Objective: Quantitative Electroencephalography (qEEG) can capture changes in brain activity following stroke. qEEG metrics traditionally focus on oscillatory activity, however recent findings highlight the importance of aperiodic (power-law) structure in characterizing pathological brain states. We assessed neurophysiological alterations and recovery after mono-hemispheric stroke by means of the Spectral Exponent (SE), a metric that reflects EEG slowing and quantifies the power-law decay of the EEG Power Spectral Density (PSD).Methods: Eighteen patients (n = 18) with mild to moderate mono-hemispheric Middle Cerebral Artery (MCA) ischaemic stroke were retrospectively enrolled for this study. Patients underwent EEG recording in the sub-acute phase (T0) and after 2 months of physical rehabilitation (T1). Sixteen healthy controls (HC; n = 16) matched by age and sex were enrolled as a normative group. SE values and narrow-band PSD were estimated for each recording. We compared SE and band-power between patients and HC, and between the affected (AH) and unaffected hemisphere (UH) at T0 and T1 in patients.Results: At T0, stroke patients showed significantly more negative SE values than HC (p = 0.003), reflecting broad-band EEG slowing. Most important, in patients SE over the AH was consistently more negative compared to the UH and showed a renormalization at T1. This SE renormalization significantly correlated with National Institute of Health Stroke Scale (NIHSS) improvement (R = 0.63, p = 0.005). Conclusions: SE is a reliable readout of the neurophysiological and clinical alterations occurring after an ischaemic cortical lesion. Significance: SE promise to be a robust method to monitor and predict patients' functional outcome.(c) 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

EEG spectral exponent as a synthetic index for the longitudinal assessment of stroke recovery

Di Lazzaro, V;Assenza, G
2022-01-01

Abstract

Objective: Quantitative Electroencephalography (qEEG) can capture changes in brain activity following stroke. qEEG metrics traditionally focus on oscillatory activity, however recent findings highlight the importance of aperiodic (power-law) structure in characterizing pathological brain states. We assessed neurophysiological alterations and recovery after mono-hemispheric stroke by means of the Spectral Exponent (SE), a metric that reflects EEG slowing and quantifies the power-law decay of the EEG Power Spectral Density (PSD).Methods: Eighteen patients (n = 18) with mild to moderate mono-hemispheric Middle Cerebral Artery (MCA) ischaemic stroke were retrospectively enrolled for this study. Patients underwent EEG recording in the sub-acute phase (T0) and after 2 months of physical rehabilitation (T1). Sixteen healthy controls (HC; n = 16) matched by age and sex were enrolled as a normative group. SE values and narrow-band PSD were estimated for each recording. We compared SE and band-power between patients and HC, and between the affected (AH) and unaffected hemisphere (UH) at T0 and T1 in patients.Results: At T0, stroke patients showed significantly more negative SE values than HC (p = 0.003), reflecting broad-band EEG slowing. Most important, in patients SE over the AH was consistently more negative compared to the UH and showed a renormalization at T1. This SE renormalization significantly correlated with National Institute of Health Stroke Scale (NIHSS) improvement (R = 0.63, p = 0.005). Conclusions: SE is a reliable readout of the neurophysiological and clinical alterations occurring after an ischaemic cortical lesion. Significance: SE promise to be a robust method to monitor and predict patients' functional outcome.(c) 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2022
EEG; Rehabilitation; Stroke; qEEG; Brain; Electroencephalography; Humans; Retrospective Studies; Brain Ischemia; Stroke
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/70283
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact