In this study, the attention was focused on quizalofop-ethyl, a chiral herbicide whose formulation has recently been marketed as quizalofop-P-ethyl, i.e. the (+)-enantiomer exhibiting herbicidal activity. To verify the real enantiomeric purity of this product as well as to study its environmental fate, the enantioselective separation of the P- and M- enantiomers of quizalofop-ethyl was achieved on Lux Cellulose-2 column (3‑chloro,4-methylphenilcarbamate cellulose) under isocratic conditions in polar organic mode. Once established that the commercial formulation contains ˜ 0.6% (enantiomeric fraction) of M as an impurity, an HPLC-MS/MS method was developed, validated and applied to the analysis of soil, carrots and turnips treated with the herbicide. A simple solid-liquid extraction allowed recoveries greater than 70%; limits of detections of P and M enantiomers were below 5 ng g−1. The analyses of the real samples showed a modification of the enantiomeric fraction of quizalofop-M-ethyl between the commercial formulation (EFM = 0.63 ± 0.03%) and the analysed matrices (EFM = 7.6 ± 0.1% for carrots; EFM = 0% for the other matrices). This outcome highlighted the occurrence of an enantioselective biotic dissipation, responsible for a greater persistency of the distomer in carrots. On the other hand, since screening analyses revealed the occurrence of residues of the metabolite quizalofop-acid with the same EFs as the ester precursor, it was concluded that the hydrolytic conversion was an abiotic process.

An enantioselective high-performance liquid chromatography-mass spectrometry method to study the fate of quizalofop-P-ethyl in soil and selected agricultural products

Fanali C.;
2023-01-01

Abstract

In this study, the attention was focused on quizalofop-ethyl, a chiral herbicide whose formulation has recently been marketed as quizalofop-P-ethyl, i.e. the (+)-enantiomer exhibiting herbicidal activity. To verify the real enantiomeric purity of this product as well as to study its environmental fate, the enantioselective separation of the P- and M- enantiomers of quizalofop-ethyl was achieved on Lux Cellulose-2 column (3‑chloro,4-methylphenilcarbamate cellulose) under isocratic conditions in polar organic mode. Once established that the commercial formulation contains ˜ 0.6% (enantiomeric fraction) of M as an impurity, an HPLC-MS/MS method was developed, validated and applied to the analysis of soil, carrots and turnips treated with the herbicide. A simple solid-liquid extraction allowed recoveries greater than 70%; limits of detections of P and M enantiomers were below 5 ng g−1. The analyses of the real samples showed a modification of the enantiomeric fraction of quizalofop-M-ethyl between the commercial formulation (EFM = 0.63 ± 0.03%) and the analysed matrices (EFM = 7.6 ± 0.1% for carrots; EFM = 0% for the other matrices). This outcome highlighted the occurrence of an enantioselective biotic dissipation, responsible for a greater persistency of the distomer in carrots. On the other hand, since screening analyses revealed the occurrence of residues of the metabolite quizalofop-acid with the same EFs as the ester precursor, it was concluded that the hydrolytic conversion was an abiotic process.
2023
Enantioselective chromatography; High performance liquid chromatography; Pesticides; Polysaccharide-based chiral selectors; Quizalofop-ethyl
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/76085
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact