Background & Aims: Machine learning (ML) provides new approaches for prognostication through the identification of novel subgroups of patients. We explored whether ML could support disease sub-phenotyping and risk stratification in primary biliary cholangitis (PBC). Methods: ML was applied to an international dataset of PBC patients. The dataset was split into a derivation cohort (training set) and a validation cohort (validation set), and key clinical features were analysed. The outcome was a composite of liver-related death or liver transplantation. ML and standard survival analysis were performed. Results: The training set was composed of 11,819 subjects, while the validation set was composed of 1,069 subjects. ML identified four clusters of patients characterized by different phenotypes and long-term prognosis. Cluster 1 (n = 3566) included patients with excellent prognosis, whereas Cluster 2 (n = 3966) consisted of individuals at worse prognosis differing from Cluster 1 only for albumin levels around the limit of normal. Cluster 3 (n = 2379) included young patients with florid cholestasis and Cluster 4 (n = 1908) comprised advanced cases. Further sub-analyses on the dynamics of albumin within the normal range revealed that ursodeoxycholic acid-induced increase of albumin >1.2 x lower limit of normal (LLN) is associated with improved transplant-free survival. Conclusions: Unsupervised ML identified four novel groups of PBC patients with different phenotypes and prognosis and highlighted subtle variations of albumin within the normal range. Therapy-induced increase of albumin >1.2 x LLN should be considered a treatment goal.
Machine learning in primary biliary cholangitis: A novel approach for risk stratification
Vespasiani Gentilucci U.;
2022-01-01
Abstract
Background & Aims: Machine learning (ML) provides new approaches for prognostication through the identification of novel subgroups of patients. We explored whether ML could support disease sub-phenotyping and risk stratification in primary biliary cholangitis (PBC). Methods: ML was applied to an international dataset of PBC patients. The dataset was split into a derivation cohort (training set) and a validation cohort (validation set), and key clinical features were analysed. The outcome was a composite of liver-related death or liver transplantation. ML and standard survival analysis were performed. Results: The training set was composed of 11,819 subjects, while the validation set was composed of 1,069 subjects. ML identified four clusters of patients characterized by different phenotypes and long-term prognosis. Cluster 1 (n = 3566) included patients with excellent prognosis, whereas Cluster 2 (n = 3966) consisted of individuals at worse prognosis differing from Cluster 1 only for albumin levels around the limit of normal. Cluster 3 (n = 2379) included young patients with florid cholestasis and Cluster 4 (n = 1908) comprised advanced cases. Further sub-analyses on the dynamics of albumin within the normal range revealed that ursodeoxycholic acid-induced increase of albumin >1.2 x lower limit of normal (LLN) is associated with improved transplant-free survival. Conclusions: Unsupervised ML identified four novel groups of PBC patients with different phenotypes and prognosis and highlighted subtle variations of albumin within the normal range. Therapy-induced increase of albumin >1.2 x LLN should be considered a treatment goal.File | Dimensione | Formato | |
---|---|---|---|
Liver International - 2021 - Gerussi - Machine learning in primary biliary cholangitis A novel approach for risk.pdf
non disponibili
Descrizione: Full-text
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.