Stabilization and electrical contacting of redox enzymes with electrodes are fundamental requirements for bioelectronics devices, including biosensors and enzyme fuel cells (EFCs). In this study, we show increased glucose oxidase (GOx) stability by immobilization with Nafion. The immobilization process affected GOx conformation but was not detrimental to its activity, which was maintained for more than 120 days. The GOx/Nafion system was interfaced to a carbon cloth electrode and assembled in a prototypal EFC fed with glucose. Polarization and power density curves demonstrated that GOx/Nafion system was able to generate power, exploiting a Nafion-assisted electron transfer process to the electrode. Our findings are consistent with the onset of pH-dependent conformational equilibrium for the enzyme secondary structure and its active site. Significantly, the protective effect exerted by Nafion on the enzyme structure may be tuned by varying parameters such as the pH to fabricate durable EFCs with good electrocatalytic performance.

Tuning structural changes in glucose oxidase for enzyme fuel cell applications

Rainer A;Trombetta M;
2015-01-01

Abstract

Stabilization and electrical contacting of redox enzymes with electrodes are fundamental requirements for bioelectronics devices, including biosensors and enzyme fuel cells (EFCs). In this study, we show increased glucose oxidase (GOx) stability by immobilization with Nafion. The immobilization process affected GOx conformation but was not detrimental to its activity, which was maintained for more than 120 days. The GOx/Nafion system was interfaced to a carbon cloth electrode and assembled in a prototypal EFC fed with glucose. Polarization and power density curves demonstrated that GOx/Nafion system was able to generate power, exploiting a Nafion-assisted electron transfer process to the electrode. Our findings are consistent with the onset of pH-dependent conformational equilibrium for the enzyme secondary structure and its active site. Significantly, the protective effect exerted by Nafion on the enzyme structure may be tuned by varying parameters such as the pH to fabricate durable EFCs with good electrocatalytic performance.
2015
Nafion, glucose oxidase, enzyme activity, enzyme secondary structure, enzymatic fuel cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/6991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact