PURPOSE. Although stem cell activity represents a crucial feature in corneal and ocular surface homeostasis, other cells populating this region and the neighboring zones might participate and influence local microenvironment. Mast cells, the long-lived and tissue-sited immune cells, have been previously reported in corneoscleral specimens. Herein, mast cells were investigated in corneoscleral tissues and related to microenvironment protein expression. METHODS. Twenty-six (14 male/12 female; older than 60 years) human corneoscleral specimens were sectioned for light and fluorescent immunostaining (CD45, p63, Ck-3/7/12/19, tryptase/AA1, and chymase/CC1). Corneal, limbal, and conjunctival squares were produced for molecular and biochemical analysis. Statistical comparisons were carried out by ANOVA. RESULTS. Toluidine blue staining identified metachromatic intact or degranulated mast cells in the area below the palisades’ Vogt (Ck-3/12-positive epithelium and underneath p63 immunoreactivity). Tryptase immunoreactivity was observed close to palisades’ Vogt, whereas no specific signal was detected for chymase. Tryptase/AA1 transcripts were quantified in limbal and conjunctival RNA extracts, whereas no specific amplification was detected in corneal ones. Few mediators were overexpressed in limbal extracts with respect to corneal (Neural cell adhesion molecule (NCAM), Intercellular adhesion molecule 3 (ICAM3), Brain-derived Neurotrophic factor (BDNF), and neurotrophin 3 (NT3); P < 0.00083) and conjunctival (NCAM, ICAM3, and NT3; P < 0.05) protein extracts. A trend to an increase was observed for Nerve Growth Factor (NGF) in limbal extracts (P > 0.05). CONCLUSIONS. The specific observation of tryptase phenotype and the interesting protein signature of microenvironment (adhesion molecules, growth factors, and neurotrophins), known to partake mast cell behavior, at least in other areas, would provide additional information to better understand this crucial zone in the framework of ocular surface healthiness.

Mast cells populate the corneoscleral limbus: New insights for our understanding of limbal microenvironment

Di Zazzo A.;Bonini S.
2020-01-01

Abstract

PURPOSE. Although stem cell activity represents a crucial feature in corneal and ocular surface homeostasis, other cells populating this region and the neighboring zones might participate and influence local microenvironment. Mast cells, the long-lived and tissue-sited immune cells, have been previously reported in corneoscleral specimens. Herein, mast cells were investigated in corneoscleral tissues and related to microenvironment protein expression. METHODS. Twenty-six (14 male/12 female; older than 60 years) human corneoscleral specimens were sectioned for light and fluorescent immunostaining (CD45, p63, Ck-3/7/12/19, tryptase/AA1, and chymase/CC1). Corneal, limbal, and conjunctival squares were produced for molecular and biochemical analysis. Statistical comparisons were carried out by ANOVA. RESULTS. Toluidine blue staining identified metachromatic intact or degranulated mast cells in the area below the palisades’ Vogt (Ck-3/12-positive epithelium and underneath p63 immunoreactivity). Tryptase immunoreactivity was observed close to palisades’ Vogt, whereas no specific signal was detected for chymase. Tryptase/AA1 transcripts were quantified in limbal and conjunctival RNA extracts, whereas no specific amplification was detected in corneal ones. Few mediators were overexpressed in limbal extracts with respect to corneal (Neural cell adhesion molecule (NCAM), Intercellular adhesion molecule 3 (ICAM3), Brain-derived Neurotrophic factor (BDNF), and neurotrophin 3 (NT3); P < 0.00083) and conjunctival (NCAM, ICAM3, and NT3; P < 0.05) protein extracts. A trend to an increase was observed for Nerve Growth Factor (NGF) in limbal extracts (P > 0.05). CONCLUSIONS. The specific observation of tryptase phenotype and the interesting protein signature of microenvironment (adhesion molecules, growth factors, and neurotrophins), known to partake mast cell behavior, at least in other areas, would provide additional information to better understand this crucial zone in the framework of ocular surface healthiness.
2020
Corneoscleral limbus; Mast cells; Microenvironment; NGF; Ocular surface; Protein signature; Aged; ; Antigens, CD; Blotting, Western, Brain-Derived Neurotrophic Factor; CD56 Antigen; Cell Adhesion Molecules; Electrophoresis, Polyacrylamide Gel; Enzyme-Linked Immunosorbent Assay, Eye Proteins; Limbus Corneae; Male; Mast Cells; Microscopy, Fluorescence; Middle Aged; Neurotrophin 3; Protein Array Analysis; Real-Time Polymerase Chain Reaction; Tissue Donors;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/58801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact