Recently, the ever-growing interest in the continuous monitoring of heart function in out-of-laboratory settings for an early diagnosis of cardiovascular diseases has led to the investigation of innovative methods for cardiac monitoring. Among others, wearables recording seismic waves induced on the chest surface by the mechanical activity of the heart are becoming popular. For what concerns wearable-based methods, cardiac vibrations can be recorded from the thorax in the form of acceleration, angular velocity, and/or displacement by means of accelerometers, gyroscopes, and fiber optic sensors, respectively. The present paper reviews the currently available wearables for measuring precordial vibrations. The focus is on sensor technology and signal processing techniques for the extraction of the parameters of interest. Lastly, the explored application scenarios and experimental protocols with the relative influencing factors are discussed for each technique. The goal is to delve into these three fundamental aspects (i.e., wearable system, signal processing, and application scenario), which are mutually interrelated, to give a holistic view of the whole process, beyond the sensor aspect alone. The reader can gain a more complete picture of this context without disregarding any of these 3 aspects.

Precordial Vibrations: A Review of Wearable Systems, Signal Processing Techniques, and Main Applications

Santucci F.;Lo Presti D.;Massaroni C.;Schena E.;Setola R.
2022-01-01

Abstract

Recently, the ever-growing interest in the continuous monitoring of heart function in out-of-laboratory settings for an early diagnosis of cardiovascular diseases has led to the investigation of innovative methods for cardiac monitoring. Among others, wearables recording seismic waves induced on the chest surface by the mechanical activity of the heart are becoming popular. For what concerns wearable-based methods, cardiac vibrations can be recorded from the thorax in the form of acceleration, angular velocity, and/or displacement by means of accelerometers, gyroscopes, and fiber optic sensors, respectively. The present paper reviews the currently available wearables for measuring precordial vibrations. The focus is on sensor technology and signal processing techniques for the extraction of the parameters of interest. Lastly, the explored application scenarios and experimental protocols with the relative influencing factors are discussed for each technique. The goal is to delve into these three fundamental aspects (i.e., wearable system, signal processing, and application scenario), which are mutually interrelated, to give a holistic view of the whole process, beyond the sensor aspect alone. The reader can gain a more complete picture of this context without disregarding any of these 3 aspects.
2022
fiber Bragg grating sensors; gyrocardiography; machine learning; precordial vibrations; SCG annotation; SCG applications; SCG fiducial points; SCG processing techniques; seismocardiography (SCG); wearable systems; Heart; Monitoring, Physiologic; Signal Processing, Computer-Assisted; Vibration; Wearable Electronic Devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/69413
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact