The exciton, a quasi-particle that creates a bound state of an electron and a hole, is typically found in semiconductors. It has attracted major attention in the context of both fundamental science and practical applications. Transition metal dichalcogenides (TMDs) are a new class of 2D materials that include direct band-gap semiconductors with strong spin–orbit coupling and many-body interactions. Manipulating new excitons in semiconducting TMDs could generate a novel means of application in nanodevices. Here, the observation of high-energy excitonic peaks in the monolayer-MoS2 on a SrTiO3 heterointerface generated by a new complex mechanism is reported, based on a comprehensive study that comprises temperature-dependent optical spectroscopies and first-principles calculations. The appearance of these excitons is attributed to the change in many-body interactions that occurs alongside the interfacial orbital hybridization and spin–orbit coupling brought about by the excitonic effect propagated from the substrate. This has further led to the formation of a Fermi-surface feature at the interface. The results provide an atomic-scale understanding of the heterointerface between monolayer-TMDs and perovskite oxide and highlight the importance of spin–orbit–charge–lattice coupling on the intrinsic properties of atomic-layer heterostructures, which open up a way to manipulate the excitonic effects in monolayer TMDs via an interfacial system.

Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System

Trevisanutto P. E.;
2019-01-01

Abstract

The exciton, a quasi-particle that creates a bound state of an electron and a hole, is typically found in semiconductors. It has attracted major attention in the context of both fundamental science and practical applications. Transition metal dichalcogenides (TMDs) are a new class of 2D materials that include direct band-gap semiconductors with strong spin–orbit coupling and many-body interactions. Manipulating new excitons in semiconducting TMDs could generate a novel means of application in nanodevices. Here, the observation of high-energy excitonic peaks in the monolayer-MoS2 on a SrTiO3 heterointerface generated by a new complex mechanism is reported, based on a comprehensive study that comprises temperature-dependent optical spectroscopies and first-principles calculations. The appearance of these excitons is attributed to the change in many-body interactions that occurs alongside the interfacial orbital hybridization and spin–orbit coupling brought about by the excitonic effect propagated from the substrate. This has further led to the formation of a Fermi-surface feature at the interface. The results provide an atomic-scale understanding of the heterointerface between monolayer-TMDs and perovskite oxide and highlight the importance of spin–orbit–charge–lattice coupling on the intrinsic properties of atomic-layer heterostructures, which open up a way to manipulate the excitonic effects in monolayer TMDs via an interfacial system.
2019
2D transition metal dichalcogenides
electronic correlations
excitons
heterointerfaces
perovskite oxides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/62784
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact