Many small-animal instruments have been developed in analogy to human instruments, including positron emission tomography, single-photon emission computed tomography, computed tomography, magnetic resonance imaging and ultrasound. Conversely, optical imaging using fluorescent and bioluminescent tracer technology has been scaled up from single cell in vitro studies to whole body animal imaging. Multi-device imaging allows the comparison of different aspects of function, anatomy, gene expression and phenotype using software algorithms or, more recently, hybrid devices. Animal imaging facilitates bench-to-bedside drug development in two ways. Longitudinal imaging improves the science of animal research through the benefit of paired statistics with the use of animals as their own controls, while reducing animal sacrifice. In addition, imaging makes explicit the development of diagnostic and therapeutic agents on nearly identical molecular synthesis platforms, thus linking drug discovery to the development of imaging tracers. This scientific approach combines diagnostic and therapeutic elements (theranostics). This combination of techniques, using 123I (diagnosis) and 131I (therapy), has been widely used, for example, in benign and malignant thyroid disease. Non-invasive real time in vivo molecular imaging, in small animal models, represents a dynamic field for improve the translational research and has become the essential bridge between in vitro data and their translation into clinical applications. The development and technological progress, such as tumor modelling, monitoring of tumor growth and detection of metastasis, has facilitated translational drug development. The technologies most commonly used in scientific investigations include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images using multiple techniques provides reliable information, allowing the number of animals used in experiments to be limited. However, the variety of techniques available does not allow us to identify a single modality that is ideal for all types of studies to be conducted. Laboratory animals, especially rodents, have been used extensively in preclinical research to better understand disease activation mechanisms. The study of genetically modified rodent models allows the targeted selection of rodents for studies on specific diseases. This modality provides suitable opportunities to understand the relationships and effects of the pharmacological agents used on the disease under investigation. The general aim of my doctoral project was to understand the characteristics of the technologies best suited to experimental testing, basing the choice on the requirements of the research to be carried out. The design of the experiments performed on different applications therefore followed selection criteria on the use of reagents, radiographic contrast agents or drugs used. This purpose allowed me to have the information to adapt the research needs to the type of technology available. In this context, the choices were also guided by ethical considerations to reduce the number of animals in the experiment while maintaining levels of adequate statistical significance of the expected morphological and/or functional information. All experiments performed were pre-evaluated together with the pharmacological or molecular targets we wanted to use, in order to understand which instrumentation was able to provide the instrumental responses best suited to the expected result. The analysis of the data obtained, combined with a post- processing phase of the images developed using advanced software, allowed me to directly and autonomously process the images in an optimized manner, better encoding the experimental data to the biological investigation carried out. This approach can help experimenters with specific biological expertise, particularly in finding the parameters considered essential for instrumental imaging experiments. In the first part of my PhD project, I studied the role of OI-CT-SPECT-DXA systems for small animal imaging for a better understanding of instrumental responses compared to pathology-specific studies. In particular, I evaluated the advantages of using hybrid systems, capable of providing greater information on the study performed, both morphological and functional. The experience gained in using different imaging technologies in animal model experiments has enabled me to proceed with the best approach to studying the bio-distribution of new molecules in neuroimaging. Various imaging methods among those available were evaluated in order to plan the most suitable procedures to quickly achieve results that can be used in the proposed study. In particular, some requirements of the research project required confirmation of the crossing of the blood-brain barrier by the molecule under observation (Sulfavant) and their bio-distribution in brain structures. This result had several options available but with different degrees of difficulty in carrying out the experiments. The study project of the molecule has seen various phases of evaluation in recent years, hypothesizing its use to limit neuro-inflammation phenomena but, at the same time, requiring experimental confirmation in terms of its ability to localize in brain structures. Many previously developed in vitro and ex vivo studies placed these studies as potentially effective on neuro-inflammation but a first form of confirmation of their distribution was needed both from a morphological point of view and from functional confirmations. The training course carried out during the doctorate, with the use of imaging techniques applied in various experiments, allowed for the growth of my personal background, extending it to the knowledge and study of the most suitable experimental strategy.
Molte apparecchiature per piccoli animali sono state sviluppate in analogia alla strumentazione per diagnostica clinica, tra cui tomografia a emissione di positroni, tomografia computerizzata a emissione di fotone singolo, tomografia computerizzata, risonanza magnetica e ultrasuoni. Al contrario, l’imaging ottico che utilizza la tecnologia dei traccianti fluorescenti e bioluminescenti è stato applicato partendo dagli studi in vitro su singole cellule per arrivare all’imaging di animali a corpo intero. L'imaging multi-dispositivo consente il confronto e l’integrazione di diversi aspetti di funzione, anatomia, espressione genica e fenotipo utilizzando algoritmi software o, più recentemente, dispositivi ibridi. L'imaging animale facilita lo sviluppo di farmaci in diagnostica e terapia. L'imaging longitudinale migliora la ricerca preclinica su piccoli animali attraverso il vantaggio delle statistiche accoppiate con l'uso di animali come controlli, riducendo al contempo il numero di animali sacrificati nel corso dell’esperimento. Inoltre, l’imaging rende esplicito lo sviluppo di agenti diagnostici e terapeutici su piattaforme di sintesi molecolare quasi identiche, collegando così la scoperta di farmaci allo sviluppo di traccianti per l’imaging. Questo approccio scientifico combina elementi diagnostici e terapeutici (teranostici). Questa combinazione di tecniche, che utilizzano 123I (diagnosi) e 131I (terapia), è stata ampiamente utilizzata, ad esempio, nelle malattie benigne e maligne della tiroide. L'imaging molecolare in vivo non invasivo in tempo reale, in modelli di piccoli animali, rappresenta un campo dinamico per migliorare la ricerca traslazionale ed è diventato il ponte essenziale tra i dati in vitro e la loro traduzione in applicazioni cliniche. Lo sviluppo e il progresso tecnologico, come la modellazione del tumore, il monitoraggio della crescita del tumore e il rilevamento delle metastasi, hanno facilitato lo sviluppo di farmaci traslazionali. Le tecnologie più comunemente utilizzate nelle indagini scientifiche includono la risonanza magnetica (MRI), la tomografia computerizzata (CT), la tomografia a emissione di positroni (PET), la tomografia a emissione di fotone singolo (SPECT), l'imaging a bioluminescenza, l'imaging a fluorescenza e i sistemi di imaging multimodale. La capacità di ottenere più immagini utilizzando più tecniche fornisce informazioni affidabili, consentendo di limitare il numero di animali utilizzati negli esperimenti. Tuttavia, la varietà delle tecniche disponibili non ci consente di identificare un’unica modalità ideale per tutti i tipi di studi da condurre. Gli animali da laboratorio, in particolare i roditori, sono stati ampiamente utilizzati nella ricerca preclinica per migliorare e comprendere i meccanismi di attivazione delle malattie. Lo studio di modelli di roditori geneticamente modificati consente la selezione mirata di roditori per studi su specifiche malattie. Questa modalità offre adeguate opportunità per comprendere le relazioni e gli effetti degli agenti farmacologici utilizzati sulla malattia in esame. L'obiettivo generale del mio progetto di dottorato è stato quello di comprendere le caratteristiche delle tecnologie più adatte alla sperimentazione, basando la scelta sulle esigenze della ricerca da svolgere. La progettazione degli esperimenti condotti sulle diverse applicazioni ha quindi seguito criteri di selezione sull'uso dei reagenti, dei mezzi di contrasto radiografici o dei farmaci utilizzati. Questo scopo mi ha permesso di avere le informazioni per adattare le esigenze di ricerca al tipo di tecnologia disponibile. In questo contesto, le scelte sono state guidate anche da considerazioni etiche per ridurre il numero di animali nell'esperimento mantenendo livelli di adeguata significatività statistica delle informazioni morfologiche e/o funzionali attese. Tutti gli esperimenti eseguiti sono stati pre-valutati insieme ai bersagli farmacologici o molecolari che si volevano utilizzare, al fine di comprendere quale strumentazione fosse in grado di fornire le risposte strumentali più adatte al risultato atteso. L'analisi dei dati ottenuti, abbinata ad una fase di post-elaborazione delle immagini sviluppate tramite software avanzati, mi ha permesso di elaborare direttamente ed autonomamente le immagini in maniera ottimizzata, per meglio codificare i dati sperimentali all'indagine biologica effettuata. Questo approccio può aiutare gli sperimentatori con competenze biologiche specifiche, in particolare nel trovare i parametri considerati essenziali per gli esperimenti di imaging strumentale. Nella prima parte del mio progetto di dottorato, ho studiato il ruolo dei sistemi OI-CT-SPECT-DEXA per l'imaging di piccoli animali per una migliore comprensione delle risposte strumentali rispetto a studi specifici per patologia. In particolare, ho valutato i vantaggi derivanti dall'utilizzo di sistemi ibridi, in grado di fornire maggiori informazioni sullo studio effettuato, sia morfologiche che funzionali. L'esperienza maturata nell'utilizzo di diverse tecnologie di imaging in esperimenti su modelli animali mi ha permesso di procedere con l'approccio migliore allo studio della biodistribuzione di nuove molecole nel neuroimaging. Sono state valutate diverse metodiche di imaging tra quelle disponibili al fine di pianificare le procedure più idonee per ottenere rapidamente risultati utilizzabili nello studio proposto. In particolare, alcune esigenze del progetto di ricerca richiedevano la conferma dell'attraversamento della barriera ematoencefalica da parte delle molecole in osservazione (Sulfavant) e la loro biodistribuzione nelle strutture cerebrali. Questo risultato aveva a disposizione diverse opzioni ma con diversi gradi di difficoltà nella realizzazione degli esperimenti. Il progetto di studio della molecola ha visto negli ultimi anni diverse fasi di valutazione, ipotizzandone l'utilizzo per limitare fenomeni neuroinfiammatori ma, allo stesso tempo, richiedendo conferme sperimentali in termini di capacità di localizzarsi nelle strutture cerebrali. Molti studi in vitro ed ex vivo precedentemente sviluppati collocano questi studi come potenzialmente efficaci sulla neuroinfiammazione ma era necessaria una prima forma di conferma della loro distribuzione sia da un punto di vista morfologico che funzionale. Il percorso formativo svolto durante il dottorato, con l'utilizzo di tecniche di imaging applicate in diversi esperimenti, ha permesso di accrescere il mio background personale, estendendolo alla conoscenza e allo studio della strategia sperimentale più idonea.
Small animal imaging techniques in preclinical studies / Andrea Soluri , 2024 Apr 12. 36. ciclo
Small animal imaging techniques in preclinical studies
SOLURI, ANDREA
2024-04-12
Abstract
Many small-animal instruments have been developed in analogy to human instruments, including positron emission tomography, single-photon emission computed tomography, computed tomography, magnetic resonance imaging and ultrasound. Conversely, optical imaging using fluorescent and bioluminescent tracer technology has been scaled up from single cell in vitro studies to whole body animal imaging. Multi-device imaging allows the comparison of different aspects of function, anatomy, gene expression and phenotype using software algorithms or, more recently, hybrid devices. Animal imaging facilitates bench-to-bedside drug development in two ways. Longitudinal imaging improves the science of animal research through the benefit of paired statistics with the use of animals as their own controls, while reducing animal sacrifice. In addition, imaging makes explicit the development of diagnostic and therapeutic agents on nearly identical molecular synthesis platforms, thus linking drug discovery to the development of imaging tracers. This scientific approach combines diagnostic and therapeutic elements (theranostics). This combination of techniques, using 123I (diagnosis) and 131I (therapy), has been widely used, for example, in benign and malignant thyroid disease. Non-invasive real time in vivo molecular imaging, in small animal models, represents a dynamic field for improve the translational research and has become the essential bridge between in vitro data and their translation into clinical applications. The development and technological progress, such as tumor modelling, monitoring of tumor growth and detection of metastasis, has facilitated translational drug development. The technologies most commonly used in scientific investigations include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images using multiple techniques provides reliable information, allowing the number of animals used in experiments to be limited. However, the variety of techniques available does not allow us to identify a single modality that is ideal for all types of studies to be conducted. Laboratory animals, especially rodents, have been used extensively in preclinical research to better understand disease activation mechanisms. The study of genetically modified rodent models allows the targeted selection of rodents for studies on specific diseases. This modality provides suitable opportunities to understand the relationships and effects of the pharmacological agents used on the disease under investigation. The general aim of my doctoral project was to understand the characteristics of the technologies best suited to experimental testing, basing the choice on the requirements of the research to be carried out. The design of the experiments performed on different applications therefore followed selection criteria on the use of reagents, radiographic contrast agents or drugs used. This purpose allowed me to have the information to adapt the research needs to the type of technology available. In this context, the choices were also guided by ethical considerations to reduce the number of animals in the experiment while maintaining levels of adequate statistical significance of the expected morphological and/or functional information. All experiments performed were pre-evaluated together with the pharmacological or molecular targets we wanted to use, in order to understand which instrumentation was able to provide the instrumental responses best suited to the expected result. The analysis of the data obtained, combined with a post- processing phase of the images developed using advanced software, allowed me to directly and autonomously process the images in an optimized manner, better encoding the experimental data to the biological investigation carried out. This approach can help experimenters with specific biological expertise, particularly in finding the parameters considered essential for instrumental imaging experiments. In the first part of my PhD project, I studied the role of OI-CT-SPECT-DXA systems for small animal imaging for a better understanding of instrumental responses compared to pathology-specific studies. In particular, I evaluated the advantages of using hybrid systems, capable of providing greater information on the study performed, both morphological and functional. The experience gained in using different imaging technologies in animal model experiments has enabled me to proceed with the best approach to studying the bio-distribution of new molecules in neuroimaging. Various imaging methods among those available were evaluated in order to plan the most suitable procedures to quickly achieve results that can be used in the proposed study. In particular, some requirements of the research project required confirmation of the crossing of the blood-brain barrier by the molecule under observation (Sulfavant) and their bio-distribution in brain structures. This result had several options available but with different degrees of difficulty in carrying out the experiments. The study project of the molecule has seen various phases of evaluation in recent years, hypothesizing its use to limit neuro-inflammation phenomena but, at the same time, requiring experimental confirmation in terms of its ability to localize in brain structures. Many previously developed in vitro and ex vivo studies placed these studies as potentially effective on neuro-inflammation but a first form of confirmation of their distribution was needed both from a morphological point of view and from functional confirmations. The training course carried out during the doctorate, with the use of imaging techniques applied in various experiments, allowed for the growth of my personal background, extending it to the knowledge and study of the most suitable experimental strategy.File | Dimensione | Formato | |
---|---|---|---|
Soluri Andrea tesi di dottorato.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
17.51 MB
Formato
Adobe PDF
|
17.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.