Incomplete pairwise comparison matrices offer a natural way of expressing preferences in decision-making processes. Although ordinal information is crucial, there is a bias in the literature: cardinal models dominate. Ordinal models usually yield nonunique solutions; therefore, an approach blending ordinal and cardinal information is needed. In this work, we consider two cascading problems: first, we compute ordinal preferences, maximizing an index that combines ordinal and cardinal information; then, we obtain a cardinal ranking by enforcing ordinal constraints. Notably, we provide a sufficient condition (that is likely to be satisfied in practical cases) for the first problem to admit a unique solution and we develop a provably polynomial-time algorithm to compute it. The effectiveness of the proposed method is analyzed and compared with respect to other approaches and criteria at the state of the art.
Incomplete analytic hierarchy process with minimum weighted ordinal violations
Faramondi L.;Oliva G.;
2020-01-01
Abstract
Incomplete pairwise comparison matrices offer a natural way of expressing preferences in decision-making processes. Although ordinal information is crucial, there is a bias in the literature: cardinal models dominate. Ordinal models usually yield nonunique solutions; therefore, an approach blending ordinal and cardinal information is needed. In this work, we consider two cascading problems: first, we compute ordinal preferences, maximizing an index that combines ordinal and cardinal information; then, we obtain a cardinal ranking by enforcing ordinal constraints. Notably, we provide a sufficient condition (that is likely to be satisfied in practical cases) for the first problem to admit a unique solution and we develop a provably polynomial-time algorithm to compute it. The effectiveness of the proposed method is analyzed and compared with respect to other approaches and criteria at the state of the art.File | Dimensione | Formato | |
---|---|---|---|
20.500.12610-65152.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.