STUDY DESIGN. Descriptive anatomical study on ovine and human cadaveric lumbar spinal segments. OBJECTIVE. To describe the alternative transpedicular approach to deliver therapeutic agents into intervertebral disc (IVD). SUMMARY OF BACKGROUND DATA. The present delivery approach of therapeutic agents (growth factors/cells/hydrogels) within the IVD is through injection, via the annulus fibrosus (AF). However, it has recently been demonstrated that small needle puncture of the AF leads to further degeneration and disc herniation. In addition, the injected material has a high chance to be extruded through the AF injury. METHODS. Lumbar ovine and human spinal segments were used. Under fluoroscopy, a 2-mm Kirschner wire was introduced in the caudal vertebra through the pedicle and the inferior endplate to the nucleus pulposus. Gross anatomy analysis and high-resolution peripheral quantitative computed tomography (HR-pQCT) were performed to assess the right position of the wire in pedicles. Discography and nucleotomy were performed using a 14G cannula insertion or a 2-mm arthroscopic shaver blade, respectively. Nucleoplasty was also performed with agarose gel/contrast agent and imaged with HR-pQCT. RESULTS. Gross anatomy, fluoroscopy, and HR-pQCT images showed that the nucleus pulposus could be approached through the endplate via the pedicle without affecting the spinal canal and the neural foramina. The contrast agent was delivered into the IVD and nucleus pulposus was removed from the disc and filled with agarose gel. CONCLUSION. This study describes how a transpedicular approach can be used as an alternative route to deliver therapeutic agents to the disc without disruption of the AF showing the potential use of this technique in preclinical research and highlighting its clinical relevance for IVD regeneration. © 2013, Lippincott Williams & Wilkins.

The transpedicular approach as an alternative route for intervertebral disc regeneration

Vadala G.;Russo F.;Denaro V.
2013-01-01

Abstract

STUDY DESIGN. Descriptive anatomical study on ovine and human cadaveric lumbar spinal segments. OBJECTIVE. To describe the alternative transpedicular approach to deliver therapeutic agents into intervertebral disc (IVD). SUMMARY OF BACKGROUND DATA. The present delivery approach of therapeutic agents (growth factors/cells/hydrogels) within the IVD is through injection, via the annulus fibrosus (AF). However, it has recently been demonstrated that small needle puncture of the AF leads to further degeneration and disc herniation. In addition, the injected material has a high chance to be extruded through the AF injury. METHODS. Lumbar ovine and human spinal segments were used. Under fluoroscopy, a 2-mm Kirschner wire was introduced in the caudal vertebra through the pedicle and the inferior endplate to the nucleus pulposus. Gross anatomy analysis and high-resolution peripheral quantitative computed tomography (HR-pQCT) were performed to assess the right position of the wire in pedicles. Discography and nucleotomy were performed using a 14G cannula insertion or a 2-mm arthroscopic shaver blade, respectively. Nucleoplasty was also performed with agarose gel/contrast agent and imaged with HR-pQCT. RESULTS. Gross anatomy, fluoroscopy, and HR-pQCT images showed that the nucleus pulposus could be approached through the endplate via the pedicle without affecting the spinal canal and the neural foramina. The contrast agent was delivered into the IVD and nucleus pulposus was removed from the disc and filled with agarose gel. CONCLUSION. This study describes how a transpedicular approach can be used as an alternative route to deliver therapeutic agents to the disc without disruption of the AF showing the potential use of this technique in preclinical research and highlighting its clinical relevance for IVD regeneration. © 2013, Lippincott Williams & Wilkins.
2013
Hydrogel delivery
Intervertebral disc regeneration
Stem cells
Tissue engineering
Transpedicular approach
Animals
Cadaver
Contrast Media
Drug Delivery Systems
Fluoroscopy
Gels
Humans
Intervertebral Disc
Lumbar Vertebrae
Regeneration
Reproducibility of Results
Sepharose
Sheep
Tomography, X-Ray Computed
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/65594
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact