In recent years, technological advancements and the strengthening of the Internet of Things concepts have led to significant improvements in the technology infrastructures for remote monitoring. This includes telemedicine which is the ensemble of technologies and tools involved in medical services, from consultations, to diagnosis, prescriptions, treatment and patient monitoring, all done remotely via an Internet connection. Developing a telemedicine framework capable of monitoring patients over a continuous long-term monitoring window may encounter various issues related to the battery life of the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT architecture that is adaptable to various scenarios and the ongoing changes of the application scenario under analysis. In this work, we present an IoT architecture for continuous long-term monitoring of patients. Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson's Disease management, building up the PDRMA (Parkinson's disease remote monitoring architecture). Performance analysis for optimal operation with respect to temperature and daily battery life is conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson's patients is presented.
IoT architecture for continuous long term monitoring: Parkinson's Disease case study
Di Biase L.;Vollero L.;Merone M.
2022-01-01
Abstract
In recent years, technological advancements and the strengthening of the Internet of Things concepts have led to significant improvements in the technology infrastructures for remote monitoring. This includes telemedicine which is the ensemble of technologies and tools involved in medical services, from consultations, to diagnosis, prescriptions, treatment and patient monitoring, all done remotely via an Internet connection. Developing a telemedicine framework capable of monitoring patients over a continuous long-term monitoring window may encounter various issues related to the battery life of the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT architecture that is adaptable to various scenarios and the ongoing changes of the application scenario under analysis. In this work, we present an IoT architecture for continuous long-term monitoring of patients. Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson's Disease management, building up the PDRMA (Parkinson's disease remote monitoring architecture). Performance analysis for optimal operation with respect to temperature and daily battery life is conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson's patients is presented.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2542660522000968-main (1).pdf
solo utenti autorizzati
Descrizione: In recent years, technological advancements and the strengthening of the Internet of Things concepts have led to significant improvements in the technology infrastructures for remote monitoring. This includes telemedicine which is the ensemble of technologies and tools involved in medical services, from consultations, to diagnosis, prescriptions, treatment and patient monitoring, all done remotely via an Internet connection. Developing a telemedicine framework capable of monitoring patients over a continuous long-term monitoring window may encounter various issues related to the battery life of the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT architecture that is adaptable to various scenarios and the ongoing changes of the application scenario under analysis. In this work, we present an IoT architecture for continuous long-term monitoring of patients. Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson’s Disease management, building up the PDRMA (Parkinson’s disease remote monitoring architecture). Performance analysis for optimal operation with respect to temperature and daily battery life is conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson’s patients is presented.
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
4.05 MB
Formato
Adobe PDF
|
4.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.