Intervertebral disc regeneration is quickly moving towards clinical applications. However, it is still missing an ideal injectable hydrogel to support mesenchymal stem cells (MSC) delivery. Herein, a new injectable hydrogel composed of platelet rich plasma (PRP) and hyaluronic acid (HA) blended with batroxobin (BTX) as gelling agent, was designed to generate a clinically relevant cell carrier for disc regeneration. PRP/HA/BTX blend was tested for rheological properties. Amplitude sweep, frequency sweep, and rotational measurements were performed and viscoelastic properties were evaluated. Human MSC encapsulated in PRP/HA/BTX hydrogel were cultured in both growing medium and medium with or without TGF-β1 up to day 21. The amount of glycosaminoglycan was evaluated. Quantitative gene expression evaluation for collagen type II, aggrecan, and Sox 9 was also performed. Rheological tests showed that the hydrogel jellifies in 15 min 20°C and in 3 min at 37°C. Biological test showed that MSCs cultured in the hydrogel maintain high cell viability and proliferation. Human MSC within the hydrogel cultured with or without TGF-β1 showed significantly higher GAG production compared to control medium. Moreover, MSCs in the hydrogel underwent differentiation to chondrocyte-like cells with TGF-β1, as shown by histology and gene expression analysis. This novel hydrogel improves viability and proliferation of MSCs supporting the differentiation process toward chondrocyte-like cells. Rheology tests showed optimal gelation kinetics at room temperature for manipulation and faster gelation after transplantation (37°C). The clinical availability of all components of the hydrogel will allow a rapid translation of this regenerative approach into the clinical scenario. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2109–2116, 2017.

Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization

Vadala G.;Russo F.;Tirindelli M. C.;Denaro V.
2017-01-01

Abstract

Intervertebral disc regeneration is quickly moving towards clinical applications. However, it is still missing an ideal injectable hydrogel to support mesenchymal stem cells (MSC) delivery. Herein, a new injectable hydrogel composed of platelet rich plasma (PRP) and hyaluronic acid (HA) blended with batroxobin (BTX) as gelling agent, was designed to generate a clinically relevant cell carrier for disc regeneration. PRP/HA/BTX blend was tested for rheological properties. Amplitude sweep, frequency sweep, and rotational measurements were performed and viscoelastic properties were evaluated. Human MSC encapsulated in PRP/HA/BTX hydrogel were cultured in both growing medium and medium with or without TGF-β1 up to day 21. The amount of glycosaminoglycan was evaluated. Quantitative gene expression evaluation for collagen type II, aggrecan, and Sox 9 was also performed. Rheological tests showed that the hydrogel jellifies in 15 min 20°C and in 3 min at 37°C. Biological test showed that MSCs cultured in the hydrogel maintain high cell viability and proliferation. Human MSC within the hydrogel cultured with or without TGF-β1 showed significantly higher GAG production compared to control medium. Moreover, MSCs in the hydrogel underwent differentiation to chondrocyte-like cells with TGF-β1, as shown by histology and gene expression analysis. This novel hydrogel improves viability and proliferation of MSCs supporting the differentiation process toward chondrocyte-like cells. Rheology tests showed optimal gelation kinetics at room temperature for manipulation and faster gelation after transplantation (37°C). The clinical availability of all components of the hydrogel will allow a rapid translation of this regenerative approach into the clinical scenario. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2109–2116, 2017.
2017
hydrogel
Intervertebral disc regeneration
mesenchymal stem cells
platelet rich plasma
rheology
Healthy Volunteers
Humans
Hydrogels
Rheology
Batroxobin
Hyaluronic Acid
Mesenchymal Stem Cell Transplantation
Platelet-Rich Plasma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/65577
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact