Carbon Capture and Utilization (CCU) is a viable solution to valorise the CO2 captured from industrial plants' flue gas, thus avoiding emitting it and synthesizing products with high added value. On the other hand, using CO2 as a reactant in chemical processes is a challenging task, and a rigorous analysis of the performance is needed to evaluate the real impact of CCU technologies in terms of efficiency and environmental footprint. In this paper, the energetic performance of a DME and methanol synthesis process fed by 25% of the CO2 captured from a natural gas combined cycle (NGCC) power plant and by the green hydrogen produced through an electrolyser was evaluated. The remaining 75% of the CO2 was compressed and stored underground. The process was assessed by means of an exergetic analysis and compared to post-combustion Carbon Capture and Storage (CCS), where 100% of the CO2 captured was stored underground. Through the exergy analysis, the quality degradation of energy was quantified, and the sources of irreversibility were detected. The carbon-emitting source was a 189 MW Brayton-Joule power plant, which was mainly responsible for exergy destruction. The CCU configuration showed a higher exergy efficiency than the CCS, but higher exergy destruction per non-emitted carbon dioxide. In the DME/methanol production plant, the main contribution to exergy destruction was given by the distillation column separating the reactor outlet stream and, in particular, the top-stage condenser was found to be the component with the highest irreversibility (45% of the total). Additionally, the methanol/DME synthesis reactor destroyed a significant amount of exergy (24%). Globally, DME/methanol synthesis from CO2 and green hydrogen is feasible from an exergetic point of view, with 2.276 MJ of energy gained per 1 MJ of exergy destroyed.

Exergetic Analysis of DME Synthesis from CO2 and Renewable Hydrogen

De Falco M.;Capocelli M.
Methodology
;
2022-01-01

Abstract

Carbon Capture and Utilization (CCU) is a viable solution to valorise the CO2 captured from industrial plants' flue gas, thus avoiding emitting it and synthesizing products with high added value. On the other hand, using CO2 as a reactant in chemical processes is a challenging task, and a rigorous analysis of the performance is needed to evaluate the real impact of CCU technologies in terms of efficiency and environmental footprint. In this paper, the energetic performance of a DME and methanol synthesis process fed by 25% of the CO2 captured from a natural gas combined cycle (NGCC) power plant and by the green hydrogen produced through an electrolyser was evaluated. The remaining 75% of the CO2 was compressed and stored underground. The process was assessed by means of an exergetic analysis and compared to post-combustion Carbon Capture and Storage (CCS), where 100% of the CO2 captured was stored underground. Through the exergy analysis, the quality degradation of energy was quantified, and the sources of irreversibility were detected. The carbon-emitting source was a 189 MW Brayton-Joule power plant, which was mainly responsible for exergy destruction. The CCU configuration showed a higher exergy efficiency than the CCS, but higher exergy destruction per non-emitted carbon dioxide. In the DME/methanol production plant, the main contribution to exergy destruction was given by the distillation column separating the reactor outlet stream and, in particular, the top-stage condenser was found to be the component with the highest irreversibility (45% of the total). Additionally, the methanol/DME synthesis reactor destroyed a significant amount of exergy (24%). Globally, DME/methanol synthesis from CO2 and green hydrogen is feasible from an exergetic point of view, with 2.276 MJ of energy gained per 1 MJ of exergy destroyed.
2022
carbon capture and utilization; methanol and DME production; exergy analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/69843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact