The accumulation of metals in the brain and a high increase in oxidative stress are evidences found in the pathogenesis of many neurodegenerative diseases. The accumulation of iron and its altered metabolism are often early events and even present in the phase in which neurodegenerative diseases do not yet give symptoms. With aging it has been reported that the amount of iron in the brain increases (Hallgren and Sourander 1958; Beard, Connor et al. 1993; Bartzokis, Beckson et al. 1997), invades neurons and becomes more reactive, favoring the establishment of neurodegenerative diseases such as Alzheimer's disease (MA) and Parkinson's disease (PD). Accumulations of iron in the brain are particularly evident in the Substantia Nigra (SN) of patients with PD and in the hippocampus and cortex of patients with Alzheimer's (Schenck and Zimmerman 2004) and could facilitate the occurrence of cell damage underlying neurodegeneration through an increase in oxidative stress. Although essential for life, iron can become highly toxic when deregulated or in the presence of hydrogen peroxide or molecular oxygen, as it can generate free radicals in Fenton-type reactions. In a recent case-control study it was found that patients who develop PD along with pre-existing dementia show significantly higher amounts of iron in the SN than patients with Alzheimer's alone, suggesting that iron accumulation may be a predictor of development of the disease. MP. Genetic studies in PD patients have identified important associations between gene variants that regulate metal metabolism and iron metabolism disorders. In particular, it has been observed that iron accumulation in specific brain areas is significantly associated with variants of the ceruloplasmin (CP) gene (Hochstrasser, Bauer et al. 2004). Cp is a copper protein with a decisive function in regulating iron metabolism. The absence of this protein, found in aceruloplasminemia, a rare inherited disease, causes an overload of iron in the brain with low concentrations of the same in the blood and mild anemia. Another gene, often associated with neurodegeneration and causing hereditary hemochromatosis (HH), is HFE. The protein encoded by the HFE gene performs its action by inhibiting the absorption of iron in the intestine, probably by regulating hepcidin, the key hormone in maintaining the balance of this metal. Recent studies indicate that the presence of the H63D mutation in the HFE hemochromatosis gene facilitates the onset of neurodegenerative damage (Lin, Zhao et al. 2012). Finally, an important role in iron metabolism is played by transferrin (Tf), a protein that carries the metal into the circulation. The TF gene has been proposed in the past as a candidate locus for Alzheimer's disease, as Tf is the primary iron-carrying protein (Hussain, Ballard et al. 2002), which, when deregulated, causes oxidative stress. However, a systemic alteration of iron metabolism in PD has not yet been demonstrated. The studies conducted on the subject have so far only considered total iron, without considering the ferritin or transferrin component or other associated parameters, have been carried out on small samples, and have not taken into account the variants of the genes that control its metabolism. The primary objective of my thesis was to study the molecular processes underlying the alteration of iron metabolism in PD to identify gene loci associated with susceptibility for the disease. To this end, I analyzed the frequency distribution of some polymorphisms (Single Nucleotide Polimorphism, SNP) of genes that control iron metabolism and that are associated with PD in the literature. Specifically, I analyzed the SNPs of the CP gene (D544E, R793H), of the HFE gene (H63D, C282Y) and of the TF gene (P589S) in subjects affected by MP comparing them with healthy elderly control subjects and I correlated the results obtained with the biochemical assays of the main iron markers involved in oxidative-stress mechanisms also in relation to clinical data.
L'accumulo di metalli a livello cerebrale ed un elevato aumento dello stress ossidativo sono evidenze riscontrate nella patogenesi di molte malattie neurodegenerative. L'accumulo di ferro ed il suo alterato metabolismo spesso sono eventi precoci e addirittura presenti nella fase in cui le malattie neurodegenerative non danno ancora sintomi. Con l'invecchiamento è stato riportato che nel cervello la quantità di ferro aumenta (Hallgren and Sourander 1958; Beard, Connor et al. 1993; Bartzokis, Beckson et al. 1997), invade i neuroni e diventa più reattivo, favorendo l'instaurarsi di malattie neurodegenerative quali la Malattia di Alzheimer (MA) e la Malattia di Parkinson (MP). Gli accumuli di ferro a livello cerebrale si evidenziano in particolare nella Substantia Nigra (SN) di pazienti affetti da MP e nell'ippocampo e corteccia di pazienti con MA (Schenck and Zimmerman 2004) e potrebbero facilitare il verificarsi del danno cellulare alla base della neurodegenerazione tramite un aumento dello stress ossidativo. Pur essendo essenziale per la vita, il ferro può diventare altamente tossico quando deregolato o in presenza di acqua ossigenata o di ossigeno molecolare, poiché in grado di generare radicali liberi in reazioni di tipo Fenton. In un recente studio caso-controllo è stato evidenziato che pazienti che sviluppano MP assieme alla preesistente demenza mostrano quantità significativamente maggiori di ferro nella SN rispetto a pazienti con solo MA, suggerendo che l'accumulo di ferro potrebbe essere un fattore che predice lo sviluppo della MP. Studi genetici su pazienti con MP hanno individuato importanti associazioni tra varianti di geni che regolano il metabolismo di metalli e disordini del metabolismo del ferro. In particolare è stato osservato che l'accumulo di ferro in specifiche aree cerebrali è significativamente associato a varianti del gene della ceruloplasmina (CP) (Hochstrasser, Bauer et al. 2004). La Cp è una proteina a rame con una funzione determinante nel regolare il metabolismo del ferro. L'assenza di questa proteina, riscontrata nell'aceruloplasminemia, una malattia ereditaria rara, provoca un sovraccarico di ferro nel cervello con basse concentrazioni dello stesso nel sangue e una lieve anemia. Un altro gene, spesso associato alla neurodegenerazione e che causa l'Emocromatosi Ereditaria (HH), è l'HFE. La proteina codificata dal gene HFE svolge la sua azione inibendo l'assorbimento del ferro a livello intestinale, probabilmente regolando l'epcidina, ormone chiave nel mantenere l'equilibrio di tale metallo. Studi recenti indicano che la presenza della mutazione H63D del gene dell'emocromatosi HFE faciliti la comparsa del danno neurodegenerativo (Lin, Zhao et al. 2012). Infine un ruolo importante nel metabolismo del ferro viene rivestito dalla transferrina (Tf), proteina che trasporta in circolo il metallo. Il gene della TF è stato in passato proposto come un locus candidato per la MA, poiché la Tf è la proteina principale deputata al trasporto del ferro (Hussain, Ballard et al. 2002), che, se deregolato, provoca stress ossidativo. Tuttavia un'alterazione sistemica del metabolismo del ferro nella MP non è stata ancora dimostrata. Gli studi condotti sull'argomento hanno preso sinora solo in considerazione il ferro totale, senza considerare la componente ferritinica o quella transferrinica o altri parametri associati, sono stati realizzati su piccoli campioni, e non hanno tenuto conto delle varianti dei geni che ne controllano il metabolismo. L'obiettivo primario della mia tesi è stato quello di studiare i processi molecolari alla base dell’alterazione del metabolismo del ferro nella MP per individuare loci genici associati con la suscettibilità per la malattia. A tal fine ho analizzato la distribuzione delle frequenze di alcuni polimorfismi (Single Nucleotide Polimorphism, SNP) di geni che controllano il metabolismo del ferro e che risultano in letteratura associare con la MP. Nello specifico ho analizzato gli SNPs del gene CP (D544E, R793H), del gene HFE (H63D, C282Y) e del gene TF (P589S) in soggetti affetti da MP confrontandoli con soggetti sani anziani di controllo ed ho correlato i risultati ottenuti con i dosaggi biochimici dei principali marker del ferro coinvolti nei meccanismi di stress-ossidativo anche in relazione con i dati clinici.
Studio biochimico/genetico sulle varianti alleliche dei geni HFE, CP, TF nella malattia di Parkinson / Stefania Mariani , 2013 Apr 23. 25. ciclo
Studio biochimico/genetico sulle varianti alleliche dei geni HFE, CP, TF nella malattia di Parkinson
2013-04-23
Abstract
The accumulation of metals in the brain and a high increase in oxidative stress are evidences found in the pathogenesis of many neurodegenerative diseases. The accumulation of iron and its altered metabolism are often early events and even present in the phase in which neurodegenerative diseases do not yet give symptoms. With aging it has been reported that the amount of iron in the brain increases (Hallgren and Sourander 1958; Beard, Connor et al. 1993; Bartzokis, Beckson et al. 1997), invades neurons and becomes more reactive, favoring the establishment of neurodegenerative diseases such as Alzheimer's disease (MA) and Parkinson's disease (PD). Accumulations of iron in the brain are particularly evident in the Substantia Nigra (SN) of patients with PD and in the hippocampus and cortex of patients with Alzheimer's (Schenck and Zimmerman 2004) and could facilitate the occurrence of cell damage underlying neurodegeneration through an increase in oxidative stress. Although essential for life, iron can become highly toxic when deregulated or in the presence of hydrogen peroxide or molecular oxygen, as it can generate free radicals in Fenton-type reactions. In a recent case-control study it was found that patients who develop PD along with pre-existing dementia show significantly higher amounts of iron in the SN than patients with Alzheimer's alone, suggesting that iron accumulation may be a predictor of development of the disease. MP. Genetic studies in PD patients have identified important associations between gene variants that regulate metal metabolism and iron metabolism disorders. In particular, it has been observed that iron accumulation in specific brain areas is significantly associated with variants of the ceruloplasmin (CP) gene (Hochstrasser, Bauer et al. 2004). Cp is a copper protein with a decisive function in regulating iron metabolism. The absence of this protein, found in aceruloplasminemia, a rare inherited disease, causes an overload of iron in the brain with low concentrations of the same in the blood and mild anemia. Another gene, often associated with neurodegeneration and causing hereditary hemochromatosis (HH), is HFE. The protein encoded by the HFE gene performs its action by inhibiting the absorption of iron in the intestine, probably by regulating hepcidin, the key hormone in maintaining the balance of this metal. Recent studies indicate that the presence of the H63D mutation in the HFE hemochromatosis gene facilitates the onset of neurodegenerative damage (Lin, Zhao et al. 2012). Finally, an important role in iron metabolism is played by transferrin (Tf), a protein that carries the metal into the circulation. The TF gene has been proposed in the past as a candidate locus for Alzheimer's disease, as Tf is the primary iron-carrying protein (Hussain, Ballard et al. 2002), which, when deregulated, causes oxidative stress. However, a systemic alteration of iron metabolism in PD has not yet been demonstrated. The studies conducted on the subject have so far only considered total iron, without considering the ferritin or transferrin component or other associated parameters, have been carried out on small samples, and have not taken into account the variants of the genes that control its metabolism. The primary objective of my thesis was to study the molecular processes underlying the alteration of iron metabolism in PD to identify gene loci associated with susceptibility for the disease. To this end, I analyzed the frequency distribution of some polymorphisms (Single Nucleotide Polimorphism, SNP) of genes that control iron metabolism and that are associated with PD in the literature. Specifically, I analyzed the SNPs of the CP gene (D544E, R793H), of the HFE gene (H63D, C282Y) and of the TF gene (P589S) in subjects affected by MP comparing them with healthy elderly control subjects and I correlated the results obtained with the biochemical assays of the main iron markers involved in oxidative-stress mechanisms also in relation to clinical data.File | Dimensione | Formato | |
---|---|---|---|
DT_84_MarianiStefania.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.