We describe a consensus-based distributed filtering algorithm for linear systems with a parametrized gain and show that whenthe parameter becomes large the error covariance at each node becomes arbitrarily close to the error covariance of the optimalcentralized Kalman filter. The result concerns distributed estimation over a connected un-directed or directed graph and forstatic configurations it only requires to exchange the estimates among adjacent nodes. A comparison with related approachesconfirms the theoretical results and shows that the method can be applied to a wide range of distributed estimation problems.
Asymptotically Optimal Consensus-based Distributed Filtering of Continuous-Time Linear Systems
CACACE F;
2020-01-01
Abstract
We describe a consensus-based distributed filtering algorithm for linear systems with a parametrized gain and show that whenthe parameter becomes large the error covariance at each node becomes arbitrarily close to the error covariance of the optimalcentralized Kalman filter. The result concerns distributed estimation over a connected un-directed or directed graph and forstatic configurations it only requires to exchange the estimates among adjacent nodes. A comparison with related approachesconfirms the theoretical results and shows that the method can be applied to a wide range of distributed estimation problems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
19-1642_04_MS.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non specificato
Dimensione
920.14 kB
Formato
Adobe PDF
|
920.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.