Controlled drug release holds promise to revolutionize medicine, particularly if short-term and long-term release can be combined in a single system. We present here a new pulsatile release system, in which the pulses were achieved using 3D scaffolds of poly(L-lactic acid), PLLA. From a morphological characterization of the scaffold's surfaces, before and after releasing experiments at distinct pHs, we infer that release is governed by electrostatic interactions and the fractal geometry of the scaffolds. Furthermore, the scaffold can present short-term (within hours) or long-term (several days long) releasing profiles by varying the pH, which opens the way for unprecedented drug release control.

Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release

Basoli, Francesco;
2019-01-01

Abstract

Controlled drug release holds promise to revolutionize medicine, particularly if short-term and long-term release can be combined in a single system. We present here a new pulsatile release system, in which the pulses were achieved using 3D scaffolds of poly(L-lactic acid), PLLA. From a morphological characterization of the scaffold's surfaces, before and after releasing experiments at distinct pHs, we infer that release is governed by electrostatic interactions and the fractal geometry of the scaffolds. Furthermore, the scaffold can present short-term (within hours) or long-term (several days long) releasing profiles by varying the pH, which opens the way for unprecedented drug release control.
2019
Poly(lactide); Fractal dimension; Scaffolds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/80163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact