological normal margins and skin from healthy people were used as controls.RESULTS:A significant increase in Ku70 and Ku80 protein levels was found for both tumour types as compared with normal skin (p<0.001). Squamous cell carcinoma showed increased immunostaining as compared with basal cell tumours (p<0.02). A direct correlation was found between Ku70 and Ku80 protein levels and expression of the proliferation markers Ki-67/MIB-1 (p<0.02 and p<0.002, respectively) in basal cell carcinoma. DNA binding activity was increased in basal cell carcinoma samples as compared with matched skin histopathologically negative for cancer (p<0.006). In squamous cell carcinomas, however, the difference was significant only with normal skin (p<0.02) and not with matched pathologically normal margins.CONCLUSIONS:Overall, an up regulation of the Ku70 and Ku80 protein levels seems to correlate only with tumour proliferation rate. As non-homologous end joining is an error-prone mechanism, its up regulation may ultimately increase genomic instability, contributing to tumour progression.

Expression and heterodimer-binding activity of Ku70 and Ku80 in human non-melanoma skin cancer

SIGNORI E;PERRONE G;MARANGI GF;RABITTI C;PERSICHETTI P;FAZIO VM.
2006-01-01

Abstract

Experimental data suggest that exposure to ultraviolet radiation may indirectly induce DNA double-strand breaks.AIM:To investigate the contribution of the non-homologous end-joining repair pathway in basal and squamous cell carcinomas.METHODS:Levels of Ku70 and Ku80 proteins were determined by immunohistochemical analysis and Ku70-Ku80 heterodimer-binding activity by electrophoretic mobility shift assay. Matched pathological normal margins and skin from healthy people were used as controls.RESULTS:A significant increase in Ku70 and Ku80 protein levels was found for both tumour types as compared with normal skin (p<0.001). Squamous cell carcinoma showed increased immunostaining as compared with basal cell tumours (p<0.02). A direct correlation was found between Ku70 and Ku80 protein levels and expression of the proliferation markers Ki-67/MIB-1 (p<0.02 and p<0.002, respectively) in basal cell carcinoma. DNA binding activity was increased in basal cell carcinoma samples as compared with matched skin histopathologically negative for cancer (p<0.006). In squamous cell carcinomas, however, the difference was significant only with normal skin (p<0.02) and not with matched pathologically normal margins.CONCLUSIONS:Overall, an up regulation of the Ku70 and Ku80 protein levels seems to correlate only with tumour proliferation rate. As non-homologous end joining is an error-prone mechanism, its up regulation may ultimately increase genomic instability, contributing to tumour progression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/4742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact