The scattering process of a dynamic perturbation impinging on a draining-tub model of an acoustic black hole is numerically solved in the time domain. Analogies with real black holes of general relativity are explored by using recently developed mathematical tools involving finite elements methods, excision techniques, and constrained evolution schemes for strongly hyperbolic systems. In particular it is shown that superradiant scattering of a quasimonochromatic wave packet can produce strong amplification of the signal, offering the possibility of a significant extraction of rotational energy at suitable values of the angular frequency of the vortex and of the central frequency of the wave packet. The results show that theoretical tools recently developed for gravitational waves can be brought to fruition in the study of other problems in which strong anisotropies are present.
Excised acoustic black holes: The scattering problem in the time domain
CHERUBINI C;
2005-01-01
Abstract
The scattering process of a dynamic perturbation impinging on a draining-tub model of an acoustic black hole is numerically solved in the time domain. Analogies with real black holes of general relativity are explored by using recently developed mathematical tools involving finite elements methods, excision techniques, and constrained evolution schemes for strongly hyperbolic systems. In particular it is shown that superradiant scattering of a quasimonochromatic wave packet can produce strong amplification of the signal, offering the possibility of a significant extraction of rotational energy at suitable values of the angular frequency of the vortex and of the central frequency of the wave packet. The results show that theoretical tools recently developed for gravitational waves can be brought to fruition in the study of other problems in which strong anisotropies are present.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.