The exponential growth of IoT devices, smartphones, smartwatches, and vehicles equipped with positioning technology, such as Global Positioning System (GPS) modules, has boosted the development of location-based services for several applications in Intelligent Transportation Systems. However, the inherent error of location-based technologies makes it necessary to align the positioning trajectories to the actual underlying road network, a process known as map-matching. To the best of our knowledge, there are no comprehensive tools that allow us to model street networks, conduct topological and spatial analyses of the underlying street graph, perform map-matching processes on GPS point trajectories, and deeply analyse and elaborate these reconstructed trajectories. To address this issue, we present PyTrack, an open-source map-matching-based Python toolbox designed for academics, researchers and practitioners that integrate the recorded GPS coordinates with data provided by the OpenStreetMap, an open-source geographic information system. This manuscript overviews the architecture of the library offering a detailed description of its capabilities and modules. Besides, we provide an introductory guide to getting started with PyTrack covering the most fundamental steps of our framework. For more information on PyTrack, users are encouraged to visit the official repository at https://github.com/cosbidev/PyTrack or the official documentation at https://pytrack-lib.readthedocs.io.
PyTrack: A Map-Matching-Based Python Toolbox for Vehicle Trajectory Reconstruction
Tortora, M
;Cordelli, E;Soda, P
2022-01-01
Abstract
The exponential growth of IoT devices, smartphones, smartwatches, and vehicles equipped with positioning technology, such as Global Positioning System (GPS) modules, has boosted the development of location-based services for several applications in Intelligent Transportation Systems. However, the inherent error of location-based technologies makes it necessary to align the positioning trajectories to the actual underlying road network, a process known as map-matching. To the best of our knowledge, there are no comprehensive tools that allow us to model street networks, conduct topological and spatial analyses of the underlying street graph, perform map-matching processes on GPS point trajectories, and deeply analyse and elaborate these reconstructed trajectories. To address this issue, we present PyTrack, an open-source map-matching-based Python toolbox designed for academics, researchers and practitioners that integrate the recorded GPS coordinates with data provided by the OpenStreetMap, an open-source geographic information system. This manuscript overviews the architecture of the library offering a detailed description of its capabilities and modules. Besides, we provide an introductory guide to getting started with PyTrack covering the most fundamental steps of our framework. For more information on PyTrack, users are encouraged to visit the official repository at https://github.com/cosbidev/PyTrack or the official documentation at https://pytrack-lib.readthedocs.io.File | Dimensione | Formato | |
---|---|---|---|
20.500.12610-71864.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
944.36 kB
Formato
Adobe PDF
|
944.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.