This paper summarizes the results of a power system stability analysis realized for the EU project OSMOSE. The case study is the electrical network of Sicily, one of the two main islands of Italy, in a scenario forecasted for 2050, with a large penetration of renewable generation. The objective is to establish if angle and voltage stabilities can be guaranteed despite the loss of the inertia and the regulation services provided today by traditional thermal power plants. To replace these resources, new flexibility services, potentially provided by renewable energy power plants, battery energy storage systems, and flexible loads, are taken into account. A highly detailed dynamical model of the electrical grid, provided by the same transmission system operator who manages the system, is modified to fit with the 2050 scenario and integrated with the models of the mentioned flexibility services. Thanks to this dynamic model, an extensive simulation analysis on large and small perturbation angle stability and voltage stability is carried out. Results show that stability can be guaranteed, but the use of a suitable combination of the new flexibility services is mandatory.

Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario

Conte F.;
2022-01-01

Abstract

This paper summarizes the results of a power system stability analysis realized for the EU project OSMOSE. The case study is the electrical network of Sicily, one of the two main islands of Italy, in a scenario forecasted for 2050, with a large penetration of renewable generation. The objective is to establish if angle and voltage stabilities can be guaranteed despite the loss of the inertia and the regulation services provided today by traditional thermal power plants. To replace these resources, new flexibility services, potentially provided by renewable energy power plants, battery energy storage systems, and flexible loads, are taken into account. A highly detailed dynamical model of the electrical grid, provided by the same transmission system operator who manages the system, is modified to fit with the 2050 scenario and integrated with the models of the mentioned flexibility services. Thanks to this dynamic model, an extensive simulation analysis on large and small perturbation angle stability and voltage stability is carried out. Results show that stability can be guaranteed, but the use of a suitable combination of the new flexibility services is mandatory.
2022
Demand response, Large perturbation angle stability, Reactive compensation, Small perturbation angle stability, Synthetic inertia, Voltage stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/72469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact