ASD genetic diagnosis has dramatically improved due to NGS technologies, and many new causative genes have been discovered. Consequently, new ASD phenotypes have emerged. An extensive exome sequencing study carried out by the Autism Sequencing Consortium (ASC) was published in February 2020. The study identified 102 genes which are de novo mutated in subjects affected by autism spectrum disorder (ASD) or similar neurodevelopmental disorders (NDDs). The majority of these genes was already known to be implicated in ASD or NDDs, whereas approximately 30 genes were considered “novel” as either they were not previously associated with ASD/NDDs or very little information about them was present in the literature. The aim of this work is to review the current literature since the publication of the ASC paper to see if new data mainly concerning genotype–phenotype correlations of the novel genes have been added to the existing one. We found new important clinical and molecular data for 6 of the 30 novel genes. Though the broad and overlapping neurodevelopmental phenotypes observed in most monogenic forms of NDDs make it difficult for the clinical geneticist to address gene-specific tests, knowledge of these new data can at least help to prioritize and interpret results of pangenomic tests to some extent. Indeed, for some of the new emerging genes analyzed in the present work, specific clinical features emerged that may help the clinical geneticist to make the final diagnosis by associating the genetic test results with the phenotype. The importance of this relatively new approach known as “reverse phenotyping” will be discussed.

Genotype–phenotype correlations in relation to newly emerging monogenic forms of autism spectrum disorder and associated neurodevelopmental disorders: The importance of phenotype reevaluation after pangenomic results

Lintas C.;Sacco R.;Gurrieri F.
2021-01-01

Abstract

ASD genetic diagnosis has dramatically improved due to NGS technologies, and many new causative genes have been discovered. Consequently, new ASD phenotypes have emerged. An extensive exome sequencing study carried out by the Autism Sequencing Consortium (ASC) was published in February 2020. The study identified 102 genes which are de novo mutated in subjects affected by autism spectrum disorder (ASD) or similar neurodevelopmental disorders (NDDs). The majority of these genes was already known to be implicated in ASD or NDDs, whereas approximately 30 genes were considered “novel” as either they were not previously associated with ASD/NDDs or very little information about them was present in the literature. The aim of this work is to review the current literature since the publication of the ASC paper to see if new data mainly concerning genotype–phenotype correlations of the novel genes have been added to the existing one. We found new important clinical and molecular data for 6 of the 30 novel genes. Though the broad and overlapping neurodevelopmental phenotypes observed in most monogenic forms of NDDs make it difficult for the clinical geneticist to address gene-specific tests, knowledge of these new data can at least help to prioritize and interpret results of pangenomic tests to some extent. Indeed, for some of the new emerging genes analyzed in the present work, specific clinical features emerged that may help the clinical geneticist to make the final diagnosis by associating the genetic test results with the phenotype. The importance of this relatively new approach known as “reverse phenotyping” will be discussed.
2021
ASD
Autism spectrum disorder
Exome sequencing
NDDs
Neurodevelopmental disorders
Phenotype reevaluation
File in questo prodotto:
File Dimensione Formato  
20.500.12610-64413.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 583.69 kB
Formato Adobe PDF
583.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/64413
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact